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Abstract

In this work, we formulate the mathematical model that incorporates two equations
to represent the ultimate goal and controlling strategy to the traditional
prey-predator model so that we can investigate the interaction between preys and
predators. The model is shortly called the CSOH model. The impulsive practice is
added into the model for squirrel control purposes. In particular, we are interested in
pulsing the squirrel hunters into the system for every fixed period to control squirrels
at the level allowing farmers to have sufficient amount of coconuts so that they can
continue their business. We establish the conditions for the squirrel-free periodic
solution exists and is globally stable. The numerical simulations reveal that squirrels in
the coconut farm could be entirely eradicated by the pulsing strategy. However, the
disappearance of squirrels on the farm is not an ecological desire because all species
should be allowed to coexist in the system. Consequently, we recommend that the
number of squirrel hunters pulsed into the coconut farm should be properly set by
considering the time of intervention, expenditure, ecological reasons, and emotional
sensitivity of village members.

Keywords: Impulsive mathematical model; Squirrel management; Coconut farm;
Samut Songkham

1 Introduction

Plant producers have recognized the issue of plant protection from pests for a long time.
The various practices to prevent pests have been thus modified according to the situa-
tions in which the plant producers have encountered. We may classify those practices into
two main categories, i.e., the human-made and the natural practices. The former refers
to any intervention invented by humans, e.g., chemicals, cages, and guns, while the lat-
ter refers to mechanisms that occur naturally to strengthen the ecological balance. In the
mathematical approach, there are attempts to discover the combination of these methods.
Because, by means of the natural mechanisms, although they are useful in maintaining the
ecological balance, they may not be effective because the natural control usually takes a
longer time than human interventions. In contrast, human interventions may be more
punctual, but they may negatively distort the natural system in the long term. Inspired by
the well-known ecologically mathematical model proposed in 1931 by Lotka—Volterra [1],
the application of pest management that combines these two practices has been succes-
sively developed. This collective practice is known as Integrated Pest Management (IPM).
The progress of IPM in the creation of mathematical models has been reflected by the in-
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vention of the parameters, variables, functional forms, and the ability to reflect the nature
of the studied ecosystem. Previously proposed models included, e.g., the IPM model with
the fixed moment that employs the pest pesticide resistance rate [2] and the IPM model
with the threshold condition that takes into account the effect of carrying capacity, en-
vironment fluctuation, human activities [3], the pest growth rate, types of the functional
response, and the pesticide effect on natural predators [4].

In 2010, Tang et al. [5] formulated the IPM model with a different pulsing time of the
chemical and natural enemy and showed the periodic solution under a specific threshold.
This IPM model has been further developed to scrutinize the existence and stability of
the periodic solution by Xiao Dai in 2015 [6] by inserting the logistic growth function into
the model. They conducted the sensitivity analysis of the periodic solution by varying the
number of natural predators and discovered that the pest becomes extinct if the released
predators are large enough. Likewise, in 2017, Sun et al. [7] relaunched their IPM model.
Their updated version was not much different from the previous one; in particular, they
showed the periodic solutions by varying the values of parameters [2].

Recently, to show the novels of impulsive application in various fields, Zhao et al. [8]

formulated an impulsive delayed phytoplankton-zooplankton model:

% = Pl(rl — ﬂlpfl) — alPlZ,

% = Py(ry - ayP5?) — aaPo Z, t#nT,
‘Z—f =Z(01P1+ 0Py —asZ(t —t) — u — Iffgz),

API = d(Pz - Pl);

APZ = d(Pl - PQ), t= }’lT,

AZ =0,

where P;(£) denotes the concentration of the nontoxic phytoplankton (NPP) and P(¢)
is the concentration of the toxin-producing phytoplankton (TPP). Z(t) is the concentra-
tion of the zooplankton. The meaning of all parameters in the model can be found in
[8]. The numerical solutions conducted by this work established the global attractivity of
zooplankton-extinction periodic solutions.

Also, Zhang et al.[9] proposed an impulsive SIRS computer virus propagation model:

B = - B0 — 1S(e) + SR(2),

a9 = BOM — (o + @), t#KkT,
RO~ yI(t) - (u + S)R(E),

S(t*) =S(@),

1(t") = (1 - g)I(), t=kT,

R(t") = R(t) + ql(t),

where S(2), I(¢), and R(£) denote the percentages of susceptible, infected, and recovered
internal computers at time ¢, respectively. In their work, the numerical results demon-
strated that the virus-free equilibrium is globally stable. In addition, several applications

of the impulsive models have been studied in, e.g., [10-13].
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In Thailand, the problem of squirrels has been recognized by the coconut farmers in
the Samut Songkhram, a province of Thailand, for long time. The squirrels become the
major animal that destroys a number of not only coconuts but also other plants pro-
duced in the same areas. Until now, farmers still do not have an effective way to pre-
vent the coconut loss from squirrel invasion. Even though some strategies have been em-
ployed to control the squirrels, e.g., poisoning, catching, and hunting, they seem ineffec-
tive because of the limitation of the farmer capability and the support from the related
agents, especially from the government. Therefore the problem of squirrels has still been
embedded in this area. However, the intention to alleviate the squirrel problem was re-
flected by a campaign that Samut Songkhram Provincial Agriculture Office (PAO) or-
ganized in 2013 to burn the 60,000 tails of squirrels which the agricultural office pur-
chased from farmers at a price of 15 baht per tail. This campaign covered ten months
and invited the farmers from three sub-districts to sell the squirrel tails to PAO at max-
imum 2000 tails per month per sub-district. Eventually, this campaign cost the govern-
ment budget of approximately 700,000 baht. Additional information could be found at
http://pr.prd.go.th/samutsongkhram. Due to the limitation of the government budget, the
law against the air gun carrying in public area, and resistance from some people who
have protected squirrels, this campaign was finally terminated. However, in the coconut
farmers’ perspective, squirrel hunting is an essential practice for controlling the squirrel
density.

Motivated by various applications of the impulsive technique and the problem faced by
coconut farmers, we hence propose an impulsive CSOH model describing the actual sit-
uation of the squirrel problem in the coconut farms. We aim to apply the mathematical
technique to this real problem and then to make a contribution by proposing new per-
spectives on the mathematical model. In other words, we add two new equations into the
classical prey-predator relationship. The first one represents the coconut yield indicating
the ultimate result and the other one is the squirrel hunter presenting a group of peo-
ple who have been used in the squirrel control strategy. In addition, this hunter equation
shows a new kind of predators who can improve their predation skills which are not gener-
ally presented in the traditional prey-predator model. This paper is organized as follows.
A CSOH model with impulsive practice is presented in Sect. 2. Some essential lemmas
which are required in our work are given in Sect. 3. In Sect. 4, the implication of lemmas
and theories is presented. The sufficient conditions for the local and global attraction of
solution are derived in Sect. 5. Finally, numerical simulations and short discussions are

provided in Sect. 6 and Sect. 7, respectively.

2 Mathematical model

Since eliminating the squirrels is not an ultimate objective of the model that we propose,
we improve the traditional prey-predator model, which mainly focuses on the interaction
and control between the preys and predators, by incorporating a coconut yield equation

into the model to investigate the effect of the squirrel controlling strategies on the number
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of coconuts as follows:

960~ BC()(1 - G2) —y COS(1) — nC)
G =801 - 55Eg) +1CWSW) - 8510 ~ o SOH®), | -
490 ~ £0()(1 - 227 + £S(HO(),
dH(D) _ _
10 _ cS(¢) - dH (D), "
C(t") = C(e),
S(t%) = S(0), _—
o) = 0(),
H(EY) = H($) + ,

with the initial condition (C(0%),S(0*), O(0%), H(0")) = (Cy, So, Og, Hg) = Xo, where C(¢),
S(t), O(t), and H(¢) are the number of coconut yields, squirrels, barn owls, and squirrel
hunters at time ¢, respectively. In addition, C(t*), S(t*), O(t*), and H(¢*) represent the
number of coconut yields, squirrels, barn owls, and squirrel hunters immediately after
the nth pulse. The basic assumptions of the model are that coconut yields, squirrels, and
bran owls grow logistically. For coconut yields, K is the coconut carrying capacity which is
held constant and limited by the growing area and nutrient of soil. Since squirrels and barn
owls do not only rely on one source of food, their carrying capacities are defined differently
from the carrying capacity of the coconuts, i.e., the squirrel carrying capacity is defined
by the combination between coconuts and other sources of food Q. Similarly, the carrying
capacity of barn owls is defined by the combination between the number of squirrels and
other sources of food B. For the rest of the parameters, the constants 8, 1, and £ denote
the reproduction rate of coconut yields, squirrels, and barn owls, respectively. y is the
predation rate of squirrels, u is the harvesting rate of coconut yields,  is the marginal
carrying capacity of squirrels induced by the number of coconuts, 1 is the conversion rate
of squirrels, § is the predation rate of barn owls, o is the hunting rate of squirrel hunters,
k is the marginal carrying capacity of barn owls induced by the number of squirrels, and
¢ is the conversion rate of barn owls.

Regarding the squirrel hunter equation, this equation presents the squirrel controlling
strategy employed in the coconut farm and a kind of the predator that deviates from
the predators introduced in the traditional prey-predator model, i.e., the hunters in our
model can improve their predation skills. The equation shows the straightforward rela-
tionship between the number of hunters and squirrels with the assumption that when
the squirrel emerges, the squirrel hunter emerges too. This phenomenon has happened
since the farmers needed to find some way to eliminate squirrels to prevent their co-
conut loss and one easy way is becoming the hunters. Also, hiring the hunters is an op-
tion that the farmers can pursue to increase the number of hunters for eliminating the
squirrels when they increase in their density. Nevertheless, the number of hunters can be
declined by the deterioration of the squirrel hunting skills when squirrels are scarce for
hunting. Also, a loss of interest in squirrel hunting can cause hunter reduction. Two pa-
rameters in the equation, which are related to these events, are the entered rate of hunters
¢ presenting the marginal effect of the squirrel density on the number of hunters and the
exit rate of hunters d showing the marginal effect of hunter density on the number of
hunters.

Page 4 of 15



Vajrapatkul et al. Advances in Difference Equations (2019) 2019:248 Page 5 of 15

Since we are interested in observing the effects of the squirrel hunters pulsing on the
squirrel density, we impose a fixed number of hunters / at each fixed moment of pulsing

time nT, where n=1,2,..., and T is the period of impulsive effect, into the model.

3 Preliminaries
Before providing the main results, we introduce some notations and few auxiliary results
related to the comparison theorem, which will be useful for establishing our results.

Let R, = [0,+00), R* = {X = (C(¢),S(t),0(t), H(¢t)) € R* : C(t) > 0,5(t) > 0,0(¢t) >
0, H(¢) > 0}. The functions on the right-hand sides of the former four equations in system
(1) are denoted by f = (f1, /2,3, )T . Let V, be the set of functions V : R, x R* — R, having
the following properties [11, 14—17]:

(1) Vis continuous in (nT, (n + 1)T] x R* for each X € R*, n € Z, and

lim ) (ur+ ) V(&) = V(nT*, X) exists,

(2) Vislocally Lipschitzian in X.

Definition 1 ([18]) Suppose that V € V,, then, for (t,X) € (nT,(n + 1)T] x R, the upper
right derivative of V (¢, X) with respect to the impulsive differential system (1) is defined as

D*V(t,X) = limsup %[V(t + X + hf(,X)) - V(t,X)]. 2)
h—0*

The solution of system (1), denoted by X : R, — R, is a piecewise continuous function
on (nT,(n+ 1)T], n € Z,, and X(nT"*) = lim,_, ,7+ X(t) exists. Obviously, the smoothness

properties of f guarantee the global existence and uniqueness of solutions of system (1).

Lemma 1 ([11, 19-22]) Let V € V, and assume that

D'V(t,X) <g(t, V(t,X)), t#nT,
Ve, X)) = yu(V(, X)), t=nT,

3)

where g : R, X R, — R is continuous in (nT,(n + 1)T] x R,, and foru e R,, n € Z, and
limyg ) (ur+ ) g(8, V) = g(WT™, u) exists and r, : R, — R, is non-decreasing. Let r(t) be the

maximal solution of the scalar impulsive differential equation

u(t) =g(t,u(t)), t#nT,
M(t+) = Iprl(u(t))r t=nT, (4')

M(O+) = Uo,

existing on [0,00). Then V(0*,Xo) < ug implies that V(t,X(t)) < r(t) for all t > 0, where
X(t) is any solution of system (1).

Similarly, when all the directions of the inequalities in Lemma 1 are reversed and ,, is
non-increasing, r(t) will become the minimal solution of the scalar impulsive differential
equation. Note that if we have some smoothness conditions of g to guarantee the existence

and uniqueness of solutions for (4), then u(t) is exactly the unique solution of (4).
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Let us consider the basic properties of the following example of impulsive differential

equation.

u(t) = —du(t), t#nT,
u(t*)=ult) +p, t=nuT, (5)

u(0+) = U, Uy > 0.
We have the following lemma.

Lemma 2 ([23, 24]) System (5) has a unique positive periodic solution u(t) with period T,
and for every solution u(t) of (5), it follows that |u(t) — u(t)| — 0 as t — oo, where

t-nT)

. pet o p p -
M(t) = m, u(O ) = m, and M(t) = (Llo - w)Q d + u(t),

witht € nT,(n+1)T],ne Z,.

Lemma 3 ([18]) Let the function m € PC'[R", R] be left-continuous at ty, k € Z, satisfying

the inequalities

m'(t) < p(m(t) + q(t), t=>to,t 7t
Wl(fr) < dkm(t) + bk, t=tg,

(6)

where p,q € C[R*,R] and dy > 0, by are constants, then the solution of (6) is bounded by
the following inequality

m(t) < m(toy) l_[ dkexp(/ p(s)ds) + Z (1_[ djexp(/ p(s)a,’s))b;<

to<ti<t to<tp<t “tg<tj<t
t t
+ ]_[dkexr)< / p(a)dc»')q(s)ds, t > to. (7)
0 scy<t s

Similar results can be obtained when all the directions of the inequalities in (6) are reversed.

4 The existence and boundedness of squirrel-free periodic solutions
In this section, we apply the lemmas presented in the previous section to our main results.

To investigate the squirrel-free periodic solution, system (1) becomes

G = PO -G~ uc),

G =001 -G, t#nT,

ot = —dH), (®)
C(t*) = C(v),

O(t*) = O(z), t=nT,

H(t")=H(t) + h,

with the initial condition (C(0%), O(0*), H(0%)) = (Co, Og, Hp).
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Based on the first and second equations of (8), which are independent of the rest of the
equations, we get the positive equilibrium points, namely C* = (8 — ¢)K/8 and O* = B.
Now consider the subsystem

MO - _dH(t),  t#nT,
H@E)=H@) +h, t=nT, 9)

H(0*) = H,.

Using Lemma 2, we have that the solution for ¢t € (nT,(n + 1)T], n € Z, of (9)
is H(t) = (Hy - l_elidT)e‘dt + H(t) and the positive periodic solution of (9) is H(t) =
he=4t=1)/(1 — =T with the initial value H(0*) = /1/(1 — e~T). Therefore |H(t)— H(£)| — 0
as t — 0o, i.e., H(t) — H(t) as t — oo. This implies that H(@) is globally asymptotically
stable.

Assume that X(¢) is a solution of (1). If X(0") > 0, then we have X(¢) > 0 for ¢ > 0 while
if X(0*) > 0, then X(¢) > 0, t > 0 [25]. Next, we want to show that all solutions of (1) are
uniformly ultimately bounded. From the first equation of (1), it provides

d
dt

C(t)

CMSﬂQHQ—jf)

which gives

C(t) < max{K, Cy}:= M,
and

d

—C(t) < BM;.

o7 (t) < BM,

Also, applying this process to the second equation of (1), we have

iS(t) < nS(t)(l - &> +AC(2)S(t),

dt ClHw+Q
2
S(0) < maX{Mlkw + (QA + nw)M; + Qn’so} - M,
n

d
—S8(t) < M1 M) + Mjn.
dt
Similarly, from the rest of the equations of (1), we obtain

M3k + BMaL + Mak€ + BE
E )

o) < max{ Oo} = Ms,
d
%O(t) < MyM3¢ + M3é,

and

M.
HMS7f:M4

dH(t)< M
dt = CVip.
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Define V(¢) = C(¢) + S(¢) + O(¢) + H(t). When ¢ # nT, we obtain

DV(t) + AV(D)

<(A+B)Mi+(c+n+ A)My + (A +E)Ms + AMy + MiMoh + MyMs3¢ := M.

When t = nT,we have V(nT*) = V(nT) + h. By applying Lemma 3, when t € (uT, (n+1)T],

we obtain
V() < V(O /Moe s " he D
0<nT<t
Mo
_ —At —At - A(t=nT)_
= V(e '+ — A Z he
0<nT<t

When ¢ — 00, we have
V(£) < Mol Ag + heT /(2T = 1) := M.

So V(¢) is uniformly ultimately bounded. Hence, by the definition of V(¢), we have that
there exists a constant M5 > 0 such that C(¢t), S(¢), O(t), H(t) < M5 for all ¢ large enough.

5 Stability analysis
In this section we will prove the existence and stability of the only survived squirrel hunter
equilibrium (0,0,0, H(t)) and the squirrel-free equilibrium (C*,0, 0%, H(t)) under certain

conditions.

Theorem 1 Let (C(t),S(t), O(t), H(t)) be any solution of system (1). Then we have the fol-
lowing results.
(1) The only survived squirrel hunter equilibrium (0,0, 0, H(¢)) is unstable.
(2) The squirrel-free periodic solution (C*,0, O* H()) is locally asymptotically stable
provided that inequalities

BC*

2
P27

d
+ and (C*A—O*8+n)T<—)<h hold.
o

Proof For the local stability of a T-period solution of (0,0,0, H(t)), we consider a small
amplitude perturbation of the solution [26] defined by ¢(¢) = C(¢), s(¢) = S(¢), o(¢) = O(¢),
and ljz(t) = H(¢t) - h(¢), then system (1) can be reduced to the following linearized form:

40— (- )ie),
EY _ (—H(t)o + n)i(e),

t#nT,
do t) g (t) #n
m - —d; z
72 = c3(t) - d(h(t) + H(p)), (10)

&t) = &),
5(t%) = 5(8),

o(t") = o(0),
h(t*) = h(),

t=nuT.
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Let @(¢) be the fundamental matrix of (10), it must satisfy

B—u 0 0 0
.o | 0 -H@®o+n 0 0
D(t) = 0 0 - D (t).
0 c 0 —-d

Linearizing the impulsive conditions of (10), we obtain

c(th) 1 0 0 O0][e@®
e | {01 0 o5
o(t") 0 0 1 0]]o(p)
h(t) 0 0 0 1] [hQ)

Thus the monodromy matrix of (10) is

o(T),

oS O O
S O = O
o = O O
= o O O

which implies that

A = e(ﬂ—u)T’

Ay = elo -H@O0)dr

)\.3 = egT,

)\4 = e_dT.

Obviously |A3] > 1, thus (0,0, 0, H(¢)) is unstable [26].
In order to discuss the stability of (C*,0, 0%, H(z)), let C(t) = C* + &(t), S(¢) = 5(t), O(¢) =
O* +0(t), H(¢) = H(t) + ljz(t). Then system (1) can be expressed in the linearized form as

follows:

= (B0 ) - BE - i) -y C3(0),

0 _ (C*r - HB)o - 08 + n)s(t),

do(e) _ (£0%% N O\ EO*\a t#nT,
ar = G +E00) + (1 - ) = TF)o(e),
40— (t) - d(h(e) + H©)), -

&tr) = &),
5(t%) = 5(8),
o(t") = o(0),
h(t*) = h(),

t=nuT.
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Let @(¢) be the fundamental matrix of (11), it must satisfy

BA-S)-EE ~yC* 0 0
b (1) 0 C*A—H(t)o —O*8§ +n 0 o (1)
= *ZK s« sk sk .
0 “FEr 0 §1-F) 5
0 c 0 —d

Thus the monodromy matrix of (11) is

o(T),

oS O O
oS O = O
S = O O
= o O O

which implies that

Ay =e J (.C*—H(t)o-80* +n) dt
A3 = et <1,
)\.4 = e_dT <1.

Thus the squirrel eradication periodic solution is locally asymptotically stable if |1, ] < 1
and [Ay] < 1,ie,if B < 2‘%* + u and (C*A — O*8 + n)T(g) <h. a

In the following, we will discuss the condition for global stability of (C*,0, O*, H(t)).

Theorem 2 Let (C(t), S(£), O(t), H(¢t)) be any solution of system (1). Then the squirrel erad-
ication periodic solution (C*,0, O*, H(2)) is globally attractive provided that the inequality

d
(C*)\. -0"8 + n)T(—) <h holds. (12)
o

Proof Let (C(t),S(2), O(¢), H(£)) be any solution of system (1). From the first equation of

(1), we have

dcC(t) C()

7 < ﬁC(t)<1 - 7) - unC(t),

which implies that lim;_, o sup C(¢) = K(B — )/ B := C*. Thus, there exists an integer n; >0

such that, for ¢ > n;, we have C(f) < C* + g, & > 0. Similarly, we can obtain lim,_, o, O(£) =
B:= 0" and O(f) < O* + g9. Next consider the subsystem

dH(?)
L2 >—dH(t), t#nT, 13)
H(tY)=H(t)+h, t=nT.
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Applying Lemma 1 and Lemma 2 to (13), we obtain
H(t) = (W/(1-eT))e ™™D, uT<t<m+1)T,nez,

which is globally asymptotically stable. Then 3n, > ny, t > ny such that H(t) > H(t) - &,
nT<t<m+1)T,n>ns.

Now consider the second equation of system (1) which can be written as

% < (n+AC* - 80* — o (H(t) - £))S(2).

Integrating this equation between the pulses and after the successive pulse, we can ob-
tain

S((n+1)T*) <S(nT*)gq,

n+1)T

where q= ef;iT (n+AC*=80* o (H(t)—g0

N4t \When gy — 0, we have g < 1 if the following con-

dition
(C*)\. -0"8 + n)T(?) <h

holds. Consequently, we have S(nT*) < S(0*)q" and we therefore obtain S(¢) — 0 as n —

00. Now let £; > 0 such that 0 < S(£) < &1, and consider the following subsystem:

% <ce1 —dH(t), t#nT, (14)
H(t) = H(t) + h, t=nT.

Also applying Lemma 1 and Lemma 2 to (14), we have that when &; — 0 then H(t) =

( l_e}i —=)e "D yT < t < (n+1)T, n € Z,, which is globally asymptotically stable. This
completes the proof. d

The analysis indicates that it is possible to eliminate squirrels from the coconut farms
by pursuing the squirrel hunting strategy. Moreover, an achievement of this strategy is
unconditioned on the initial number of squirrels. This implies that the farmers can get rid
of the squirrels from their farm if they desire. However, the decision of how many squirrels
are to be eliminated may depend on many criteria, and hence zero squirrels might not be
a desirable target. In the next section, we conduct a numerical analysis to test our theories
derived in this section and discuss the conditions for which we should consider to control

the number of the squirrels.

6 Numerical experiments

In this section, we provide the experimental results produced from testing the assump-
tions related to the strategies of controlling the squirrels. The assumptions are set by vary-
ing the number of pulsed squirrel hunters /, but fixing the duration of the pulsing time T to

be six months. There are two reasons behind these assumptions, i.e., (1) it is useful for local



Vajrapatkul et al. Advances in Difference Equations

(2019) 2019:248

3500 T T T T T T T T 70
3000 60
25001 50
2000 . “°
S 1500 & 30
201
1000 10
500 0
0 . . : -10 : : : : : . . :
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
time(months) time(months)
(a) C(t) (b) S(t)
14 T T T 350 T T T
300 -
250
:200 r
T 150
100 |
50
3‘0 4‘0 5‘0 6‘0 7‘0 86 90 D0 1 6 26 (;0 4‘0 E;O 6‘0 7‘0 Bb 90
time(months) time(months)
(c) O(t) (d) H(t)
3500 T T T T T T T 70
3000} . 60
2500( 50
,:'2000* = 40
6/1500* ol @ %
20
1000+ 4 10
500 . ot
‘-)10 6 10 26 30 40 50 60 70 400 50 160 1%0 H 260 25‘0 360 350
S ()
(e) C(t) and S(t) (f) S(t) and H(t)
Figure 1 Strategy 1: C(0) = 500, S(0) = 20, O(0) = 2, H(0) = 2, h=100, T = 6 (a) the dynamic of C(t), (b) the
dynamic of 5(t), (c) the dynamic of O(t), (d) the dynamic of H(t), (e) the dynamic of C(t) and S(t), (f) the
dynamic of S(t) and H(t)

governments to set budgets and projects to hire squirrel hunters and (2) a duration longer
than six months can cause the extent to which the squirrels destroy the coconuts unneces-
sarily. To investigate the effect of pulsing strategies, we estimate the parameters from the
information collected from both primary sources of discussion with coconut farmers and
secondary sources of documents detailing the coconut growing practice and behavior of
squirrels and barn owls. The obtained parameters are as follows: 8 =3, y =0.1, u = 0.3,
n=1®=02,1=0.00568=02,0=01,&=1, « =0.05 ¢ =0.002, c =0.01, d = 0.06,
K =3500, Q =100, and B = 10.

By setting T = 6, we obtain the threshold number of the pulsed squirrel hunters / ap-
proximately from (12) which is equal to 52. We detecte the effects of the pulse by separating
the actions into three strategies, namely the strategy of 100, 54, and 25 pulses.

Figure 1(a)-1(f) shows that the squirrels are all eradicated after the first pulse using the
first strategy with s = 100. However, this strategy may require a large amount of money
to hire the hunters and it tends to affect the emotions of the villagers who love squirrels
adversely. Also, the situation of eliminating all squirrels from the coconut farm does not

fit the biological sense that the species should coexist. Therefore, we proceed through
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Figure 2 Strategy 2: C(0) = 500, S(0) = 20, O(0) = 2, H(0) = 2, h =54, T = 6 (a) the dynamic of C(t), (b) the
dynamic of 5(t), (c) the dynamic of O(t), (d) the dynamic of H(t), (e) the dynamic of C(t) and S(t), (f) the
dynamic of S(t) and H(t)

by reducing squirrel hunters and the results are shown in Fig. 2(a)-2(f) for # = 54 and
Fig. 3(a)-3(f) for & = 25. By hunter reduction, the cost of government can be reduced.
However, the pulsing strategy of 54 hunters still do not allow squirrels to remain on the
farm. When we use the pulsing strategy of 25 hunters, we find that coconuts, squirrels,

barn owls, and squirrels hunters live together on the farm.

7 Conclusion

In this work, we presented an impulsive CSOH model for managing squirrels on the co-
conut farm. The basic properties of the model and the conditions for the squirrel eradica-
tion have been provided. For the pulsing strategy, we have assigned a fixed 6-month period
for each pulsing action to test the effect of hunters released on the number of squirrels and
coconut outputs. The numerical experiments have shown that it is possible to eliminate all
the squirrels from the coconut farm. However, the zero squirrel equilibrium has no mean-
ing in the biological sense which requires that all species should be allowed to live together.
Therefore, we suggest that the number of squirrels hunters pulsing into a coconut farm
should be determined by taking into account the intervention time, expenditure, ecologi-

cal reasons, and emotional sensitivity of the village members.
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