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1 Introduction

Fractional calculus is one of the emerging areas of investigation. The fractional differen-
tial operators are used to model several physical phenomena in a much better form than
ordinary differential operators, which are local. Results obtained by fractional differen-
tial equations (FDEs) are much better and more accurate. For applications and details of
fractional calculus, we refer the reader to [1, 2]. FDEs also serve as an excellent tool for
the description of hereditary properties of various materials and processes [3]. The the-
ory of FDEs, involving different kinds of boundary conditions, has been a field of interest
in pure and applied sciences. Nonlocal conditions are used to describe certain features
of physics and applied mathematics such as blood chemical engineering, flow problems,
underground water flow, thermo—elasticity, population dynamics, and so on [4-21] and
references cited therein. Our work is concerned with implicit impulsive coupled systems
of FDEs. The impulsive FDEs are of great value. The said equations arise in business math-
ematics, management sciences and other managerial sciences and so forth. Some physical
phenomena have sudden changes and discontinuous jumps. To model such problems, we
impose impulsive conditions on the differential equations at discontinuity points; see for
example [22-25] and the references cited therein.

In the classical text [26], it has been mentioned that Hadamard in 1892 [27] suggested a
concept of fractional integro—differentiation in terms of the fractional power of the type
(x%)"‘ in contrast to its Riemann—Liouville counterpart of the form (%)“. The kind of
derivative, introduced by Hadamard, contains the logarithmic function of the arbitrary
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exponent in the kernel of the integral appearing in its definition. The Hadamard con-
struction is invariant in relation to dilation and is well suited to the problems containing
half-axes. Coupled systems of FDEs have also been investigated by many authors. Such
systems appear naturally in many real-world situations. Some recent results on the topic
can be found in a series of papers [28—45] and the references cited therein.

Another aspect of FDEs which has very recently got attention from the researchers is
concerning to the Ulam type stability analysis of the aforesaid equations. The mentioned
stability was first pointed out by Ulam [46] in 1940, which was further explained by Hy-
ers [47], over Banach space. Later on, many researchers have done valuable work on the
same task and interesting results were obtained for different functional equations; for de-
tails see[44, 48—50] and the references cited therein. This stability analysis is very useful
in many applications, such as numerical analysis, optimization, etc., where finding the
exact solution is quite difficult. For a detailed study of Ulam type stability with different
approaches, we recommend [51-53] and the references cited therein.

The existence and uniqueness of Cauchy problems for fractional differential equations
involving the Hadamard derivatives have been discussed by Kilbas et al. [54]. Using the
contraction principle, the existence and uniqueness of the solution of sequential fractional
differential equations with Hadamard derivative have been explored by Klimek [55]. Re-
cently, Wang et al. [56] discussed the existence, blowing-up solutions and Ulam—Hyers
stability of fractional differential equations with Hadamard derivative by using some clas-
sical methods. The area of research which has got tremendous attention from the re-
searchers and these days is growing very fast is devoted to the existence and the Hyers—
Ulam stability to the solution of implicit FDEs and coupled systems of implicit FDEs. The
implicit FDEs represent a very important class of fractional differential equations. For de-
tails see [57—61] and the references cited therein.

In [62], the authors studied the existence and Hyers—Ulam stability of the following im-

plicit FDEs involving Hadamard derivatives:

HOp(t) — f(t,p(t), WD*p(t)) =0, «€(0,1),
p()=p1, p1ER,

where t € [1,T], T > 1 and gy 0% denotes the Hadamard fractional derivative of order «.
In [63], the authors investigated the existence, uniqueness and different kinds of Hyers—

Ulam stability for the considered coupled system involving the Caputo derivative:

‘DUp(t) —f(t,q(t),*Dp(t) =0; teJ,
“DPq(t) - gt,p(t),“DPq(1)) = 0; teJ,
pP0)=p"0)=0,  p(1)=2rp(m), 1ne(01),
70)=4"0)=0,  4q(1)=2rq(n), Arne(01),

where J =[0,1],2<a,8 <3andf,g:J x R x R — R are continuous functions.
In [64], the authors proved the existence, uniqueness and different kinds of Hyers—

Ulam stability for the following coupled system involving the Riemann-Liouville deriva-
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tive:

Dp(t) - f(t,q(t), Dp(t) =0; teJ,
DPq(r) - gt,p(t), DPq() =0; te T,
D*2p(0*) = 1D 2p(T7),  D*'p(0*) = fLD* ' p(T"),
DF24(0%) = p@P2¢(T7),  DF1q(0%) = B2 1¢(T"),

where t € 7 =[0,T], T>0, 1 <a,B <2 and 1,2y, 12 # 1. D%, ©F are Riemann—
Liouville derivatives of fractional order and f, g : 7 x R x R — R are continuous functions.
For more recent work and details as regards implicit coupled systems, the reader may refer
to [65, 66].

Motivated by the above work, we consider the following coupled impulsive implicit
FDEs involving Hadamard derivatives:

HDp(t) —f(t,p(t), uDPq(t) =0, te T, t#t,i=1,2,...,m,
HOPq(t) - g(t,q(t), UD°p(t)) =0, te T, t#4,j=12,...,n,
Ap(tt) :Iip(ti)» Ap/(tl) :fip(ti)x i=12,...,m,
Aqt) =Tiqt),  Aq®)=Tqt), j=12...n

7 (In Lyt ds /
P(T) = fl W¢(S)p(5))?, p (T) = (0(19),

o) = [T (506N E, q(T) = 0la),

(1.1)

where 1 <a,8<2,f,8:J x R? - R and ¢,¢ : C(J,R) — R are continuous functions
and

Apt) =p(&)-p(), AP =P () -P (),

Aqt)=a()-ali),  Ad)=d(5)-4q()

The notations p(t]"), q(t/.*) areright limits and p(¢£;), q(tj’) are left limits; Z;, i, 7, Z :R—R
are continuous functions; y 0%, y©Ff are the Hadamard derivative operators of order o and
B, respectively.

For system (1.1), we discuss necessary and sufficient conditions for the existence and
uniqueness of a positive solution by using the Kransnoselskii fixed point and the Banach
contraction theorems. Further, we investigate various kinds of Hyers—Ulam, generalized
Hyers—Ulam, Hyers—Ulam—-Rassias and generalized Hyers—Ulam—Rassias stabilities.

2 Preliminaries
In this section, we introduce some fundamental descriptions and lemmas which are used
throughout this paper; for details, reader should study [54, 67].

Endowed by the norms |p| = max{|p(¢)|,t € J}, llqll = max{|q(¢)|,t € T}, PC(J,R,),
which is a Banach space under these norms, and hence, the products of these are also
Banach spaces, with norm ||(p, q)|| = llp|l + llqll-

Let &£ and &, denote spaces of the piecewise continuous functions defined as

& =PCaan(T,Ry)

={p: T = R,p(t),p(t;) and p'(¢]),p' () exist for i = 1,2,...,m},



Riaz et al. Advances in Difference Equations (2019) 2019:226 Page 4 of 27

E =PCopm(T,Ry)

={q:T - R+,q(tjf),q(tj_) and q’(tj*),q’(tj_) exist forj=1,2,...,n},

with norms

Iplle, =sup{|p®)(Ine)**|,t€ T},
lglle, = sup{|g()(nt)*?|,t € T},

respectively. Their product £ = & x &, is also a Banach space with norm ||(p,q)|l¢ =

lelle, +lglle,-
We recall the following definitions from [68].

Definition 2.1 The Hadamard fractional integral of order « € R, of the function p(¢) is
defined by

-1

o= L [ ()
W0 = s /1 (lns) P

1<t < T, where I'(-) is the Gamma function.

Definition 2.2 The Hadamard fractional derivative of order o € [£ — 1,£), n € Z,, of the
function p(t) is defined by

d V4 t l—a+1 d
sz“p(t)=ﬁ(%) / (mf) P

1<t < T,where I'(-) is the Gamma function.

Lemma 2.3 ([69]) Let« > 0and p be any function, then the homogeneous differential equa-
tion along with Hadamard fractional order y0%p(t) = 0 has solutions

p(t) =bi(Int)* 7 + by(Int)* 2 + b3(Int)* 3 + - - + by(Int)*~,
and the following formula holds:

HIHDp(t) = p(t) + by(In£)* ™! + by(Int)* ™2 + by(In£)* > + - - - + by(Int)* ¢,
whereb;eR,j=1,2,...,.0 and { -1 <a < ¥,

Theorem 2.4 (Altman [70]) Let S # @ be a convex and closed subset of Banach space &.
Counsider two operators F, G such that
(i) Fp,q) + G(p,q) € S, where (p,q) € S.
(i) I is contractive operator.
(ili) G is completely continuous operator.
Then the operator system F(p,q) + G(p,q) = (p,q) € € has a solution (p,q) € S.
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2.1 Hyers-Ulam stability definitions and remarks
The following definitions and remarks are adopted from [65, 71].

Definition 2.5 The coupled system (1.1) is said to be Hyers—Ulam stable if there exist
Ky = max{Ky,Kg} > 0 such that, for o = max{oy, 04} > 0 and for every solution (p,q) € £
of the inequality

1HD*p(8) —f(t, p(t), HDPq(1))| < 00» tE T,
|Ap(t) - i(p(t))| < 0w»  i=1,2,...,m,
AP (&) - Ti(p(t))| < 00r  i=1,2,...,m,
|HDPq(t) — g(t,q(), HDp(t)| <gp. te T,
1Aq(t) - Zi(qt)) < 0p, j=1,2,...,n,
A7) - Tqe) <0 j=12..0m

(2.1)

there exists a unique solution (p,q) € £ with

|p.0) - ®.9)||; <Kapo, ted.

Definition 2.6 The coupled system (1.1) is said to be generalized Hyers—Ulam stable if
there exist ® € C(R*,R*) with @(0) = 0 such that, for any approximate solution (p,q) € £
of inequality (2.1), there exists a unique solution (p,g) € £ of (1.1) satisfying

.0 - @D, <P, ted.
Denote Wa,ﬁ = max{llfw lpﬁ} € C(j; R) and Kq/ayq/ﬁ = max{K%,Kwﬁ} > 0.

Definition 2.7 ([71]) The coupled system (1.1) is said to be Hyers—Ulam—Rassias stable
with respect to ¥, 4 if there exists a constant Ky, g, such that, for some ¢ > 0 and for any
approximate solution (p, q) € £ of the inequality

lHDp(t) - f(t,p(t), HDPq(t))| < Wu(t)ow, t€ T,

(2.2)
D q(t) - g(t,q(O), nDp(®)| < W(t)op, te T,
there exists a unique solution (p,q) € £ with
”(p’ 61) - @”é\)”g = I<‘I’arq’ﬂ lpa,ﬁQ’ teJ. (2.3)

Definition 2.8 The coupled system (1.1) is said to be generalized Hyers—Ulam—Rassias
stable with respect to W, g if there exists a constants Ky,,u, such that, for any approxi-
mate solution (p, q) € £ of inequality (2.2), there exists a unique solution (p,q) € £ of (1.1)
satisfying

l@:d) - @D s < KupwyWarp(t), ted. (2.4)

Remark 2.9 We say that (p,q) € £ is a solution of the system of inequalities (2.1) if there
exist functions 7%, T, € C(J, R) depending upon p, g, respectively, such that
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@D 177 @] < 0as |T() <0p, € T;
(IT)

HOp(t) = f(t,p(t), HDP (1)) + V(2),
Ap(t;) = Li(p(t) + 15,

=Tipt) + 7
wDPq(t) = g(t,q(t), kD (1)) + V4 (2),
Aq(t) = Li(q®) + Yy,
Aq'(t) = Ti(q()) + Ty,

3 Existence results

In the current section, we set up conditions for the existence and uniqueness of solutions

to the proposed system (1.1).

Theorem 3.1 Letf bea function; the subsequent linear impulsive boundary value problem

HOp(t) =f(t), teT,t#t,i=12,...,m
Ap(t) I(p(t)) AP () =Tipt), t#tyi=1,2,...,m
)= [T g, po) %, p(T) = 9(p),

has solutions

k k
p(&) = TA(@e@)In )" + Y Ai()(Int)* 2 Li(p) + Y Asil)(Int)*Zi(p:)

i=1 i=1

As(@)(np)*2 [T/ T\*! ds
+—F(a) /1 <ln ;) ¢(s,p(s))?
Aol)(n)*2 [T/ T\*?  ds
T -1 /tk (1'1?) fO5

Aa(@)(n)*2 [T/ T\*'  ds
T /tk (1"?) 1o

k _ . a—-1
Asi(a)(In£)* 2 i t; ds
D / _1<ln;) 6%

i=1

K Ing3-( (log,, t)*~? L ds
2 ey f(l —) 6%

1 t A ds
In - —, k=12,...,
"T@ tk<“s) J6 "

where

t
Ao(a) =1In ?(m T)>

(@ =2)(In#2 —a + 1)(Int;)%™
In t,'

Asi(@)=(@-1D)(Int—a +2)(Int)> % -

’

(3.1)

(3.2)

Page 6 of 27
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Asi(@) =1In #iG-e) (In t,-)z_a,

As(@) = (@ -1- logT t*7*)(Ine)*™*,

Ag(a) = logT — (In T  and
t""l Tt \ 2
Asi(a) = |:ln T2 +log,, <t_2) j|(ln )
Proof Consider

O pt)=f(t), l<a=<2,teJ]. (3.3)

For t € (1,1], Lemma 2.3 gives

pt) = c1(Int)* ! + ¢y (Int)*

ds
r() ( ) J&s

(3.4)
L ala—1) v Ca-2) w3 1 1/t a2 ds
p'(t)= ——(In¢) +7t (Int) +1"(a—1) 1 t(lns) f(s)S.
Again from Lemma 2.3, for t € (¢, ]
t d
2(6) = by(Ine)* + by(ne)*2 + an) /tl (m 2) f(s)?s -
o bile=1) L b2, a1 f1/ e\ ds
p'(t)= ——(Ing) +f(lnt) + F(a—l),/tl ;(ln;) f(s)?.

Using initial impulses

by =1 — (@ —2)(Int)" T, (p(tr)) + 11 (In 1) T, (p(t1))

(v
(111f1)2 * a2
*T@-1 ( ) S S)_

l1-a
e [

by = ¢y +(@—1)(In t1)2“’11 (p(t) - t1(In11)>Z, (p(t1))
(Int,)®>® 1/ u\*? ds
T/ (“‘§> J&5

(O( - 1)(1[1 t1)27a fa t ds
T T /1<1 ?> A

Substituting the values of b3, b in (3.5)

p@) =ci(nt)* ! +co(Ing)* 2 + ((a -1) — (o -2)log, t) (log,, )2, (p(tl))
+ty(Int —Inty)(log,, )1y (p(t1))

(Int—Int;)(log, t)* [/ ¢ ds
T T /1 (l _) i
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 (@=1)- (@ -2)log, t)(log, " 6\ ds
I'(a) /1 (1“_> A

S
1 Llot ds
+ F(o{) ; <1n ;) f(S)?‘

Similarly for ¢ € (¢, T)

k
p@®) =ci(Int)* ! + cr(Ing)*2 + Z((a -1) - (a - 2) log, t)(log, t)**Li(p(t:))

i=1

k
+ Y ti(Int - Int;)(log, "L (p(t;)

i=1

 (Int-Int)(log, )% [t/ £\ ds
D s /t,.1<1“§> 62

i=1

“((@=1) - (@ -2)log, H)(log, )% [t [ ¢ ds
+; @) /tu(ln;) f(S)?

1 troe\ ds
+ m " <1n ;) f(S)? (36)

Similarly for ¢ € (¢, T)

cile —=1)(AnH)*?  cy(a =2)(Int)*3

pt)= p + p
k _ a2
N Z (a—1)(a-2) (log,et log, t; )(logt t) (p(t,-))
i=1
k ti((@ - 1) - (a - 2)log, ti)(l()g:i 02
+ ; ; Zi(p(t)

1 LN ds
Tire-1 /), <1n2> JO5

(@ -1) - (@ -2)log, t)(log, ) 4 [ \*?  ds
3 tMa—1) /tl (ln E) Jo5

i=1
K (@=1)(a- 2)(log, e — log, t;)(log,, He2 b N
' 21: () /tl (ln ;) S )—. (3.7)

Utilizing boundary conditions p(T) = f T (ln ¢>(s p(s)) and p'(T) = ¢(p), we obtain

o D)@ =2) (T TN d
&1 = ToInT)*™ ~ == 5= / <1n;) #(5,(9) =

(InT)' T/ T\*' ds
" T /tk (I“?) e

k

a-1 -2
+Z<lnti "t

i-1 i

k
)(ln 6> Ti(p(t:) - (o = 2) Y ti(In ) L;(p(t:))
i=1
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@=2 o~ o [Tt ds (nTy [T/ T\*? ds
_F(a—l);(m") /t(l _> s __F(a—l)/tk (m?> 1

k t a-1
a-1 _ 2—-a ! ti dS
T Z(lnt ) )(lnt) /til <ln;) f(s)?,

i=1
—a oa— k
¢ = _(th)jl) /1 T(ln g) 1<f)(s,p(s))? - To(@)(InT)** + Zl ti(In 1> Zi(p(t:))
k
+lo=1) ) (In TP 1) (1n )T (p(1)
i=1
—a -2
Sy [ () et
1 a (¢—2)(log;, e-log, t;) 2—a f Li “ ds
+ m;(lnT ti ¢ —1)(1nti) /ti-l <ln ;) f(S)?

1 i sw [F(, ds
+ —F(a _— ;(lnti) /ti_ <ln ;) f(s)?

(InT)> T/ T\*'  ds
7 In — —, k=1,2,...,
I'a-1)J, (ns) f(s)s "

Substituting ¢; and ¢; in (3.6), we obtain (3.2).

Corollary 3.2 In view of Theorem 3.1, our coupled system (1.1) has the following solution:

() = T Ag(e)g(p)(In )"
+ 20 Au(@)In ) 2 Tipy) + Yk, Anle@)(n )" Zi(p;)
¢ Al (T Thad (s, p(s)) &
+ 2ol ;“i) S (an D)e2£(s, p(s), nDPq(s)) &
4 Aalalind 2 T T)a Yf (s, p(s), #DPq(s)) 2
+ ks ftk (In £)*~f (s, p(s), nDP (s)) &
+ 3k, Aulnd™ oo l(ln f)a-1f(s, p(s), HDPq(s)) L
byl T (1n SR (s, pls), u D q(9) 2,
k=1,2,...,m,
q(t) = Ao(B)p(q)(In )P~
+ 30 Ay(B)In P2 Ti(qy) + 3, Ay(B)(In )2 T(qy)
+ LI [T 1)1 (s, () %
+—A°(5( )(In )/ 2ftk ln Y2g(s, #D%p(s), (S))@
. —Aﬂﬂrﬁgt 22 [l )L, (), g(9)
i (b 1gaf(s,pz@‘ﬂv(S) q(S))ds

A )ln) o s
+Zk1 Slﬁ t ftt; 1 S;Hg (S),q(s))%

=
In#3- ﬁ(log Hh-2
X g I P2 D p(s), a(s)

k=1,2,...,n

(3.8)

Page 9 of 27
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We use the following notations for convenience:
y(8) =f (&, p(1),2(1)), 2(t) = g(£,q(8), 5(D)).

Hence, for ¢ € 7, (3.8) becomes

pt) = TA@)p@)In2)*> + Y5, (@) () Ti(ps) + X5, Anle)ne)**Zi(py)
4 2072 T (1 Tyt p(s)) s 4 Aaleling ﬁk (In )*2y(s) ¢

I'(a-1)

Aa( Int 1 d: k  Asi(a0)(Int)*~ t; 1 d.
R i b T T L
k nt D‘]ogt a2 d
Yl T Te t 1(111 1) (S) (a) ftk(lnﬁ)"‘ RIOKH

k=12,...,m,

40 = A Ao (@) + 5, Ay(B)In 0P Tg) + X5, Ay(B)n ) F ()
As(ﬂr(lgt/f 2 fl ln )p- 1¢(S,q(5))ds Mﬁk (In T)ﬁ ZZ(S)dS

rp-1
k Asi(B)Int)? 4 4
+ —A4(ﬂ}((12t ftk ln T)/3 1Z(S) & 4 -1 SJFW / (1n l)ﬁ IZ(S)%
Ing3~ ﬁ(log
k t t 2 1 d:
+Zjl ft;llnj)ﬁ ) F(ﬂ ftk ln ﬁ (S)S
k=1,2,...,n

If p, q are the solutions of the proposed system (1.1) and ¢ € 7, then

k k
p(t) = TA@)e(p)(Int)* 2 + Y Au(@)Int)*Li(p) + Y Ax(e)(Int)*Zi(p;)

i=1 i=1

' %ﬁ;)w f T(ln 5)“’1¢<s,p<s>>§

" fb(ro&(—h—ltl);_z ftkT (ln §)“‘2f<s,p<s>,z<s>>§
A TV )
o (ln E)a_lf(s,p(s),z(s))?

* le; %{;tw /t i <ln %)a_lf (S’P(S),Z(S))%

k 3—« a-2 a-2
Int (logt t) t ds
1 - ) ) s = 1, 2, ceey y
+Z Ta-1D /;H(nS) f(sp(s) Z(S))s k m

and

q(t) = Ao(B)e(q)(nt)?2 + ZAU Y(In )P~ 2I (g) + ZAZ, )(Int) P27, ()

Az(B)(In)P 2 7\ ds
2] () sear
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2 T p
A TV g0
173 §

rpg-1 §
Int)f-2 T T\*! d
A (m?) £(.a).56)
Ik

t 13_1 d
' %ﬁ) / (ln g) OV ORTO) ?S
73

k _ .
As;(B)(Ing)f2 (4
* ) /

=1 j-1

ds

5\
(111;’) 2(s,q(s), y(8) —

N

K IntPlog, 1)/~ 4 1 g\ P2 ds
Rt/ R a6,y E, k=12,...,
rB-1 /“(ns> L@ 0) 5k "

j=1 -

Now, we transform the proposed system (1.1) into a fixed point problem. Let the oper-
ators IF, G : £ — &£ be defined as

F(p,q)(t) = (F1p(6), F2q(2)),
G, 9)(®) = (G1(p,y)(2), G2(q,2)(2)),
F(p,q)(®)

Fi(p(£)) = TAo(@)e(p)(In £~
+ zf 1 Au(e)(in D 2Ti(p) + iy Aile) (In )" Z(p;)
lm f1 ln )2 L (s, pls ))ds k=1,2,...,m,
F,(q(t)) = Ao(ﬁ)w(q)(ln £)P-2
+ 30 Ay(B)Int) 2 T(q) + z,k , Ayi(B)(In£)P~2Z(q))

)B=2
+ I (T(in L)P-1g (s, q() L, k=1,2,...,m,

(3.9)

and

G, ()

Gi(p,q)() = 2200 1T (1 )21 (5, p(s), 1 DPq(s)) &
—““4%2;” JinZ ‘“f(sp , HDPq(s)) %
YK AdOE pli (1 e £ (s, p(s), 5 DP(s) %

tl 1
+ Zf:l % tl 1(]n Y265, p(s), H’Dﬁq(s))ds
1 fti(ln b1 (s, p(s), uDPq(s) L, k=1,2,...,m,
Gap,q)(t) = u S, (0 2)P2g(s, 4(s), 1D p(s)) &
» Al [ n £)"1g(5,a().Dp(5) &
s % J7 (10 5)71g(s,4(), D" p(s) %

/ 1
In£3- ﬂ(logt} )P~

+ S gt Ji (0 256 (s), D p(s) 2
* 75 /;f_(ln HP1g(s,q(s), nDp(s) %, k=1,2,...,n

(3.10)

For further analysis, the following assumptions need to hold:
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(H;) Forte J and p,y € R, there are 01, p1,01 € C(J,R*), such that
If (£.p(8),50)| < 01(8) + 21 (D) |p(&)| + 01(8) |(2)]|

with of = sup,. 7 01(£), p{ = sup,c 7 p1(¢) and oF = sup,. 7 01(¢) < 1.
Similarly, for t € J and ¢,z € R, there are 03, p2, 02 € C(J,R"), such that

lg(2,q(0),2(2))| < 02(8) + p2(8)|q(8)| + 02(8)|2(2)|

with 03 = sup,. 7 02(£), p5 = sup,c 7 p2(¢) and 03 = sup,. 7 02(¢) < 1.
(Hz) @,I1, Ix : R — Ris continuous and there exist constants M, M1, Mz, M'z, M'z,
Mg, Mz, Mz, M7, M5 > 0 such that for any (p,q) € €

~

lo@)| <My, olg)| < M,,
| Ze(p®)] < Mzlpl + Mz, |Ti(q(0)| < Mzlql + My,
[ Ze(p®)| < Mzlpl+ Mz, |Tula(®)] < Mzlql + M5,

where k ={0,1,...,m]}.
(H3) Fort € J and g € R, there are w1, € C(J,R*), such that

lp(t,p(0)| < w1(2) + 91(2)Ip|

with o} = sup, 7 w1(¢) and ¥] = sup,. 7 91 (£) < 1.
Similarly, for t € J and q € R, there are w,, ¥, € C(J,R*), such that

|9(£,q(1))] < wa(t) + D2(8)Iq]
with @3 = sup, 7 wy(£) and ¥5 = sup,. 7 Pa(¢) < 1.

(Hy) For all p,y,p,y € R and for each t € J there exists a constant £f > 0, 0 < Zf <1,
such that

If (£,0(2),5(2)) - £ (£, 5(),5(0)) | < Lrlp Bl + Lyly = F.

Similarly, for all ¢,2,4,7 € R and for each ¢ € J there exists a constant L, >0, 0 <
Zg <1, such that

lg(t.q(t), 2(t)) - g (£, 7)., 2(8)) | < Lelg -G + Llz 7.

(Hs) I, Ir : R — R is continuous and there exist constants £, L, L, Zy > 0 such that for
any (p,q),(@q9) € €

IL(p®) - @E®)| < Lip =Dl |I(q®) - L@ ®)| < Lilg -7,
| <

L) -T@E®)| < Lip-Pl,  [T(q®) -T(@®)| < Lrlg-7.
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(Hs) Forall p,p € R and for each ¢ € J there exists a constant Ly, £, > 0, such that

lo(t,p®) - d(6P®)| < Lolp-Dl,  |ep)-90®)| < Lylp-Dl.

Similarly, for all ¢, € R and for each ¢ € J there exists a constant Z¢, Eq, >0, such
that

l6(t.q®) —o(£.30)| < Lsla-F,  |e@) -0@| < Lylg -7

Here we use Kransnoselskii’s fixed point theorem to show that the operator F + G has

at least one fixed point. Therefore, we choose a closed ball

gr = {(P»q) € 5,

r r
)| <rlpl < 5 and llqll = 5] cé,

where
(U*+Q*0*)M*+(0*+Q*U*)M**
M+ M7+ L2 Q%Q;_2121 3
r>
i T*M*+T*M**
1 M* — M _ Moty My
M — M P

Theorem 3.3 If assumptions (H;)—(Hg) are true, then (1.1) has at least one solution.

Proof For any (p,q) € £, we have

[E@.a)+ Ce.0)] s < [F:0)] ¢, + [F2)] e, + G102, + |G, 31D

From (3.9), we get

k k
[Fip@)(In ™| < T| Ag(@)|e@)| + > [ Ai@)]|Zi(p)| + Y| Axe)| |Zi(p() |

i=1 i=1

T a-1
(+3)
S

|As()] [T

* ') S

d.
|¢(s,p(s))|?s, k=1,2,...,m.

This implies that

|F1 () ”51 < TM|Ao(e)| + kM 2| Ar(e)| + kM z| Az ()| + kMz| Ar(@)]lpll

| Az (@)](wf + 97 lIpl)
I'a+1)

+ kMz| Az ()] llpll - |(InT)?|

< M7+ Mlpll. (3.12)
Similarly, we can obtain

IF2(9)] ¢, < M3+ M3 llgll, (3.13)
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where

M =TM |A0(a)| +k/\/l/I|A1(ot)| + k/\/l/§|./42(a)|

| As(
I'(«

M = kMz| Ay (@) + kMz| As(@)] -

“”“’1 Han D], k=12,

|./43(Ol)|191 |(1 T)a

, k=1,2,...,m

M = TM, | Ao(B |+I<MZ‘A1(;3 }+k/\/l’ ’Az )|

k=1,2,...,n,

T(B+1) 1)

M5 = kR | AL ()] + kT3 | Ay ()| = 22BN

rg+1)

k=1,2,...,n.

Also, we have

|Gi1(p, ) (©)(In2)>|

Ao@)l ("I, T\ ds . sl [T]( T\
< 1_,(0{_1) <1H?) + F(a) ﬁ (ln?> |y(s)i_
|~A51 ) <1 _) - ( >
i:l F(C() ti
k - - ' -2
|In£>*(Ing;)>*| [ t\“ .
*XI:W » <ln;> k=1,2,...,m. (3.14)
Now by (H;), then

| = |f(t.p(2),2(0))]
< 01(2) + p1(B)|p(0)] + 01(8)|2(0)|
< 01(2) + p1()|p(0)] + 01(8)|g(£,9(2), y(1)) |
< 01(8) + ;@) |p(®)] + 01(8) (02(0) + p2()]4(8)] + 02(8)|y(®)])

_a®)+a)oa(t) .\ p1(@)p@®) + 01(8) p2()1q(2)
1-01(H)oa(t) 1-01(t)oa(t)

So, we obtain

*

X * * *
Iyl < o1 + 07 0*2 LA el +.le2|qu|'
2

< : o (3.15)
1-0 1-o0705

Now by taking sup;.  and using (3.15) in (3.14), we get

”Gl(p1 q) ”51
- (01“ ooy pillpl+ Qi‘pé‘llqll)
T \ojo; -1 010; -1

[Ao@)(n ) JAu@)In )] k| As ()|
X + +
( I'(x) I'lo +1)

t o
Crey
tka
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(In)>||(In £)*| Kkl (Ing)>~|I(In z2)* 1I)

T e+ I(@)
< i +eto)Ms  (ofllpll +e1p3llgID M3
0jo; -1 010y -1
* * % * T
< (o} +*Q10_2)1/\43 /\/_13 ||([9 )” (3.16)
010, 0105
Similarly
03 + osoT) ME*
|G, = (03 & DM; (3.17)
010; -1 Q 05—
where
Ty = max{p}, py01},
Ty = max{p;o3, 03},
and
IAo(a)ll(lng)“’ll I&(a)ll(lni)“l k|A5(a)||(ln£:—fl)°‘|
37 @) T T+l T+
|(In2)>“[|(In £)*|  k[In£>*(In)**||(In P
et b1l k=1,2,...,m,
I'a+1) I'(a)
| Ao(B)]1(In ;- )’S 1 As(B)](In %)ﬁl k| As(8)1(In t,f—fl)’sl
M;* = + +
re) rg+1) re+1)
|(In£)*#1|(In f)ﬁ| k| In£3-f (In#)*~#||(In tt—k)ﬁ_ll
Ly Kl k=1,2,...,n
re+1) re)
Putting (3.12), (3.13), (3.16) and (3.17) in (3.11), we get
IF@,q) + G|,
SMT_}_MI_'_IQIZ :*2921 3+(1 f*z S)H(p,q)H
010; -1 0105 -1

+ Mllpll + M3"llql
(of +0705) M + (03 + 0307)) M5

< M+ M5+
- ojo5 -1
T*M*+T*M**
e Lz
010; -1

<r.

Hence, F(p,q) + G(p,q) € &,.
Next, forany t € 7, (p,q), @,q) € £

||]F(p’ Q) _F(ﬁ’a) ||g
< |Fi(p) - F1 () ”51 + [F2(q) - F2(@) ”52
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k k
< T|As@)||e@) - e@| + Y| A1(@)]|Zip) - T(@)| + D _ | Asiler)]
i=1

i=1
T a-1
(=)
S

k k
+ T Ao(B)| 0@ - o @] + 3458 |Zia) - T@)| + 3 Ax(B)]
j=1

j=1
T\
(+5)
N

< (T£¢|Ao(a)| + KL| (@) + kL3 | As@)] -

|As()| [T
I'(e) )1

- ~ d.
< |Z(p0) - T + |6 (s, p(s)) — ¢>(s,i(s))|§

lAs(B) [T

x |Z(q) - Z,@)| + re h

|¢(S! 61(5)) - ¢(S!E(S))
Ly Az(e)||(In T)O‘|>|| 3
Ta+1) p-p

L4 As(B)]|(In T>ﬂ|>
rg+1)

@
N

. (TZ¢|A0(/3)| + KEz| Av(B)] + kEz | Ax(B)] -

x g -1l
<LE+8)|@-29-|

Here £ = max{L,, L1, L7, Lg, Ly, L1, L7, Ly},

| A3 (e)[I(In T)"|

6 = T|Ao@)] + kAi(e)| + Kl Ax(e)] - LTS

and

[ As(B)l[(n T)|

gzzT|Ao(ﬁ)|+k|A1('3)|+k|A2(ﬁ)| rg+1)

k=1,2,...,n.

Therefore, IF is a contraction mapping.
Now, we prove the continuity and compactness of G; we construct a sequence T =
(ps,gqs) in &, such that (ps, qs) — (p,q) for n — oo in &,. Thus, we have

”G(pm qs) - G(p7 4) ”g
= G154 -G, D | ¢, + [ G5 a5) - Ga . 9) |

Ao(@)l1(n L)1 | Ag(@)lI(in £)*|  [(In £)||(n e k| As||(In ;5)7]
= + + +
( I'(x) I'a+1) I'a+1) I'a+1)
k| In2*=* (In >~ (In z2-)*| ) (ﬁfnps —pll + LrLyllgs - gl )
+ —~r
I'(a) ﬁfﬁg -1

CAmmm@ﬂw|&wwm9ﬂ
+ +
r) r+1)
|(In )P 1> | kI As(B)I|(In 7 2)P |
rg+1 = T+

k| In£2-# (In£)*#||(In tk‘—fl)ﬂ‘l | ) (LfZgups —pll + Lellgs — qI )
+ —~
re) Efﬁg -1
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B M*(cfnps —pll+ £rLolas —qn) . M**<£f2‘fgnps —pll + Lellgs —q||>
-0 EfZg—l 3 ZfZg—l '

This implies | G(ps, g5) — G(p, q)||l¢ — 0 as s — oo, therefore G is continuous.
Next, we show that G is uniformly bounded on &;. From (3.16) and (3.17), we have

IGE.0®)| < [Gi. )@ |, + |G20. 0O,
_ (07 +0j03) M3 . (03 + 0307) M3* +( 1 M; . Ty M5*
T 0jo3-1 0103 -1 ojo; -1 ojo; -1

)ie0l

<r.

Thus, G is uniformly bounded on &,.
For equi-continuity, take 7y, 7, € J with 7; < 7, and for any (p,q) € &, C &, where &, is
clearly bounded, we have

”Gl(py q)(Tl) - Gl(p’ Q)(Tz) ” £
=max|(G1(p, q)(11) — G1(p, 9)(12)) (In £)*~* |

[ [Ao(@)11n L)1 | As(@)llin £)%| + k| As(@)]I(In )]
= +
- ( I'(@) Ia+1) )

x ’(]n t)2—vt| ’(]n ,L.l)a—Z _ (111 1.2)05—2|

k|(In£)2~*||(In t:—’jl)“‘l |l In 7 (log,, 71)*~* - In7;~*(log,, 72)* | :|

+
I'(a)
y (0’{ +oios  pillpl +QTP§‘IIqII)
1-oj05 1-o0705
|(Ing)*|

T1 a-1 d
= /tk (1n%) f(S,p(s),Hi)“"q(s))?s

T1 a-1 d
-/ (m%) f(s,p<s>,H©ﬁq<s>)f’«

This implies that

|1G1(p,9)(11) - Ga(p, q)(rz)||51 -0 ast — 0.
In the same way, we have

|G2p. 0)(@) = Gap. )(@) | o, > 0 as T — 1o
Hence

IG@.9)(1) -G, q)(w)|, >0 asti— .

Therefore, G is relatively compact on &,. By the Arzela—Ascoli theorem, G is compact and

hence is a completely continuous operator. So (1.1) has at least one solution. g
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Theorem 3.4 Let the hypotheses (Hy)—(Hg) be satisfied with

(,Cf + ﬁfﬁg) + A4(£ + Efﬁg)

A <1, (3.18)

A1+A3+

then (1.1) has unique solution.

Proof Define an operator @ = (®1,P;) : £ — &, ie, @(p,q)(t) = (P1(p,q), P2(p, q))(2),

where
D1(p,9)(t) = TAo(@)e(p)(Int)* >

+ ZAlz(a (In2)*Z(p(t) ZAZl(axlnr)a Ti(p(es)

i=1 =

Az(@)(Inz)*? T\*"!
+&/1 (ln:) q)(s,p(s))?s

I'(x)

Aol@)(np)e2 [T/ T\*? J
’ % /tk (m ;) f (s,p(s),Hi)ﬂq(s))f

Agle)(Ing)e (T T\ 5 o\ ds
P T /tk(“‘?> £ (56,007 4()

1 Lron\*! p ds
+ @ : <ln ;) f(s,p(s),HQ q(s))?

L Asi(e) g2 (1) p
SR CIICay ()

i=1

k 3-a a-2 . o)
Int>~*(log, t) ¢ £ )

T Ma—-1 [‘L In-— . , Db _d
' i=1 (@—1) /f;—1 ( ! s) f(s p)n q(s)) B

k=1,2,...,m,
and
®5(p,9)(t) = TA(B)gp(q)(Int)f~>

+ZA1,(¢3 )(In8)P>Ti(q()) ZAz, B)(Int)'=2Z(q(t;))

] 1

As(B)(n ey~ 2 ( )ﬂ 1
e v W(S)

A(B)(In - 2 T\ -2 ds
* Ol("ﬁ()ﬁ(ntl : ( ?) 2540 uD°p(9))

, Au(Biny? 2 (
re

1 t

T® ),

B-1 ds
) £(5,4(5) 10" p(5)

1)

ds

A .
<1H;) g(s,q(s), y®°p ())S
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Y T U AN o d
' 12:1: SIFT /fn (ln ;1) 2(s,q(s), D p(s))?s

kK Int3P(log, t)/~2 4/ £\P2 ds
I A InZ : ol =,
r(g-1) /tl<ns> £(s a0 D" PO)

j—

k=1,2,...,n.

In view of Theorem 3.3, we have

[(®1(p,9) - D1(5,9)) (In£)>™|
[Az(e)||(In T)* Ly

- [T|A0(oz)|£¢ kAL + k| As(@)| 5 -

o +1)
Aoe) 1n LY | Au(@)lI(In 2| [(n£)=|{(in £)7|
+ + +
( I'(x) 'l +1) I'lox +1)

+

Kl As(@)l1(in Z2=)] | In £ (In )%~ |(In ;=) 1| L
ra+1) () )(ZfZg—n}

Ao@)lln | [As(@)lln D)|  [(ne)><[|(In £)¢]

x |p(e) - p(o)] + [ I'(a) * Ta+1) * Iae+1)

kI As(@)[1(n 22-)* | k| In > (In£)*~]|(In £-)* 1|}2f£g|q—ﬁ|
+ + ~ ’
Ia+1) INGY) (LrLy—1)

k=1,2,...,m.
Taking sup,. 7, we get

Az(ﬁf + ﬁfﬁg)
([: ﬁg

|21(0.0) - 213D, < [m ¥ ]H(p q) -

fork=1,2,...,m, where

| As(@)||(In T)*| L
I'lox +1)

[Ao(@)II(n £ 1 Aa(@)ll(n £)*I [(In)**]|(In £)*]

= + +
I'(a) I'a+1) Ia+1)

Kl As(@)]1(In Z25) | kg~ ||(In 6> ]| (In 7£-)* i)
Fa+1) * I'()

A= T|A0(a)|£¢ + k|A1(oe)|£1 + k!Az(a)|£f -

’

+

Similarly

Ay(Lyg +/.Zf£g)
(C ﬁ

|#20,0) - 22D, = | 22+ 2 j6.0)- G,

fork=1,2,...,n, where

|As(B)I|(In T)?| L,

A3 =T AB)| L, + KA B)| B+ K Ax(p)| Bz - 20

’
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AN D JAB)IIn D) ((nt)>F[(In £

e T Treen T TG+
KIAs(B)I1(n )P k| Ing® | (n£)* 1t 75)P
ey T r(p)

Hence,

”é(p’q) - ¢@’a)”g
Az(ﬁf + Zfﬁg) + A4(£g + ,CfZg)
(LrLy—1)

EI:A1+A3+

Jleo-cal
This implies that the operator @ is a contraction. Therefore, (1.1) has a unique solution. [

4 Ulam stability analysis
In this portion, we analyze different kinds of stability, like the Hyers—Ulam, generalized
Hyers—Ulam, Hyers—Ulam—Rassias and generalized Hyers—Ulam—Rassias stability of the

proposed system.
Theorem 4.1 If assumptions (H;)—(Hs) and inequality (3.18) are satisfied and

ﬁfoﬁngA2A4
(Lr Ly - 1)((In8)2 = Ay) = As L) (LrLg — 1)((IN£)B-2 — Az) — AgLy)

>0,

F=1

then the unique solution of the coupled system (1.1) is Hyers—Ulam stable and consequently
generalized Hyers—Ulam stable.

Proof Consider (p,q) € £ be an approximate solution of inequality (2.1) and let (,9) € £

be the unique solution of the coupled system given by

Hgaﬁ(t) =f(t,ﬁ(t):H®ﬁa(t))¢ te \7; t ?/tiy i= 11 2) ceeym,
HDPG(t) = gt nDP(E), q(t), teT, t#t,j=1,2,...,n,
AP(E) =T((&), AP (&) =L@E), i=1,2,...,m,

~ _ ~ . 4.1
Aq(t) =Zi(qt)), A7) =L4E), j=L2,...,n 1)
BT = [T g%, D) = o)
an = [T s a6 )L, T = 0@
By Remark 2.9 we have
wDp(t) = f(t,p(t), uDPq(t)) + Y5(t), te T t#t,i=12,...,m,
Ap(t) =Tip)) + 15 AP(&) =Ti(pt)) + Y}, i=1,2,...,m, (42)

uDPq(t) = g(t, uDp(2),q(t)) + Yy(8), te T, t#6,j=12,...,n,
At =Tat) + Yy AGW) =Tiqt) + Yy j=1,2,...,1.
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By Corollary 3.2, the solution of problem (4.2) is

() = TAy(@)p(p)(In£)*2 + Yy Avi@)(In£)* 2(Z(p(t)) + 1)
+ Y0 An(@)(Int)* 2 (Zi(p(6) + )
g A2 (1 Tye2(£(5, pls), D (s)) + Tr(6) &
¢ a2 Ty T)a L(f (s, p(s), 1DP q(s)) + Yp() %
+ Zk M (ln t )a l(f(s, s),HQﬁq(s)) + Tf(t))ds
s # (10 5 2(F (s, p(5), P g(s)) + T3 (8)
¢ Al T T)“ 1¢(s pls)%
aer) ftk In £)*71(f (s, p(s), nDP q(s)) + 15 (£) £,
k=1,2,...,m,
q(t) = TAo(Bp(@)(In )2 + Y5 | Ay(B)(Int)2(Zi(q(t)) + T)
+ Y1 Ay(B)In )P 2(Zi(q(1)) + T)
Aoln [ (1n L)P-2(g(s, ), D% p) + Ty(e) %

73

n ﬁz o s
+ %ﬁk (in TP (gls,4(), 4D p(s)) + Y (£) %

A ln
+Zlkl 5/ t) ftll t} ﬂ l(gs,q(s,Hgap(S))_'_,r())%
k e ﬁ(IOgt ni2 t; i B-2 o ds
Z] IT J (ln 2)772(g(s,q(s), D p(s)) + V() 5
nt)f-2
+A3(ﬂ+ﬂtf1 (In T)ﬂ 1¢(s q(s))ds
+ i [0 8P (s, 4(), 1D p(s)) + T (0) 2,

k=1,2,...,n

(4.3)

+

We consider
|(p(£) = D(2)) (In2)*>~*|
< T|Ao(@)||ep) - 0@)|

k
+ Y A Ti(p) - Ti(pw)) | Z|Azl<a)||z(p(t,) Z(p)|

i=1

T a-2 d
e [ () e, s0%a) ~r(s 0. 0719
a-1 R = d
'f(f))' (1 5) " [r6p6ha0) - 6500 0a16)| %
tk
L A

[f (5, (), uDq(s)) - £ (5, P(s), 1D G(5) )\—

t: a—1
i t
<1n _l)
ti1 s

k
In 3] |(In £,
+Z|n [(In£;)"%]
I'a-1)

t -2
(+5)
S

i=1

t
X /
ti-1

d.
If (5, p(5), 1P (5)) — f (5, B(5), HDPG(5)) | {
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0001 (Y™ 6, D a(9) - (5,506 mD#306) [ 2
F(a) " s ,P yH q ;P yH 6] s
|A3 ) ot . ds
1 - ’ ) -
B () otsp) - ots59)

: ;IAZi(a)Hm - e, tkT (1%)2 oL

' é‘A"(Q)W e T <I“§)a_l 792

S () o

i% (n®) " |l
N (mf)" .

As in Theorem 3.4, we get

. AL o . AzEE —a ~
lp-Ple, < <A1 t= fl)(lnt)2 lp-Plle, + =5t g -G,

fr~g — L'ng—l

+ (Az +k|A1(a)‘ +k|A2((X)‘)Qa, k=1,2,...,m,

and
- Ef o 9 ( A4£g ) B N
- — 778 (Ing)>P A3+ == Ing)>P|q -
lg-qlls, < TZ,- (Int)"Pllp-plle, + ( A3 T -1 (In5)""llqg-1qlle,
(A4 + k|A1 ,3)| + k|./42(,3)|)Q[3, k=1,2,.

From (4.4) and (4.5) we have

Aszﬁg

lp-ple — == lg-4le
U(LrLy - D((Ind)e2 — Ay) = Ay Ly !
Az + kIAl(a)I + k| Az ()] 0
— (A + = z ﬁ 1)(lnt)2 “
and
R AL L R
lg-7lle, - oo lp - Plle,

(LrLy - 1)((In£)B-2 = A3) — Ayl
A4 + k|v41(/3)| + k|l A2(B)]
~ (s + FE ) Ineps
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respectively. Let G, = A2KA@IKA)| ong G, - Ak AGKAEL Then the last two

AL » A4l -
1—(A1+£f£g{1)(1nt)2 1—(Aa+£f6g{1)(lnt)2 p
inequalities can be written in matrix form as
1 _ A2Zf/$g
_ (Lfﬁg—l)((lnt)a’Z—Al)—Az[,f
_ A4L',f£g 1
(Lf Lg-D((In)f~2-A3)-A4 Ly
~ ||l9 _2”51 < gant )
lg—4lle, Gpop @6)
4.6
lp-Plle,
g -1qlle,
1 AZLNng 1
- F (EEqD(ne2—A)-22L; F | | Yala
= A4[,f£g 1 1 gﬂgﬂ ’
(L7 Lg-1)((n0)f2-A3)-AsLy T F
where
B ﬁfoﬁngAZ/u 0

(B Ly - D002 — Ay) — MLp(Br Ly — D02 — Ag) — Agly)

From system (4.6) we have

. GoOu AL LG 0 1

”P‘P”El S ~ 2 f {2/3 £ >

o (LpLy - 1)((Ing)e2 = Ay) = ALy |

. _Gso A4LsLeGr00 1
lg-3lle, < 2252 4 kil |

F (Ll - 1)((n6)f2 = Ag)— AgLy F

which implies that

GoOu . Gpop . Azzfﬁggﬁgﬁ 1
F Fo (LpLy - 1)((In0)*=2 = Ay) = AyLy |
. A4Ls LG 0 1
(LrLy —1)((In£)=2 = A3) — AgLy F

lp-Dlle, + lg-1lle, <

g_ﬁ + Asz/;gg,g A4£f£gga 1

_ Gu 1
max{oa, 0p} = 0 and Gt + = + G G e T Y e nP A ey T

Ga,p> then

|@.9) - @9 < Gape.
This shows that system (1.1) is Hyers—Ulam stable. Also, if
|2, 0) - B9 ¢ < Gup®P(0)

with @(0) = 0, then the solution of system (1.1) is generalized Hyers—Ulam stable. (|
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For the upcoming result, we suppose that:
(Hg) There exist two nondecreasing functions wy, wg € C(J, R*) such that

HI Wy (t) < Lowy(t) and Hjﬂﬁ/ﬂ(t) < Lgwg(t), where L,,Ls>0.
Theorem 4.2 If assumptions (H;)—(Hs) and (Hg) and inequality (3.18) are satisfied and

ﬁfoﬁgEgAz/L;
F=1-——= ——— >0,
(LrLy —D)((Int)*=2 — A1) = Ay L) (L Lg — 1)((In2)P~2 — A3) — ALLy)

then the unique solution of the coupled system (1.1) is Hyers—Ulam—Rassias stable and

consequently generalized Hyers—Ulam—Rassias stable.

Proof By using Definitions 2.7 and 2.8, we can obtain our result performing the same steps
as in Theorem 4.1. O

5 Example
Example 5.1 Consider

5
o) gp(t) _ 20D i40 g #3
70620 (L4p(0)+1D 4 q(1))

6
) % q(t) tcos(p( t) q@)sin(t) gD 51;(15) =0, t # %’

|

)l R )l

3 ;

AP =Tp(3) = 3w and AP =Ti(3) = 7 -
3 (3 :

A3)=TiqB) = 15y and A¢()=Taq()= 512y, n=3

2+]
1
85 2
P(3)=fle ;<g> ; 60(”2 and p'(e) = Zk 1 pk|17 Sl 1< <2m >0,
1
4

né 2,
0@ = [; T a2 and g0 =% Flatwl 1<k 2p6>0

where Zk 1 p <z fort € [1,e]. From the system (5.1),wecanseea = 5,/3 = %, T=em=1
and t; = Also, we can easﬂy ﬁnd L, L £¢ £¢ = 60, L1 = L'Z == L'I EI 25,
Ly = Ef ~0¢ L and Ly = Eg = 5z. With the help of Theorem 3.4, the followmg inequality
is found:

Ao(Lyp + L Lg) + Aa(Ly + LrLy)
(ﬁfﬁg -1)

AL+ Az + ~ 0.5366 > 0,

hence (5.1) has a unique solution. Also,

B CfoﬁgEgA2A4
(LrLe - D)((In2)22 = A}) = AyL) (L Ly — 1)((InE)F2 = Az) — AgLy)

~ 0.02280 > 0,

hence by Theorem 4.1 the coupled system (5.1) is Hyers—Ulam stable and thus generalized
Hyers—Ulam stable. Similarly, we can verify the condition of Theorems 3.3 and 4.2.
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6 Conclusion

In this paper, we have used the Krasnoselskii fixed point theorem to achieve the necessary
criteria for the existence and uniqueness of the solution of considered implicit coupled
impulsive fractional differential systems given in (1.1). Additionally, under particular as-
sumptions and conditions, we have established the Hyers—Ulam stability results for the
solution of the considered problem (1.1). From the obtained results, we conclude that
such a method is very powerful, effectual and suitable for the solution of nonlinear im-

plicit coupled impulsive fractional differential equations.

Acknowledgements
Not applicable.

Funding

Research supported by the National Natural Science Foundation of China(Grant No. 11601048,11571207), Natural Science
Foundation of Chongging (Grant No. cstc2016jcyjA0181), Natural Science Foundation of Chongging Normal University
(Grant No. 16XYY24), Shandong Natural Science Foundation (ZR2018MA011) and the Tai'shan Scholar Engineering
Construction Fund of Shandong Province of China.

Abbreviations
Not applicable.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Authors’ contributions
The authors contributed equally to this paper. The authors read and approved the final manuscript.

Author details

'Department of Mathematics, University of Peshawar, Peshawar, Pakistan. ?State Key Laboratory of Mining Disaster
Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong
University of Science and Technology, Qingdao, PR. China. *School of Mathematical Sciences, Chongging Normal
University, Chongqing, PR. China.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 19 April 2019 Accepted: 31 May 2019 Published online: 11 June 2019

References
1. Bagley, RL, Torvik, PJ.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27,
201-210(1983)
2. Jiao, Z, Chen, Y.Q, Podlubny, I.: Distributed-Order Dynamic Systems. NewYork, Springer (2012)
3. Sabatier, J, Agrawal, O.P, Machado, J.AT.: Advances in Fractional Calculus, Theoretical Developments and
Applications in Physics and Engineering. Springer, Dordrecht (2007)
4. Adomian, G, Adomian, G.E.: Cellular systems and aging models. Comput. Math. Appl. 11, 283-291 (1985)
5. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
6. Jiang, J, Liu, W, Wang, H.: Positive solutions for higher order nonlocal fractional differential equation with integral
boundary conditions. J. Funct. Spaces 2018, Article ID 6598351 (2018)
7. Liu, X, Liy, L, Wu, Y.: Existence of positive solutions for a singular nonlinear fractional differential equation with
integral boundary conditions involving fractional derivatives. Bound. Value Probl. 2018, Article ID 24 (2018)
8. Sun, Q, Meng, Sh,, Cui, Y. Existence results for fractional order differential equation with nonlocal Erdélyi-Kober and
generalized Riemann-Liouville type integral boundary conditions at resonance. Adv. Differ. Equ. 2018, 243 (2018)
9. Cui, Y, Ma, W, Sun, Q, Su, X.: New uniqueness results for boundary value problem of fractional differential equation.
Nonlinear Anal., Model. Control 23(1), 31-39 (2018)
10. Zou, Y, He, G:: On the uniqueness of solutions for a class of fractional differential equations. Appl. Math. Lett. 74,
68-73 (2017)

Page 25 of 27



Riaz et al. Advances in Difference Equations (2019) 2019:226

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44,

45.

46.
47.

. Yue, Z, Zou, Y.: New uniqueness results for fractional differential equation with dependence on the first order

derivative. Adv. Differ. Equ. 2019, Article ID 38 (2019)

. Zou, Y: Positive solutions for a fractional boundary value problem with a perturbation term. J. Funct. Spaces 2018,

Article ID 9070247 (2018)

. Zhang, K, Wang, J., Ma, W.: Solutions for integral boundary value problems of nonlinear Hadamard fractional

differential equations. J. Funct. Spaces 2018, Article ID 2193234 (2018)

. Zhang, K, Fu, Z: Solutions for a class of Hadamard fractional boundary value problems with sign-changing

nonlinearity. J. Funct. Spaces 2019, Article ID 9046472 (2019)

. Wu, J, Zhang, X, Liu, L, Wu, Y, Cui, Y.: The convergence analysis and error estimation for unique solution of a

p-Laplacian fractional differential equation with singular decreasing nonlinearity. Bound. Value Probl. 2018, Article ID
82 (2018)

. Zhai, C, Li, P, Li, H.: Single upper-solution or lower-solution method for Langevin equations with two fractional

orders. Adv. Differ. Equ. 2018, Article ID 360 (2018)

. Zhang, X, Wu, J, Liu, L, Wu, Y,, Cui, Y.: Convergence analysis of iterative scheme and error estimation of positive

solution for a fractional differential equation. Math. Model. Anal. 23(4), 611-626 (2018)

. He, J, Zhang, X, Liu, L, Wu, Y., Cui, Y.: Existence and asymptotic analysis of positive solutions for a singular fractional

differential equation with nonlocal boundary conditions. Bound. Value Probl. 2018, Article ID 189 (2018)

. Guo, Y. Nontrivial solutions for boundary-value problems of nonlinear fractional differential equations. Bull. Korean

Math. Soc. 47(1), 81-87 (2010)

Zhang, K. On a sign-changing solution for some fractional differential equations. Bound. Value Probl. 2017, Article ID
59 (2017)

Zhang, X, Liu, L, Wu, Y, Cui, Y. New result on the critical exponent for solution of an ordinary fractional differential
problem. J. Funct. Spaces 2017, Article ID 3976469 (2017)

Zuo, M., Hao, X, Liu, L., Cui, Y. Existence results for impulsive fractional integro-differential equation of mixed type
with constant coefficient and antiperiodic boundary conditions. Bound. Value Probl. 2017, Article ID 161 (2017)

Bai, Z, Dong, X, Yin, C.: Existence results for impulsive nonlinear fractional differential equation with mixed boundary
conditions. Bound. Value Probl. 2016, Article ID 63 (2016)

Wang, Y, Liu, Y, Cui, Y. Infinitely many solutions for impulsive fractional boundary value problem with p-Laplacian.
Bound. Value Probl. 2018, Article ID 94 (2018)

Zuo, M., Hao, X.: Existence results for impulsive fractional-difference equation with antiperiodic boundary conditions.
J.Funct. Spaces 2018, Article ID 3798342 (2018)

Samko, S.G,, Kilbas, A.A., Marichev, O.l.: Fractional Integrals and Derivatives: Theory and Applications. Gordon &
Breach, Yverdon (1993)

Hadamard, J.: Essai sur letude des fonctions donnes par leur developpment de taylor. J. Math. Pures Appl. 8, 86-101
(1892)

Jiang, J, Liu, L, Wu, Y. Positive solutions to singular fractional differential system with coupled boundary conditions.
Commun. Nonlinear Sci. Numer. Simul. 18(11), 3061-3074 (2013)

Guo, L, Liu, L, Wu, Y. Iterative unique positive solutions for singular p-Laplacian fractional differential equation
system with several parameters. Nonlinear Anal., Model. Control 23(2), 182-203 (2018)

Zhang, Y. Existence results for a coupled system of nonlinear fractional multi-point boundary value problems at
resonance. J. Inequal. Appl. 2018, Article ID 198 (2018)

Hao, X, Wang, H.,, Liu, L, Cui, Y. Positive solutions for a system of nonlinear fractional nonlocal boundary value
problems with parameters and p-Laplacian operator. Bound. Value Probl. 2017, Article ID 182 (2017)

Zhai, C, Wang, W, Li, H.: A uniqueness method to a new Hadamard fractional differential system with four-point
boundary conditions. J. Inequal. Appl. 2018, Article ID 207 (2018)

Li, H., Zhang, J.: Positive solutions for a system of fractional differential equations with two parameters. J. Funct.
Spaces 2018, Article ID 1462505 (2018)

Zhang, X, Liu, L, Wu, Y, Zou, Y. Existence and uniqueness of solutions for systems of fractional differential equations
with Riemann-Stieltjes integral boundary condition. Adv. Differ. Equ. 2018, Article ID 204 (2018)

Zhang, X, Liu, L, Zou, Y: Fixed-point theorems for systems of operator equations and their applications to the
fractional differential equations. J. Funct. Spaces 2018, Article ID 7469868 (2018)

Qi, T, Liu, Y, Zou, Y. Existence result for a class of coupled fractional differential systems with integral boundary value
conditions. J. Nonlinear Sci. Appl. 10, 4034-4045 (2017)

Qiu, X, Xu, J, O'Regan, D, Cui, Y.: Positive solutions for a system of nonlinear semipositone boundary value problems
with Riemann-Liouville fractional derivatives. J. Funct. Spaces 2018, Article ID 7351653 (2018)

Qi, T, Liu, Y, Cui, Y.: Existence of solutions for a class of coupled fractional differential systems with nonlocal boundary
conditions. J. Funct. Spaces 2017, Article ID 6703860 (2017)

Zhao, Y, Hou, X,, Sun, Y, Bai, Z.: Solvability for some class of multi-order nonlinear fractional systems. Adv. Differ. Equ.
2019, Article ID 23 (2019)

Ahmad, B, Juan, J,, Nieto, J., Alseadi, A: A coupled system of Caputo-type sequential fractional differential equations
with coupled (periodic/anti-periodic type) boundary conditions. Mediterr. J. Math. 14(227), 1-15 (2017)

Ahmad, B., Ntouyas, SK.: A fully Hadamard type integral boundary value problem of a coupled system of fractional
differential equations. Fract. Calc. Appl. Anal. 17, 348-360 (2014)

Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

Tariboon, J,, Sudsutad, W.: Coupled systems of Riemann-Liouville fractional differential equations with Hadamard
fractional integral boundary conditions. J. Nonlinear Sci. Appl. 9, 295-308 (2016)

Khan, H,, Li, Y, Chen, W,, Baleanu, D., Khan, A.: Existence theorems and Hyers—Ulam stability for a coupled system of
fractional differential equations with p-Laplacian operator. Bound. Value Probl. 2017, 157, 1-17 (2017)

Shah, K, Khan, RA.: Existence and uniqueness of positive solutions to a coupled system of nonlinear fractional order
differential equations with anti periodic boundary conditions. Differ. Equ. Appl. 7, 245-262 (2015)

Ulam, S.M.: A Collection of Mathematical Problems. Interscience, New York (1960)

Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222-224 (1941)

Page 26 of 27



Riaz et al. Advances in Difference Equations (2019) 2019:226 Page 27 of 27

48.
49.
50.
51
52.
53.
54.
55.
56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Hyers, DH,, Isac, G, Rassias, T.M.: Stability of Functional Equations in Several Variables. Birkhaiuser, Boston (1998)
Jung, S.M.: Hyers—Ulam stability of linear differential equations of first order. Appl. Math. Lett. 19, 854-858 (2006)
Zada, A, Riaz, U, Khan, F.: Hyers—Ulam stability of impulsive integral equations. Boll. Unione Mat. Ital. (2018, in press).
https://doi.org/10.1007/540574-018-0180-2

Shah, S.0, Zada, A, Hamza, A.E.: Stability analysis of the first order non-linear impulsive time varying delay dynamic
system on time scales. Qual. Theory Dyn. Syst. (2019, in press) https://doi.org/10.1007/512346-019-00315-x

Zada, A, Ali, S.: Stability analysis of multi-point boundary value problem for sequential fractional differential
equations with non-instantaneous impulses. Int. J. Nonlinear Sci. Numer. Simul. 19(7), 763-774 (2018)

Zada, A, Khan, F, Riaz, U, Li, T.: Hyers-Ulam stability of linear summation equations. Punjab Univ. J. Math. 49(1), 19-24
(2017)

Kilbas, A.A,, Srivastava, H.M,, Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland
Math. Stud.,, Elsevier, Amsterdam (2006)

Klimek, M.: Sequential fractional differential equations with Hadamard derivative. Commun. Nonlinear Sci. Numer.
Simul. 16, 4689-4697 (2011)

Wang, J., Zhovu, Y, Medved, M. Existence and stability of fractional differential equations with Hadamard derivative.
Topol. Methods Nonlinear Anal. 41, 113-133 (2013)

Ahmad, N, Ali, Z, Shah, K, Zada, A, Rahman, G.: Analysis of implicit type nonlinear dynamical problem of impulsive
fractional differentail equations. Complexity 2018, Article ID 6423974, 15 pages (2018)

Asma, Ali, A, Shah, K, Jarad, F.: Ulam-Hyers stability analysis to a class of nonlinear implicit impulsive fractional
differential equations with three point boundary conditions. Adv. Differ. Equ. 2019, 7 (2019).
https://doi.org/10.1186/513662-018-1943-x

Ali, Z,, Zada, A, Shah, K.: Ulam stability results for the solutions of nonlinear implicit fractional order differential
equations. Hacet. J. Math. Stat. (2018, in press) 20 pages. https://doi.org/10.15672/HIMS.2018.575

Zada, A, Ali, S, Li, Y. Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous
integral impulses and boundary condition. Adv. Differ. Equ. 2017, 312, 1-26 (2017)

Zada, A, Yar, M, Li, T.: Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional
differential equations with integral boundary conditions. Ann. Univ. Paedagog. Crac. Stud. Math. 17, 103-125 (2018)
Benchohra, M., Lazreg, J.E.: Existence and Ulam stability for nonlinear implicit fractional differential equations with
Hadamard derivative. Stud. Univ. Babes-Bolyai, Math. 62(1), 27-38 (2017)

Ali, Z, Zada, A, Shah, K.: On Ulam'’s stability for a coupled systems of nonlinear implicit fractional differential
equations. Bull. Malays. Math. Sci. Soc. (2018, in press). https://doi.org/10.1007/540840-018-0625-x

Ali, Z, Zada, A, Shah, K.: Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value
problem. Bound. Value Probl. 2018, 175 (2018). https://doi.org/10.1186/513661-018-1096-6

Ali, A, Shah, K, Jarad, F, Gupta, V.,, Abdeljawad, T.: Existence and stability analysis to a coupled system of implicit type
impulsive boundary value problems of fractional-order differential equations. Adv. Differ. Equ. 2019, 101 (2019).
https://doi.org/10.1186/513662-019-2047-y

Ali, Z, Kumam, P, Shah, K., Zada, A.: Investigation of Ulam stability results of a coupled system of nonlinear implicit
fractional differential equations. Mathematics 7(4), 341 (2019). https://doi.org/10.3390/math7040341

Agarwal, RP, Zhou, Y, He, Y. Existence of fractional neutral functional differential equations. Comput. Math. Appl. 59,
1095-1100 (2010)

Wang, J,, Zhang, Y.: On the concept and existence of solutions for fractional impulsive systems with Hadamard
derivatives. Appl. Math. Lett. 39, 85-90 (2014)

Thiramanus, P, Ntouyas, S.K., Tariboon, J.: Positive solutions for Hadamard fractional differential equations on infinite
domain. Adv. Differ. Equ. 2016, 83 (2016)

Altman, M.: A fixed point theorem for completely continuous operators in Banach spaces. Bull. Acad. Pol. Sci. 3,
409-413 (1955)

Rus, LA Ulam stabilities of ordinary differential equations in a Banach space. Carpath. J. Math. 26, 103-107 (2010)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



https://doi.org/10.1007/s40574-018-0180-2
https://doi.org/10.1007/s12346-019-00315-x
https://doi.org/10.1186/s13662-018-1943-x
https://doi.org/10.15672/HJMS.2018.575
https://doi.org/10.1007/s40840-018-0625-x
https://doi.org/10.1186/s13661-018-1096-6
https://doi.org/10.1186/s13662-019-2047-y
https://doi.org/10.3390/math7040341

	Analysis of coupled systems of implicit impulsive fractional differential equations involving Hadamard derivatives
	Abstract
	Keywords

	Introduction
	Preliminaries
	Hyers-Ulam stability deﬁnitions and remarks

	Existence results
	Ulam stability analysis
	Example
	Conclusion
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Author details
	Publisher's Note
	References


