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Abstract
In this paper, by taking two important network environment factors (namely
point-to-group worm propagation and benign worms) into consideration, a
mathematical model with multiple delays to model the worm prevalence is
presented. Sufficient conditions for the local stability of the unique endemic
equilibrium and the existence of a Hopf bifurcation are demonstrated by choosing
the different combinations of the three delays and analyzing the associated
characteristic equation. Directly afterward, the stability and direction of the bifurcated
periodic solutions are investigated by using center manifold theorem and the normal
form theory. Finally, special attention is paid to some numerical simulations in order
to verify the obtained theoretical results.
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1 Introduction
Over the years coupled with the fast development of communication technology and com-
puter network applications, the network security has become an important challenge to
the internet [1]. Specially, many computer worms have come into the internet frequently
since the first known worm, called Morris, appeared in 1988. Computer worms are self-
replicating programs created to carry out activities, which can quickly infect millions of
electronic devices (computers, smartphones, etc.) without consent of their owners, and
they have brought about huge economic losses and have had high social impact [2, 3].
Therefore, it is urgent to analyze the spreading law and control of computer worms in
order to lessen their potential threat. Based on a newfangled observation that the spread
of worms among computers is closely similar to the transmission of the infectious dis-
ease among a population, many epidemic models, such as SIRS model [4], SEIR model
[5], SEIRS [2, 6, 7] model, SEIS-V model [8], SEIQR model [9] and SEIRS-V model [10–
12], have been employed to analyze and describe the spread of computer worms in the
internet.

As stated in the literature [13], the “point-to-group” (P2G), is extensively exists in the
real world, especially in information sharing network. And its typical characteristics is
that the group members in such network environment can receive the message or file
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Table 1 Parameters and their meanings in this paper

Parameter Description

μ The replacement rate of old hosts
N The total number of hosts
β1 The infection rate of worms
β2 The infection rate of benign worms
α The transition rate from E to I
γ The transition rate from A to R
ρ The transition rate from E to R
ε The transition rate from S to R
η The transition rate from R to S

from the source simultaneously. Moreover, the information exchange in the same group
is more frequent and more trustworthy, which makes it easier for computer viruses to
propagate in the same group. Although there are some mathematical models which can
depict the spread of computer viruses in the internet, however, the common problem of
the above models is that they are not suitable for modeling the spread of computer viruses
in point-to-group networks. In view of this fact, and based on the SIRA computer virus
propagation model in the literature [14] Wang et al. [15] proposed the following e-SEIAR
model with point-to-group worm propagation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = μN – β1S(t)E(t) – β2S(t)A(t) – (μ + ε)S(t),

dE(t)
dt = β1S(t)E(t) – (μ + α + ρ)E(t),

dI(t)
dt = αE(t) – μI(t) – β2I(t)A(t),

dA(t)
dt = β2S(t)A(t) + β2I(t)A(t) – (μ + γ )A(t),

dR(t)
dt = γ A(t) + ρE(t) + εS(t) – μR(t),

(1)

where S(t), E(t), I(t), A(t) and R(t) represent the numbers of susceptible, exposed, infec-
tive, benign worm and recovered hosts at time t, respectively. Namely, the total hosts are
partitioned into five groups: S hosts, E hosts, I hosts, A hosts and R hosts. More parame-
ters are listed in Table 1. Wang et al. [15] studied the local and global stability of system (1).

Obviously, Wang et al. [15] assume that the recovered hosts in system (1) have perma-
nent immunization, which is not consistent with real world. In addition, there is usually a
latent period from E hosts to I hosts. Similarly, it also needs a period for anti-virus soft-
ware to clean the worms in E hosts and A hosts. On the other hand, delay differential
equations show more complex dynamics compared with ordinary differential equations
[16–18]. For example, there some work about delayed predator–prey models in [19–22],
neural network models with delays in [23–26] and delayed epidemic models in [27–30].
Specially, there have been some work about the delayed computer virus models. Zhao and
Bi studied the Hopf bifurcation of a delayed SEIR computer virus model with limited anti-
virus ability by regarding the latent delay as the bifurcation parameter [31]. In [32], Zhang
and Wang investigated the Hopf bifurcation of a delayed SLBQRS model by choosing the
time delay due to the period that anti-virus software uses to clean viruses as the bifurca-
tion parameter and derived the explicit formulas determining the direction and stability of
the Hopf bifurcation by using the center manifold theorem and the normal form theory. In
[33], Ren et al. analyzed the Hopf bifurcation of a delayed SIRS computer virus model by
taking the time delay due to the temporary immunization period of the recovered hosts.
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Figure 1 Schematic diagramfor the flowof worms inthe network

Zhao et al. studied the Hopf bifurcation of a delayed SLBS computer virus model by us-
ing the different combinations of the two delays as the bifurcation parameter [34]. All the
work about the delayed dynamical systems shows that time delays have important effect
on the stability of the systems. Therefore, based on the defects in the model proposed by
Wang et al. [15] and inspired by the work about the delayed computer virus models in [3,
5, 6, 18, 31–34], we investigate a delayed e-SEIARS model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = μN – β1S(t)E(t) – β2S(t)A(t) – (μ + ε)S(t) + ηR(t – τ3),

dE(t)
dt = β1S(t)E(t) – μE(t) – αE(t – τ1) – ρE(t – τ2),

dI(t)
dt = αE(t – τ1) – μI(t) – β2I(t)A(t),

dA(t)
dt = β2S(t)A(t) + β2I(t)A(t) – μA(t) – γ A(t – τ2),

dR(t)
dt = γ A(t – τ2) + ρE(t – τ2) + εS(t) – μR(t) – ηR(t – τ3),

(2)

where τ1 is the latent period delay of the exposed nodes; τ2 is the delay due to the period
that the anti-virus software uses to clean the worm and τ3 is the temporary immunization
period of the recovered nodes. The dynamical transfer is depicted in Fig. 1.

The rest of paper is organized as follows. In Sect. 2, we analyze local stability of the en-
demic equilibrium and existence of Hopf bifurcation by taking different combinations of
the three delays as bifurcation parameters. In Sect. 3, the properties of the Hopf bifurca-
tion are investigated with aid of the center manifold theory and the normal form method.
Numerical simulations are performed in Sect. 4 in order to illustrate the theoretical pre-
dictions. Finally, we end our paper with a concluding remark.

2 Local stability and Hopf bifurcation analysis
Straightforward computation shows that if the condition (C1) β1(μ + γ ) > β2(μ + α + ρ),
then system (2) has an endemic equilibrium D∗(S∗, E∗, I∗, A∗, R∗), where

S∗ =
μ + α + ρ

β1
,

E∗ = a1 + a2A∗,

I∗ =
β1(μ + γ ) – β2(μ + α + ρ)

β1β2
,

A∗ =
μN – a1(μ + α + ρ) – (μ + ε)S∗ + b1η

(a2 + β2/β1)(μ + α + ρ) – b2η
,

R∗ = b1 + b2A∗,
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with

a1 =
μ

α
I∗, a2 =

β2

α
I∗,

b1 =
ε(μ + α + ρ)
β1(μ + η)

+
μρI∗

α(μ + η)
,

b2 =
γ

μ + η
+

β2ρI∗
α(μ + η)

.

The characteristic equation of the linear section of system (2) at D∗(S∗, E∗, I∗, A∗, R∗) is

λ5 + M4λ
4 + M3λ

3 + M2λ
2 + M1λ + M0

+
(
N4λ

4 + N3λ
3 + N2λ

2 + N1λ + N0
)
e–λτ1

+
(
P4λ

4 + P3λ
3 + P2λ

2 + P1λ + P0
)
e–λτ2

+
(
Q4λ

4 + Q3λ
3 + Q2λ

2 + Q1λ + Q0
)
e–λτ3

+
(
R3λ

3 + R2λ
2 + R1λ + R0

)
e–λ(τ1+τ2)

+
(
S3λ

3 + S2λ
2 + S1λ + S0

)
e–λ(τ1+τ3)

+
(
T3λ

3 + T2λ
2 + T1λ + T0

)
e–λ(τ2+τ3)

+
(
U3λ

3 + U2λ
2 + U1λ + U0

)
e–2λτ2

+
(
V3λ

3 + V2λ
2 + V1λ + V0

)
e–2λτ3

+
(
W2λ

2 + W1λ + W0
)
e–λ(τ1+τ2+τ3)

+
(
X2λ

2 + X1λ + X0
)
e–λ(τ1+2τ3)

+
(
Y2λ

2 + Y1λ + Y0
)
e–λ(τ2+2τ3)

+
(
Z2λ

2 + Z1λ + Z0
)
e–λ(2τ2+τ3)

+ (L1λ + L0)e–λ(τ1+τ2+2τ3) + (E1λ + E0)e–2λ(τ2+τ3) = 0, (3)

where

M0 = m55(m34m43 – m33m44)(m11m22 – m12m21),

M1 = (m11m22 – m12m21)(m33m44 + m33m55 + m44m55)

+ (m11 + m22)m33m44m55 + m12m21m34m43

– m34m43(m11m22 + m11m55 + m22m55),

M2 = (m12m21 – m11m22)(m33 + m44 + m55) – m33m44m55

+ m34m43(m11 + m22 + m55)

– (m11 + m22)(m33m44 + m33m55 + m44m55),

M3 = m33m44 + m33m55 + m44m55 + m11m22

– m12m21(m11 + m22)(m33 + m44 + m55) – m34m43,

M4 = –(m11 + m22 + m33 + m44 + m55),
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N0 = m55(m14m21m43n32 + m11m34m43n22 – m11m33m44n22),

N1 = n22
[
m55(m11m33 + m11m44 + m33m44) + m11m33m44

]

– m14m21m43n32 – m34m43n22(m11 + m55),

N2 = n22
[
m34m43 – m55(m11 + m33 + m44) – m11m33 – m11m44 – m33m44

]
,

N3 = n22(m11 + m33 + m44 + m55), N4 = –n22,

P0 = m11m55p22(m34m43 – m33m44) + m33m55p44(m12m21 – m11m22),

P1 = (m33 + m55)(m11m22p44 + m11m44p22 – m12m21p44)

+ m33m55
[
p22(m11 + m44) + p44(m11 + m22)

]

– m34m43p22(m11 + m55),

P2 = p22
[
m34m43 – m11m44 – m33m55 – (m11 + m44)(m33 + m55)

]

+ p44
[
m12m21 – m11m22 – m33m55 – (m11 + m22)(m33 + m55)

]
,

P3 = p22(m11 + m33 + m44 + m55) + p44(m11 + m22 + m33 + m55),

P4 = –(p22 + p44),

Q0 = q55(m12m21 – m11m22)(m33m44 – m34m43) – m22m33m44m55q15,

Q1 = q15
[
m22m33(m44 + m55) + m44m55(m22 + m33)

]

+ q55
[
(m11m22 – m12m21)(m33 + m44) + (m33m44 – m34m43)(m11 + m22)

]
,

Q2 = q55
[
m12m21 + m34m43 – m11m22 – m33m44 – (m11 + m22)(m33 + m44)

]

– q15
[
m22m33 + m44m55 + (m22 + m33)(m44 + m55)

]
,

Q3 = q15(m22 + m33 + m44 + m55) + q55(m11 + m22 + m33 + m44),

Q4 = –(q15 + q55), R0 = –m11m33m55n22p44,

R1 = p44n22(m11m33 + m11m55 + m33m55),

R2 = –p44n22(m11 + m33 + m55), R3 = p44n22,

S0 = q55(m14m21m43n32 – m11m33m44n22) – m33m44m55n22q15,

S1 = n22
[
q15(m33m44 + m33m55 + m44m55) + q55(m11m33 + m11m44 + m33m44)

]
,

S2 = –n22
[
q15(m33 + m44 + m55) + q55(m11 + m33 + m44)

]
, S3 = n22(q15 + q55),

T0 = m33q55(m12m21p44 – m11m22p44 – m11m44p22)

– m33m55q15(m22p44 + m44p22),

T1 = q15
[
p22(m33m44 + m33m55 + m44m55)

+ p44(m22m33 + m22m55 + m33m55)
]

+ q55
[
p22(m11m33 + m11m44 + m33m44)

+ p44(m11m22 + m11m33 + m22m33 – m12m21)
]
,
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T2 = –q15
[
p22(m33 + m44 + m55) + p44(m22 + m33 + m55)

]

– q55
[
p22(m11 + m33 + m44) + p44(m11 + m22 + m33)

]
,

T3 = (q15 + q55)(p22 + p44),

U0 = –m11m33m55p22p44,

U1 = p22p44(m11m33 + m11m55 + m33m55),

U2 = –p22p44(m11 + m33 + m55), U3 = p22p44,

V0 = –m22m33m44q15q55,

V1 = q15q55(m22m33 + m22m44 + m33m44),

V2 = –q15q55(m22 + m33 + m44), V3 = q15q55,

W0 = –m33n22p44(m55q15 + m11q55),

W1 = n22p44
[
q15(m33 + m55) + q55(m11 + m33)

]
,

W2 = –n22p44(q15 + q55),

X0 = –m33m44n22q15q55, X1 = n22q15q55(m33 + m44), X2 = –n22q15q55,

Y0 = –m33q15q55(m22p44 + m44p22),

Y1 = q15q55
[
p22(m33 + m44) + p44(m22 + m33)

]
,

Y2 = –q15q55(p22 + p44),

Z0 = –m33p22p44(m11q55 + m33q15),

Z1 = p22p44
[
q55(m11 + m33) + q15(m33 + m55)

]
,

Z2 = –p22p44(q15 + q55),

L0 = –m33n22p44q15q55, L1 = n22p44q15q55,

E0 = –m33p22p44q15q55, E1 = p22p44q15q55,

and

m11 = –(β1E∗ + β2A∗ + μ + ε), m12 = –β1S∗, m14 = –β2S∗, q15 = η,

m21 = β1S∗, m22 = –μ, n22 = –α, p22 = –ρ,

m33 = –(μ + β2A∗), m34 = –β2I∗, n32 = α,

m41 = β2A∗, m43 = β2A∗, m44 = β2(S∗ + I∗) – μ, p44 = –γ ,

m51 = ε, m55 – μ, p52 = ρ, p54 = γ , q55 = –η.

Case 1. τ1 = τ2 = τ3 = 0, Eq. (3) becomes

λ5 + M14λ
4 + M13λ

3 + M12λ
2 + M11λ + M10 = 0, (4)
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where

M10 = M0 + N0 + P0 + Q0 + R0 + S0 + T0

+ U0 + V0 + W0 + X0 + Y0 + Z0 + L0 + E0,

M11 = M1 + N1 + P1 + Q1 + R1 + S1 + T1

+ U1 + V1 + W1 + X1 + Y1 + Z1 + L1 + E1,

M12 = M2 + N2 + P2 + Q2 + R2 + S2 + T2

+ U2 + V2 + W2 + X2 + Y2 + Z2,

M13 = M3 + N3 + P3 + Q3 + R3 + S3 + T3

+ U3 + V3,

M14 = M4 + N4 + P4 + Q4.

Based on the Routh–Hurwitz criteria, it can be concluded that D∗(S∗, E∗, I∗, A∗, R∗) is
locally asymptotically stable when τ = 0 if Eqs. (5)–(9) are satisfied, which we refer to as
condition (C2):

det1 = M14 > 0, (5)

det2 =

∣
∣
∣
∣
∣

M14 1
M12 M13

∣
∣
∣
∣
∣

> 0, (6)

det3 =

∣
∣
∣
∣
∣
∣
∣

M14 1 0
M12 M13 M14

0 M11 M12

∣
∣
∣
∣
∣
∣
∣

> 0, (7)

det4 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

M14 1 0 0
M12 M13 M14 1
M10 M11 M12 M13

0 0 M10 M11

∣
∣
∣
∣
∣
∣
∣
∣
∣

> 0, (8)

det5 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

M14 1 0 0 0
M12 M13 M14 1 0
M10 M11 M12 M13 M14

0 0 M10 M11 M12

0 0 0 0 M10

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

> 0. (9)

Case 2. τ1 > 0, τ2 = τ3 = 0, Eq. (3) becomes

λ5 + M24λ
4 + M23λ

3 + M22λ
2 + M21λ + M20

+
(
N24λ

4 + N23λ
3 + N22λ

2 + N21λ + N20
)
e–λτ1 , (10)

with

M20 = M0 + P0 + Q0 + T0 + U0

+ V0 + Y0 + Z0 + E0,
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M21 = M1 + P1 + Q1 + T1 + U1

+ V1 + Y1 + Z1 + E1,

M22 = M2 + P2 + Q2 + T2 + U2

+ V2 + Y2 + Z2,

M23 = M3 + P3 + Q3 + T3 + U3 + V3,

M24 = M4 + P4 + Q4,

N20 = N0 + R0 + S0 + W0 + X0 + L0,

N21 = N1 + R1 + S1 + W1 + X1 + L1,

N22 = N2 + R2 + S2 + W2 + X2,

N23 = N3 + R3 + S3, N24 = N4.

Let λ = iω (ω > 0) be the root of Eq. (10), then from Eq. (10) separating real and imaginary
part we obtain

⎧
⎨

⎩

f21(ω) sin τ1ω + f22(ω) cos τ1ω = f23(ω),

f21(ω) cos τ1ω – f22(ω) sin τ1ω = f24(ω),
(11)

where

f21(ω) = N21ω – N23ω
3,

f22(ω) = N24ω
4 – N22ω

2 + N20,

f23(ω) = M22ω
2 – M24ω

4 – M20,

f24(ω) = M23ω
3 – ω5 – M21ω.

Equation (11) gives the following equation with respect to ω:

ω10 + h24ω
8 + h23ω

6 + h22ω
4 + h21ω

2 + h20 = 0, (12)

with

h20 = M2
20 – N2

20,

h21 = M2
21 – 2M20M22 + 2N20N22 – N2

21,

h22 = M2
22 + 2M20M24 – 2M21M23 – N2

22 – 2N20N24 + 2N21N23,

h23 = 2M21 + M2
23 – 2M22M24 + 2N22N24 – N2

23,

h24 = M2
24 – 2M23 – N2

24.

We suppose that (C21): Eq. (12) has at least one positive root ω0.
Furthermore, we have

τ0 =
1
ω0

× arccos

[
f21(ω0) × f24(ω0) + f22(ω0) × f23(ω0)

f 2
21(ω0) + f 2

22(ω0)

]

. (13)
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Now differentiating Eq. (10) with respect to τ1, we get

[
dλ

dτ1

]–1

=
5λ4 + 4M24λ

3 + 3M23λ
2 + 2M22λ + M21

λ(λ5 + M24λ4 + M23λ3 + M22λ2 + M21λ + M20)

+
4N24λ

3 + 3N23λ
2 + 2N22λ + N21

λ(N24λ4 + N23λ3 + N22λ2 + N21λ + N20)
–

τ1

λ
. (14)

Substituting λ = iω0 and simplifying we get

Re

[
dλ

dτ1

]–1

τ1=τ10

=
f ′
20(v0)

f 2
21(ω0) + f 2

22(ω0)
,

where f20(v) = v5 + h24v4 + h23v3 + h22v2 + h21v + h20 and v = ω2.
Therefore, if (C22): f ′(v0) �= 0 is satisfied, then Re[ dλ

dτ1
]–1
τ1=τ10 �= 0. Thus, we have the fol-

lowing conclusions based on the Hopf bifurcation theorem in [35].

Theorem 1 For system (2), if the conditions (C21)–(C22) hold, then D∗(S∗, E∗, I∗, A∗, R∗) is
locally asymptotically stable when τ1 ∈ [0, τ10); system (2) undergoes a Hopf bifurcation at
D∗(S∗, E∗, I∗, A∗, R∗) when τ1 = τ10.

Case 3. τ2 > 0, τ1 = τ3 = 0, Eq. (3) becomes

λ5 + M34λ
4 + M33λ

3 + M32λ
2 + M31λ + M30

+
(
P34λ

4 + P33λ
3 + P32λ

2 + P31λ + P30
)
e–λτ2

+
(
U33λ

3 + U32λ
2 + U31λ + U30

)
e–2λτ2 = 0, (15)

with

M30 = M0 + N0 + Q0 + S0 + V0 + X0,

M31 = M1 + N1 + Q1 + S1 + V1 + X1,

M32 = M2 + N2 + Q2 + S2 + V2 + X2,

M33 = M3 + N3 + Q3 + S3 + V3,

M34 = M4 + N4 + Q4,

P30 = P0 + R0 + T0 + W0 + Y0 + L0,

P31 = P1 + R1 + T1 + W1 + Y1 + L1,

P32 = P2 + R2 + T2 + W2 + Y2,

P33 = P3 + R3 + T3 + W3, P34 = P4,

U30 = U0 + Z0 + E0,

U31 = U1 + Z1 + E1,

U32 = U2 + Z2, U33 = U3.
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Multiplying by eλτ2 , Eq. (15) becomes

P34λ
4 + P33λ

3 + P32λ
2 + P31λ + P30

+
(
λ5 + M34λ

4 + M33λ
3 + M32λ

2 + M31λ + M30
)
eλτ2

+
(
U33λ

3 + U32λ
2 + U31λ + U30

)
e–λτ2 = 0. (16)

Let λ = iω(ω > 0) be the root of Eq. (16), then from Eq. (16) separating real and imaginary
parts we obtain

⎧
⎨

⎩

f31(ω) sin τ2ω + f32(ω) cos τ2ω = f33(ω),

f34(ω) cos τ2ω – f35(ω) sin τ2ω = f36(ω),
(17)

where

f31(ω) = (U31 – M31)ω – (U33 – M33)ω3 – ω5,

f32(ω) = M34ω
4 – (M32 + U32)ω2 + M30 + U30,

f33(ω) = P32ω
2 – P34ω

4 – P30,

f34(ω) = (U31 + M31)ω – (U33 + M33)ω3 + ω5,

f35(ω) = –M34ω
4 + (M32 – U32)ω2 – M30 + U30,

f36(ω) = P33ω
3 – P31ω.

It follows that

sin τ2ω =
f33(ω) × f34(ω) – f32(ω) × f36(ω)
f31(ω) × f34(ω) + f32(ω) × f35(ω)

(18)

and

cos τ2ω =
f31(ω) × f36(ω) + f33(ω) × f35(ω)
f31(ω) × f34(ω) + f32(ω) × f35(ω)

. (19)

Thus,

[
f33(ω) × f34(ω) – f32(ω) × f36(ω)

]2

+
[
f31(ω) × f36(ω) + f33(ω) × f35(ω)

]2

–
[
f31(ω) × f34(ω) + f32(ω) × f35(ω)

]2 = 0. (20)

Similar to Case 2, we assume that (C31) Eq. (20) has at least one positive root ω0.
Then we get

τ20 =
1
ω0

× arccos

[
f31(ω0) × f36(ω0) + f33(ω0) × f35(ω0)
f31(ω0) × f34(ω0) + f32(ω0) × f35(ω0)

]

. (21)
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Also, differentiating Eq. (16) with respect to τ2, we get

[
dλ

dτ2

]–1

=
g31(ω)
g32(ω)

–
τ2

λ
, (22)

where

g31(ω) = 4P34λ
3 + 3P33λ

2 + 2P32λ + P31

+
(
5λ4 + 4M34λ

3 + 3M33λ
2 + 2M32λ + M31

)
eλτ2

+
(
3U33λ

2 + 2U32λ + U31
)
e–λτ2 ,

g32(ω) =
(
U33λ

4 + U32λ
3 + U31λ

2 + U30λ
)
e–λτ2

–
(
λ6 + M34λ

5 + M33λ
4 + M32λ

3 + M31λ
2 + M30λ

)
eλτ2 .

Furthermore,

Re

[
dλ

dτ2

]–1

τ2=τ20

=
U3RV3R + U3IV3I

V 2
3R + V 2

3I
, (23)

with

U3R =
[
5ω4

0 – 3(M33 + U33)ω2
0 + M31 + U31

]
cos τ20ω0

– 2
[
(M32 – U32)ω0 – 2M34ω

3
0
]

sin τ20ω0 + P31 – 3P33ω
2
0,

U3I =
[
5ω4

0 – 3(M33 – U33)ω2
0 + M31 – U31

]
sin τ20ω0

+ 2
[
(M32 + U32)ω0 – 2M34ω

3
0
]

cos τ20ω0 + 2P31ω0 – 4P34ω
3
0,

V3R =
[
(U30 – M30)ω0 – (U32 – M32)ω3

0 – M34ω
5
0
]

sin τ20ω0

+
[
(U33 + M33)ω4

0 – (U31 + M31)ω2
0 – ω6

0
]

cos τ20ω0,

V3I =
[
(U30 + M30)ω0 – (U32 + M32)ω3

0 + M34ω
5
0
]

cos τ20ω0

–
[
(U33 – M33)ω4

0 – (U31 – M31)ω2
0 – ω6

0
]

sin τ20ω0.

Therefore, if (C32): U3RV3R + U3IV3I �= 0 is satisfied, then Re[ dλ
dτ2

]–1
τ2=τ20 �= 0. Thus, we have

the following conclusions based on the Hopf bifurcation theorem in [35].

Theorem 2 For system (2), if the conditions (C31)–(C32) hold, then D∗(S∗, E∗, I∗, A∗, R∗) is
locally asymptotically stable when τ2 ∈ [0, τ20); system (2) undergoes a Hopf bifurcation at
D∗(S∗, E∗, I∗, A∗, R∗) when τ2 = τ20.

Case 4. τ3 > 0, τ1 = τ2 = 0, Eq. (3) becomes

λ5 + M44λ
4 + M43λ

3 + M42λ
2 + M41λ + M40

+
(
Q44λ

4 + Q43λ
3 + Q42λ

2 + Q41λ + Q40
)
e–λτ3

+
(
V43λ

3 + V42λ
2 + V41λ + V40

)
e–2λτ3 = 0, (24)
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with

M40 = M0 + N0 + P0 + R0 + U0,

M41 = M1 + N1 + P1 + R1 + U1,

M42 = M2 + N2 + P2 + R2 + U2,

M43 = M3 + N3 + P3 + R3 + U3,

M44 = M4 + N4 + P4,

Q40 = Q0 + S0 + T0 + W0 + Z0,

Q41 = Q1 + S1 + T1 + W1 + Z1,

Q42 = Q2 + S2 + T2 + W2 + Z2,

Q43 = Q3 + S3 + T3, Q44 = Q4,

V40 = V0 + X0 + Y0 + L0 + E0,

V41 = V1 + X1 + Y1 + L1 + E1,

V42 = V2 + X2 + Y2, V43 = V3.

Multiplying by eλτ3 , Eq. (24) becomes

Q44λ
4 + Q43λ

3 + Q42λ
2 + Q41λ + Q40

+
(
λ5 + M44λ

4 + M43λ
3 + M42λ

2 + M41λ + M40
)
eλτ3

+
(
V43λ

3 + V42λ
2 + V41λ + V40

)
e–λτ3 = 0. (25)

Let λ = iω(ω > 0) be the root of Eq. (25), then following the same computation as done
in Case 3 we obtain

sin τ2ω =
f43(ω) × f44(ω) – f42(ω) × f46(ω)
f41(ω) × f44(ω) + f42(ω) × f45(ω)

(26)

and

cos τ2ω =
f41(ω) × f46(ω) + f43(ω) × f45(ω)
f41(ω) × f44(ω) + f42(ω) × f45(ω)

, (27)

where

f41(ω) = (V41 – M41)ω – (V43 – M43)ω3 – ω5,

f42(ω) = M44ω
4 – (M42 + V42)ω2 + M40 + V40,

f43(ω) = Q42ω
2 – Q44ω

4 – Q40,

f44(ω) = (V41 + M41)ω – (V43 + M43)ω3 + ω5,

f45(ω) = –M44ω
4 + (M42 – V42)ω2 – M40 + V40,

f46(ω) = Q43ω
3 – Q41ω.
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Furthermore,

[
f43(ω) × f44(ω) – f42(ω) × f46(ω)

]2

+
[
f41(ω) × f46(ω) + f43(ω) × f45(ω)

]2

–
[
f41(ω) × f44(ω) + f42(ω) × f45(ω)

]2 = 0. (28)

Similar to Case 3, we assume that (H41): Eq. (28) has at least one positive root ω0. Thus,

τ30 =
1
ω0

× arccos

[
f41(ω0) × f46(ω0) + f43(ω0) × f45(ω0)
f41(ω0) × f44(ω0) + f42(ω0) × f45(ω0)

]

(29)

and

[
dλ

dτ3

]–1

=
g41(ω)
g42(ω)

–
τ3

λ
, (30)

where

g41(ω) = 4Q44λ
3 + 3Q43λ

2 + 2Q42λ + Q41

+
(
5λ4 + 4M44λ

3 + 3M43λ
2 + 2M42λ + M41

)
eλτ3

+
(
3V43λ

2 + 2V42λ + V41
)
e–λτ3 ,

g42(ω) =
(
V43λ

4 + V42λ
3 + V41λ

2 + V40λ
)
e–λτ3

–
(
λ6 + M44λ

5 + M43λ
4 + M42λ

3 + M41λ
2 + M40λ

)
eλτ3 .

Thus,

Re

[
dλ

dτ3

]–1

τ3=τ30

=
U4RV4R + U4IV4I

V 2
4R + V 2

4I
, (31)

with

U4R =
[
5ω4

0 – 3(M43 + V43)ω2
0 + M41 + V41

]
cos τ30ω0

– 2
[
(M42 – V42)ω0 – 2M44ω

3
0
]

sin τ30ω0 + Q41 – 3Q43ω
2
0,

U4I =
[
5ω4

0 – 3(M43 – V43)ω2
0 + M41 – V41

]
sin τ30ω0

+ 2
[
(M42 + V42)ω0 – 2M44ω

3
0
]

cos τ30ω0 + 2Q42ω0 – 3Q44ω
3
0,

V4R =
[
(V40 – M40)ω0 – (V42 – M42)ω3

0 – M44ω
5
0
]

sin τ30ω0

+
[
(V43 + M43)ω4

0 – (V41 + M41)ω2
0 – ω6

0
]

cos τ20ω0,

V4I =
[
(V40 + M40)ω0 – (V42 + M42)ω3

0 + M44ω
5
0
]

cos τ30ω0

–
[
(V43 – M43)ω4

0 – (V41 – M41)ω2
0 – ω6

0
]

sin τ30ω0.

Therefore, if (C42): U4RV4R + U4IV4I �= 0 is satisfied, then Re[ dλ
dτ3

]–1
τ3=τ30 �= 0. Thus, we have

the following conclusions based on the Hopf bifurcation theorem in [35].
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Theorem 3 For system (2), if the conditions (C41)–(C42) hold, then D∗(S∗, E∗, I∗, A∗, R∗) is
locally asymptotically stable when τ3 ∈ [0, τ30); system (2) undergoes a Hopf bifurcation at
D∗(S∗, E∗, I∗, A∗, R∗) when τ3 = τ30.

Case 5. τ1 > 0, τ2 ∈ (0, τ20) τ3 ∈ (0, τ30). Let λ = iω (ω > 0) be the root of Eq. (3), then we
have

⎧
⎨

⎩

f51(ω) sin τ1ω + f52(ω) cos τ1ω = f53(ω),

f51(ω) cos τ1ω – f52(ω) sin τ1ω = f54(ω),
(32)

with

f51(ω) = N1ω – N3ω
3 +

(
R1ω – R3ω

3) cos τ2ω –
(
R0 – R2ω

2) sin τ2ω

+
(
S1ω – S3ω

3) cos τ3ω –
(
S0 – S2ω

2) sin τ3ω

+ W1ω cos(τ2 + τ3)ω –
(
W0 – W2ω

2) sin(τ2 + τ3)ω

+ X1ω cos 2τ3ω –
(
X0 – X2ω

2) sin 2τ3ω

+ L1ω cos(τ2 + 2τ3)ω – L0 sin(τ2 + 2τ3)ω,

f52(ω) = N4ω
4 – N2ω

2 + N0 +
(
R1ω – R3ω

3) sin τ2ω +
(
R0 – R2ω

2) cos τ2ω

+
(
S1ω – S3ω

3) sin τ3ω +
(
S0 – S2ω

2) cos τ3ω

+ W1ω sin(τ2 + τ3)ω +
(
W0 – W2ω

2) cos(τ2 + τ3)ω

+ X1ω sin 2τ3ω +
(
X0 – X2ω

2) cos 2τ3ω,

f53(ω) = M2ω2 – M4ω
4 – M0 –

(
P1ω – P3ω

3) sin τ2ω –
(
P4ω

4 – P2ω
2 + P0

)
cos τ2ω

–
(
Q1ω – Q3ω

3) sin τ3ω –
(
Q4ω

4 – Q2ω
2 + Q0

)
cos τ3ω

–
(
T1ω – T3ω

3) sin(τ2 + τ3)ω –
(
T0 – T2ω

2) cos(τ2 + τ3)ω

–
(
U1ω – U3ω

3) sin 2τ2ω –
(
U0 – U2ω

2) cos 2τ2ω

–
(
V1ω – V3ω

3) sin 2τ3ω –
(
V0 – V2ω

2) cos 2τ3ω

– Y1ω sin(τ2 + 2τ3)ω –
(
Y0 – Y2ω

2) cos(τ2 + 2τ3)ω

– Z1ω sin(2τ2 + τ3)ω –
(
Z0 – Z2ω

2) cos(2τ2 + τ3)ω

– E1ω sin 2(τ2 + τ3)ω – E0 cos 2(τ2 + τ3)ω,

f54(ω) = M3ω
3 – ω5 – M1ω –

(
P1ω – P3ω

3) cos τ2ω +
(
P4ω

4 – P2ω
2 + P0

)
sin τ2ω

–
(
Q1ω – Q3ω

3) cos τ3ω +
(
Q4ω

4 – Q2ω
2 + Q0

)
sin τ3ω

–
(
T1ω – T3ω

3) cos(τ2 + τ3)ω +
(
T0 – T2ω

2) sin(τ2 + τ3)ω

–
(
U1ω – U3ω

3) cos 2τ2ω +
(
U0 – U2ω

2) sin 2τ2ω

–
(
V1ω – V3ω

3) cos 2τ3ω +
(
V0 – V2ω

2) sin 2τ3ω

– Y1ω cos(τ2 + 2τ3)ω +
(
Y0 – Y2ω

2) sin(τ2 + 2τ3)ω
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– Z1ω cos(2τ2 + τ3)ω +
(
Z0 – Z2ω

2) sin(2τ2 + τ3)ω

– E1ω cos 2(τ2 + τ3)ω + E0 sin 2(τ2 + τ3)ω.

Thus, we can obtain the following equation with respect to ω:

f 2
53(ω) + f 2

54(ω) – f 2
51(ω) – f 2

52(ω) = 0. (33)

In order to give the main results in the present paper, we suppose that (C51): Eq. (33) has
at least one positive root ω1∗.

Thus, we can obtain

τ1∗ =
1

ω1∗
× arccos

[
f51(ω1∗) × f54(ω1∗) + f52(ω1∗) × f53(ω1∗)

f 2
51(ω1∗) + f 2

52(ω1∗)

]

. (34)

Taking the derivative of λ with respect to τ1 in Eq. (3), we obtain

[
dλ

dτ1

]–1

=
g51(ω)
g52(ω)

–
τ1

λ
, (35)

where

g51(ω) = 5λ4 + 4M4λ
3 + 3M3λ

2 + 2M2λ + M1 +
(
4N4λ

3 + 3N3λ
2 + 2N2λ + N1

)
e–λτ1

–
[
τ2P4λ

4 + (τ2P3 – 4P4)λ3 + (τ2P2 – 3P3)λ2

+ (τ2P1 – 2P2)λ + τ2P0 – P1
]
e–λτ2

–
[
τ3Q4λ

4 + (τ3Q3 – 4Q4)λ3 + (τ3Q2 – 3Q3)λ2

+ (τ3Q1 – 2Q2)λ + τ3Q0 – Q1
]
e–λτ3

–
[
τ2R3λ

3 + (τ2R2 – 3R3)λ2 + (τ2R1 – 2R2)λ + τ2R0 – R1
]
e–(τ1+τ2)

–
[
τ3S3λ

3 + (τ3S2 – 3S3)λ2 + (τ3S1 – 2S2)λ + τ3S0 – S1
]
e–(τ1+τ3)

–
[
(τ2 + τ3)T3λ

3 +
(
(τ2 + τ3)T2 – 3T3

)
λ2

+
(
(τ2 + τ3)T1 – 2T2

)
λ + (τ2 + τ3)T0 – T1

]
e–(τ2+τ3)

–
[
2τ2U3λ

3 + (2τ2U2 – 3U3)λ2 + (2τ2U1 – 2U2)λ + 2τ2U0 – U1
]
e–2τ2

–
[
2τ3V3λ

3 + (2τ3V2 – 3V3)λ2 + (2τ3V1 – 2V2)λ + 2τ3V0 – V1
]
e–2τ3

–
[
(τ2 + τ3)W2λ

2 +
(
(τ2 + τ3)W1 – 2W2

)
λ + (τ2 + τ3)W0 – W1

]
e–λ(τ1+τ2+τ3)

–
[
2τ3X2λ

2 + (2τ3X1 – 2X2)λ + 2τ3X0 – X1
]
e–λ(τ1+2τ3)

–
[
2τ3Y2λ

2 + (2τ3Y1 – 2Y2)λ + 2τ3Y0 – Y1
]
e–λ(τ2+2τ3)

–
[
(2τ2 + τ3)Z2λ

2 +
(
(2τ2 + τ3)Z1 – 2Z2

)
λ + (2τ2 + τ3)Z0 – Z1

]
e–λ(2τ2+τ3)

–
[
(τ2 + 2τ3)L1λ + (τ2 + 2τ3)L0 – L1

]
e–λ(τ2+2τ3)

–
[
2(τ2 + τ3)E1λ + 2(τ2 + τ3)E0 – E1

]
e–2λ(τ2+τ3),
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g51(ω) =
(
N4λ

4 + N3λ
3 + N2λ

2 + N1λ + N0
)
e–λτ1 +

(
R3λ

3 + R2λ
2 + R1λ + R0

)
e–λ(τ1+τ2)

+
(
S3λ

3 + S2λ
2 + S1λ + S0

)
e–λ(τ1+τ3) +

(
W2λ

2 + W1λ + W0
)
e–λ(τ1+τ2+τ3)

+
(
X2λ

2 + X1λ + X0
)
e–λ(τ1+2τ3) + (L1λ + L0)e–λ(τ1+τ2+2τ3).

Define

Re

[
dλ

dτ1

]–1

τ1=τ1∗
=

U5RV5R + U5IV5I

V 2
5R + V 2

5I
. (36)

Thus, if (C52): U5RV5R + U5IV5I �= 0 is satisfied, then Re[ dλ
dτ1

]–1
τ1=τ1∗ �= 0. Furthermore, we

have the following conclusions based on the Hopf bifurcation theorem in [35].

Theorem 4 For system (2), if the conditions (C51)–(C52) hold, then D∗(S∗, E∗, I∗, A∗, R∗) is
locally asymptotically stable when τ1 ∈ [0, τ1∗); system (2) undergoes a Hopf bifurcation at
D∗(S∗, E∗, I∗, A∗, R∗) when τ1 = τ1∗.

3 Direction and stability of the Hopf bifurcation
In this section, we will investigate the direction and stability of the Hopf bifurcation at
the critical value τ1 = τ1∗ by employing the center manifold theorem and the normal form
theory. Let τ1 = τ1∗ + μ, μ ∈ R, then μ is the Hopf bifurcation value for system (2). For
convenience, we suppose that τ3∗ < τ2∗ < τ1∗ where τ3∗ ∈ (0, τ30) and τ2∗ ∈ (0, τ20). Let u1 =
S(τ1t), u2 = E(τ1t), u3 = I(τ1t), u4 = A(τ1t) and u5 = R(τ1t). System (2) can be transformed
into the following form:

u̇(t) = Lμ(ut) + F(μ, ut), (37)

where u(t) = (u1, u2, u3, u4u5)T ∈ C = C([–1, 0], R5), Lμ : C → R5 and F : R × C → R5 can
be defined as

Lμφ = (τ1∗ + μ)
(

Mφ(0) + Pφ

(

–
τ2∗
τ1∗

)

+ Qφ

(

–
τ3∗
τ1∗

)

+ Nφ(–1)
)

and

F(μ,φ) = (τ1∗ + μ)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–β1φ1(0)φ2(0) – β2φ1(0)φ4(0)
β1φ1(0)φ2(0)

–β2φ3(0)φ4(0)
β2φ1(0)φ4(0) + β2φ3(0)φ4(0)

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

with

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

m11 m12 0 m14 0
m21 m22 0 0 0

0 0 m33 m34 0
m41 0 m43 m44 0
m51 0 0 0 m55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, N =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 n22 0 0 0
0 n32 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 p22 0 0 0
0 0 0 0 0
0 0 0 p44 0
0 p52 0 p54 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 q15

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 q55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, for φ ∈ C, there exists η(θ ,μ) such that

Lμφ =
∫ 0

–1
dη(θ ,μ)φ(θ ). (38)

In fact, choosing

η(θ ,μ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(τ1∗ + μ)(M + N + P + Q), θ = 0,

(τ1∗ + μ)(N + P + Q), θ ∈ [– τ3∗
τ1∗ , 0),

(τ1∗ + μ)(N + P), θ ∈ [– τ2∗
τ1∗ , – τ3∗

τ1∗ ),

(τ1∗ + μ)N , θ ∈ (–1, – τ2∗
τ1∗ ),

0, θ = –1,

(39)

where δ(θ ) is the Dirac delta function.
For φ ∈ C([–1, 0], R5), define

A(μ)φ =

⎧
⎨

⎩

dφ(θ )
dθ

, –1 ≤ θ < 0,
∫ 0

–1 dη(θ ,μ)φ(θ ), θ = 0,

and

R(μ)φ =

⎧
⎨

⎩

0, –1 ≤ θ < 0,

F(μ,φ), θ = 0.

Then system (37) equals

u̇(t) = A(μ)ut + R(μ)ut . (40)

For ϕ ∈ C1([0, 1], (R5)∗), define

A∗(ϕ) =

⎧
⎨

⎩

– dϕ(s)
ds , 0 < s ≤ 1,

∫ 0
–1 dηT (s, 0)ϕ(–s), s = 0,

and

〈
ϕ(s),φ(θ )

〉
= ϕ̄(0)φ(0) –

∫ 0

θ=–1

∫ θ

ξ=0
ϕ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , (41)

where η(θ ) = η(θ , 0).
By the discussion above, we can conclude that ±iω1∗τ1∗ are eigenvalues of A(0) and

A∗. Let κ(θ ) = (1,κ2,κ3,κ4,κ5)T eiτ1∗ω1∗θ be the eigenvector of A(0) corresponding to
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+iτ1∗ω1∗ and κ∗(s) = �(1,κ∗
2 ,κ∗

3 ,κ∗
4 ,κ∗

5 )T eiτ1∗ω1∗s be the eigenvector of A∗(0) correspond-
ing to –iτ ∗

2 ω∗
2 , where

κ2 =
m21

iω1∗ – m22 – n22e–iτ1∗ω1∗ – p22e–iτ2∗ω1∗ ,

κ3 =
n32e–iτ1∗ω1∗κ2 + n34κ4

iω1∗ – m33
,

κ4 =
m41(iω1∗ – m33) + m43n32e–iτ1∗ω1∗κ2

(iω1∗ – m33)(iω1∗ – m44 – p44e–iτ2∗ω1∗ ) – m43n34
,

κ5 =
m51 + p52e–iτ2∗ω1∗κ2 + p54e–iτ2∗ω1∗κ4

iω1∗ – m55 – q55e–iτ2∗ω1∗ ,

κ∗
2 = –

iω1∗ + m11 + m41κ4 + m51κ5

m21
,

κ∗
3 = –

m43κ4

iω1∗ + m33
,

κ∗
4 =

m12m21 + m21p22eiω1∗τ2∗κ∗
5 + p̃22(iω1∗ + m11 + m51κ

∗
5 )

(m41m̃33̃p22 + m21m43n42eiτ1∗ω1∗ )/m̃33
,

κ∗
5 = –

q15eiτ3∗ω1∗

iω1∗ + m55 + q55eiτ3∗ω1∗ ,

m̃33 = iω1∗ + m33,

p̃22 = iω1∗ + m22 + n22eiτ1∗ω1∗ + p22eiτ2∗ω1∗ ,

and

�̄ =
[
1 + κ2κ̄

∗
2 + κ3κ̄

∗
3 + κ4κ̄

∗
4 + κ5κ̄

∗
5 + τ ∗

1 e–iτ∗
1 ω∗

1 κ2
(
n22κ̄

∗
2 + n32κ̄

∗
3
)

+ τ ∗
2 e–iτ∗

2 ω∗
1
[
κ2

(
p22κ̄

∗
2 + p52κ̄

∗
5
)

+ κ4
(
p44κ̄

∗
4 + p54κ̄

∗
5
)]

+ τ ∗
3 e–iτ∗

3 ω∗
1 κ5

(
q15 + q55κ̄

∗
5
)]–1,

which ensures that 〈κ∗,κ〉 = 1 and 〈κ∗, κ̄〉 = 0.
In what follows, we can obtain the expressions of g20, g11, g02 and g21 by using the algo-

rithms in [35] and a similar computation process to that in [31, 36–38]:

g20 = 2τ ∗
1 �̄

[
β1κ2

(
κ̄∗

2 – 1
)

– β2κ4 – β2κ3κ4κ̄
∗
3 + β2κ4κ̄

∗
4 (1 + κ3)

]
,

g11 = τ ∗
1 �̄

[
β1

(
κ2 + κ̄∗

2
)(

κ̄∗
2 – 1

)
– β2

(
κ4 + κ̄∗

4
)

– β2κ̄
∗
3
(
κ3κ̄

∗
4 + κ̄∗

3 κ4
)

+ β2κ̄
∗
4
(
κ4 + κ̄∗

4 + κ3κ̄
∗
4 + κ̄∗

3 κ4
)]

,

g02 = 2τ ∗
1 �̄

[
β1κ̄2

(
κ̄∗

2 – 1
)

– β2κ̄4 – β2κ̄3κ̄4κ̄
∗
3 + β2κ̄4κ̄

∗
4 (1 + κ̄3)

]
,

g21 = 2τ ∗
1 �̄

[
(
κ̄∗

2 – 1
)
(

W (1)
11 (0)κ2 +

1
2

W (1)
20 (0)κ̄2 + W (2)

11 (0) +
1
2

W (2)
20 (0)

)

+ β2
(
κ̄∗

4 – 1
)
(

W (1)
11 (0)κ4 +

1
2

W (1)
20 (0)κ̄4 + W (4)

11 (0) +
1
2

W (4)
20 (0)

)

+ β2
(
κ̄∗

4 – κ̄∗
3
)
(

W (3)
11 (0)κ4 +

1
2

W (3)
20 (0)κ̄4 + W (4)

11 (0)κ3 +
1
2

W (4)
20 (0)κ̄∗

3

)]

,
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with

W20(θ ) =
ig20κ(0)
τ ∗

1 ω∗
1

eiτ∗
1 ω∗

1θ +
iḡ02κ̄(0)
3τ ∗

1 ω∗
1

e–iτ∗
1 ω∗

1θ + E1e2iτ∗
1 ω∗

1θ ,

W11(θ ) = –
ig11κ(0)
τ ∗

1 ω∗
1

eiτ∗
1 ω∗

1θ +
iḡ11κ̄(0)
τ ∗

1 ω∗
1

e–iτ∗
1 ω∗

1θ + E2,

where

E1 = 2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

m′
11 –m12 0 –m14 –q15e–iτ∗

3 ω∗
1

–m21 m′
22 0 0 0

0 –n32e–2iτ∗
1 ω∗

1 m′
33 –m34 0

–m41 0 –m43 m′
44 0

–m51 –p52e–2iτ∗
2 ω∗

1 0 –p54e–2iτ∗
2 ω∗

1 m′
55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–β1κ2 – β2κ4

β1κ2

–β2κ3κ4

β2κ4(1 + κ3)
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

E2 = 2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

m11 m12 0 m14 q15

m21 m22 + n22 + p22 0 0 0
0 n32 m33 m34 0

m41 0 m43 m44 + p44 0
m51 p52 0 p54 m55 + q55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–β1(κ2 + κ̄2) – β2(κ4 + κ̄4)
β1(κ2 + κ̄2)

–β2(κ3κ̄4 + κ̄3κ4)
β2(κ4 + κ̄4) + β2(κ3κ̄4 + κ̄3κ4)

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with

m′
11 = 2iω∗

1 – m11,

m′
22 = 2iω∗

1 – m22 – n22e–2iτ∗
1 ω∗

1 – p22e–2iτ∗
2 ω∗

1 ,

m′
33 = 2iω∗

1 – m33,

m′
44 = 2iω∗

1 – m44 – p44e–2iτ∗
2 ω∗

1 ,

m′
55 = 2iω∗

1 – m55 – q55e–iτ∗
3 ω∗

1 .
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Thus, we can compute the following values:

C1(0) =
i

2τ ∗
1 ω∗

1

(

g11g20 – 2|g11|2 –
|g02|2

3

)

+
g21

2
,

μ2 = –
Re{C1(0)}
Re{λ′(τ ∗

1 )} ,

β2 = 2Re
{

C1(0)
}

,

T2 = –
Im{C1(0)} + μ2 Im{λ′(τ ∗

1 )}
τ ∗

1 ω∗
1

.

(42)

Thus, we can obtain the following results according to the discussion of the properties
of Hopf bifurcating periodic solutions of dynamical system in [23].

Theorem 5 For system (2), if μ2 > 0 (μ2 < 0), then the Hopf bifurcation is supercritical
(subcritical); if β2 < 0 (β2 > 0), then the bifurcating periodic solutions are stable (unstable);
if T2 > 0 (T2 < 0), then the periods of the bifurcating periodic solutions increase (decrease).

4 Numerical simulations
In this section, we shall give some numerical simulations to validate the theoretical results
obtained in the previous section. Choosing μ = 0.06, N = 100, β1 = 0.1, β2 = 0.015, ε =
0.07, η = 0.3, α = 0.1, ρ = 0.02, γ = 0.08. Then we get the following specific model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = 6 – 0.1S(t)E(t) – 0.015S(t)A(t) – 0.13S(t) + 0.3R(t – τ3),

dE(t)
dt = 0.1S(t)E(t) – 0.06E(t) – 0.1E(t – τ1) + 0.02E(t – τ2),

dI(t)
dt = 0.1E(t – τ1) – 0.06I(t) – 0.015I(t)A(t),

dA(t)
dt = 0.015S(t)A(t) + 0.015I(t)A(t) – 0.06A(t) – 0.08A(t – τ2),

dR(t)
dt = 0.08A(t – τ2) + 0.02E(t – τ2) + 0.07S(t) – 0.06R(t) – 0.3R(t – τ3),

(43)

which satisfies the condition (C1). By computing, we obtain the unique endemic equilib-
rium D∗(1.8, 44.5473, 7.5333, 35.4424, 10.6964) and the condition (C2) is satisfied.

First, by taking τ1 > 0 (τ2 = τ3 = 0), τ2 > 0 (τ1 = τ3 = 0), τ3 > 0 (τ1 = τ2 = 0) and τ1 > 0
(τ2 = 3.75 ∈ (0, τ20) and τ3 = 2.35 ∈ (0, τ30)), respectively, we obtain ω1 = 1.9353 and τ10 =
25.1722, ω2 = 0.6372 and τ20 = 30.0105, ω3 = 1.4460 and τ30 = 6.1042, ω∗

1 = 3.2659 and
τ ∗

1 = 6.6884. The unique endemic equilibrium D∗(1.8, 44.5473, 7.5333, 35.4424, 10.6964) is
seen to be locally asymptotically stable for less values of the delays. With the increased val-
ues of delays, a Hopf bifurcation occurs at the corresponding critical values of the delays.
The bifurcation phenomena of model (43) are shown in Figs. 2–5. Also, by some complex
computations, we obtain C1(0) = –29.6058 + 17.2864i, μ2 = 30.0049 > 0, β2 = –59.2116
and T2 = –0.8610 < 0. Thus, we can conclude that the Hopf bifurcation is supercritical,
and the periodic solutions are stable and decrease.

5 Conclusions
In this paper, a delayed e-SEIARS model for point-to-group worm propagation is proposed
by incorporating the latent period delay, the delay due to the period that the anti-virus
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Figure 2 Bifurcation diagram with respectto τ1

software uses to clean the worm and the temporary immunization delay into the model
formulated in the literature [15]. The model not only takes the time delays into account,
but also takes two important network environment factors into account, namely point-to-
group worm propagation and benign worms.

We mainly focus on effect of the time delays on the proposed model. Local stability
and the existence of Hopf bifurcation are discussed by taking different combinations of
the time delays as bifurcation parameter. Specially, properties of the Hopf bifurcation are
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Figure 3 Bifurcation diagram with respect to τ2

investigated. It is found that when the values of the time delays are below the critical value,
the model is locally asymptotically stable. In this case, the worms in model (2) can be
predicted and controlled. However, the propagation of the worms will be out of control
when the values of the time delays pass through the corresponding critical values. It should
be pointed out that our work is only restricted to a theoretical analysis of the model. It may
be necessary to make experimental studies in real-world networks in the near future, and
this is left for our next study.
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Figure 4 Bifurcation diagram with respect to τ3
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Figure 5 Bifurcation diagram with respect to τ1 when τ2 = 3.75 and τ3 = 2.35
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