
Pu and Pan Advances in Difference Equations        (2019) 2019:223 
https://doi.org/10.1186/s13662-019-2160-y

R E S E A R C H Open Access

Cross soliton and breather soliton for the
(3 + 1)-dimensional Yu–Toda–Sasa–Fukuyama
equation
Zhiqiang Pu1* and Zhigang Pan2*

*Correspondence: pzq@mtc.edu.cn;
panzhigang@swjtu.edu.cn
1School of Information Engineering,
Mianyang Teachers’ College,
Mianyang, China
2School of Mathematics, Southwest
Jiaotong University, Chendu,
P.R. China

Abstract
Cross-soliton solution, breather soliton, periodic solitary solution, and doubly periodic
solution are obtained by using an extended homoclinic test approach with
perturbation parameter u0 and complexity of parameters, respectively. Dynamical
feature of cross soliton flow including degeneracy of soliton with different directions,
retroflexion of breather soliton for YTSF equation is investigated using the parameter
perturbation method. Result shows that the value range of constant equilibrium
solution can determine the dynamics of cross soliton for a higher dimensional
nonlinear system.
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1 Introduction
It is well established now that the higher-dimensional nonlinear wave fields have richer be-
havior than one-dimensional ones. It was verified that the existence of two solitons having
the structures peculiar to a higher-dimensionality may contribute to the variety of the dy-
namics of nonlinear waves [1–3]. Thereby, seeking for exact solution and studying dynam-
ical behavior [4–7] of solutions are very significant in physics, mathematics, and nonlin-
ear science fields for understanding the complexity and variety of dynamics determined
by high-dimensional nonlinear evolution equation [8–10]. In soliton theory, the soliton
solutions are obtained by the use of the inverse scattering method, Bäcklund transfor-
mation, Darboux transformation, Painlevè method, Hirota method, the tanh method, the
generalized Riccati equation expansion method, homoclinic test method, etc. [11–18]. In
this work, we would like to use the parameter perturbation method for seeking dynamical
feature of soliton solution for the (3 + 1)-dimensional Yu–Toda–Sasa–Fukuyama (YTSF)
equation.

The YTSF equation has been presented as

(
–4ut + Φ(u)uz

)
x + 3uyy = 0, Φ(u) = ∂2

x + 4u + 2ux∂
–1
x , (1)
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where ∂–1
x represents the integral with respect to x. This equation was introduced by Yu,

Toda, Sasa, and Fukuyama [19] as a generalization from the Bogoyavlenskii–Schif equa-
tion [20]. Linearly traveling solitary wave solution for Eq. (1) was found by using tanh-
function method [21]. The optimistic quadratic polynomial function lump solutions, some
soliton-like solutions, nontravelling wave solutions, and a new kink solution for the po-
tential form of Eq. (1) were obtained by a Backlund transformation, an auto-Backlund
transformation, and the extended homoclinic test method [22–25].

This paper focuses on the exact solutions and spatiotemporal dynamics of solution for
Eq. (1). Three types of exact solutions including cross-soliton, breather soliton (periodic
solitary solution), and doubly periodic solutions to YTSF equation are constructed by bi-
linear form and extended homoclinic test approach, a technique of searching for exact
homoclinic orbit solution, for nonlinear integrable equation [23, 26]. It is explicitly exhib-
ited that the dynamical feature of the solutions is different on the both sides of an arbi-
trary constant equilibrium solution (point) of the YTSF equation. Cross-soliton solution
is degenerated into periodic solitary wave and breather soliton with different directions
and even double periodic solution when the equilibrium point u0 varies from one side of
– 1

6 (4α + cp2) or – 2α–2cp2

3c to another side, where α is the propagation velocity of wave, p is
a wave number, and c is a fixed constant. To the best of our knowledge, these results have
not been studied yet.

2 Cross soliton of YTSF
Using the potential transformation u = vx, a (3 + 1)-dimensional potential YTSF equation
has been derived [27, 28]:

–4vxt + vxxxz + 4vxvxz + 2vxxvz + 3vyy = 0. (2)

We suppose that η = x + cz – αt, then Eq. (2) can be transformed into

4αvηη + cvηηηη + 3c
(
v2
η

)
η

+ 3vyy = 0. (3)

By using Painlevé analysis Eq. (3), we suppose

⎧
⎨

⎩
v = u0 + 2(ln f )η,

f = b1e–p1(β1y+μ1η) + b0 cos(p2(β2y + μ2η)) + b2ep1(β1y+μ1η),
(4)

where all of p1, p2, β1, β2, μ1, μ2, b0, b1, b2, k1, k2, and k3 are parameters to be determined
later. Substituting Eq. (4) into Eq. (3) and equating all the coefficients of different powers
of cos(p2(β2y+μ2η)), sin(p2(β2y+μ2η)), ejp1(β1y+μ1η), j = 1, 2, 3, 4 and constant term to zero,
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we can obtain a set of algebraic equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2cμ5
1p4

1 – 2(10cp2
2μ

2
1μ

2
2 – 2(3ck2 + 2α)μ2

1 – 3β2
1 )μ1p2

1

+ 2(5cp2
2μ1μ

4
2 – 6(3ck2 + 2α)μ2

2 – 3β2
2 )μ1 – 6μ2β1β2)p2

2 = 0,

cμ5
2p4

2 – 2(5cp2
1μ

2
1 + 3ck2 + 2α)μ3

2p2
2 + 6μ1β1β2p2

1

+ (5cp4
1μ

4
1 + ((18ck2 + 12α)μ2

1 + 3β2
1 )p2

1 – 3p2
2β

2
2 )μ2 = 0,

(b2
0 – 1

4 b1b2)cp4
2β

5
2 – ( 3

2 (u2
1p2

1 – k2)c + α)b1b2 + b2
0( 3

2 ck2 + α))p2
2μ

3
2

+ 9
2 b1b2β1β2μ1p2

1 + 3
4 (3b1b2μ

2
1p2

1(3cμ2
1p2

1 + 6ck2 + 4α)

+ b1b2(3β2
1 p2

1 + β2
2 p2

2) – b2
0β

2
2 p2

2)μ2 = 0,

2cb1b2μ
5
1p4

1 + 1
2 (–cb2

0μ
2
2p2

2 + 2b1b2(3ck2 + 2α))p2
1μ

3
1

– 3
4μ2β1β2b2

0p2
2

1
8 (2cb2

0μ
2
2p2

2(4cμ2
2p2

2 – 9ck2 – 6α)

– 3b2
0β

2
2 p2

2 + 12b1b1β
2
1 p2

1)μ1 = 0.

(5)

Solving the set of algebraic equations for p, Ω , b1, b2, A yields the exact solution of Eq. (1)
as follows:

u = u0 +
2cp2[b2

1 + b1(eipη + e–ipη)(b2eΩy+γ + e–Ωy–γ )]
[b1(eipη + e–ipη) + (b2eΩy+γ + e–Ωy–γ )]2 , (6)

where parameters A, p, Ω , γ , b1, and b2 satisfy the dispersive relations

A = 0, 3Ω2 = –cp4 – (4α + 6u0)p2, b2
1 =

4Ω2b2

Ω2 – cp4 . (7)

It is obvious that u0 < – 1
6 (cp2 + 4α) is required so that the conditions Ω2 > 0, b2

1 > 0, and
0 < p2 < – 4α+6u0

c can be satisfied in Eq. (9). Notice that u0 can be taken as an arbitrary real
number because the speed of propagating wave α can be arbitrary (only corresponding to
the direction and speed propagating wave on the x-axis).

Taking η = i(x + cz –αt) into Eq. (6), the exact solution to the YTSF equation is expressed
by

u(x, y, z, t) =
2cp2(b2

1 + H1H2)
(H1 + H2)2 , (8)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 < Min{– 1
6 (4α + cp2), – 1

3 (2α + 2cp2)},
0 < p2 < – 4α+6u0

c ,

3Ω2 = –cp4 – (4α + 6u0)p2,

b2
1 == 4Ω2b2

Ω2–cp4 ,

H1 = b1(ep(x+cz–αt) + e–p(x+cz–αt)),

H2 = b2eΩy+γ + e–Ωy–γ .

(9)
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Figure 1 The cross-soliton solution (10) with
u0 = –0.5, c = –1, α = 1

4 , p = 0.6, t = –1, z = 0.1

Especially, taking γ = 0, b2 = 1 in expression Eq. (8) of u, the cross-soliton solution to
YTSF is obtained as follows:

u(x, y, z, t) =
cp2[b2

1 + 4b1 cosh (p(x + cz – αt)) cosh (Ωy)]
2[b1 cosh (p(x + cz – αt)) + cosh (Ωy)]2 . (10)

The solution represented by Eq. (10) is a cross soliton which contains one soliton and one
solitary wave with different propagation direction (see Fig. 1).

3 Periodic soliton of YTSF
Let Ω = iΩ1 in Eq. (7), where Ω1 is a real number, then replacing Ω1 with Ω , Eq. (7)
changes into

A = 0, 3Ω2 = cp4 + (4α + 6u0)p2, b2
1 =

4Ω2b2

Ω2 + cp4 . (11)

Here, it is obvious that u0 > Max{– 1
6 (4α +cp2), – 1

3 (2α +2cp2)} is required so that the con-
ditions Ω2 > 0 and b2

1 > 0 can be satisfied. Notice that u0 also can be taken as an arbitrary
real number by the same argument as in the above cross-soliton case. Taking Ω = iΩ1 in
Eq. (10), replacing Ω1 with Ω , we get the solution of Eq. (1) as follows:

u(x, y, z, t) =
cp2[b2

1 + 4b1 cosh (p(x + cz – αt)) cos (Ωy)]
2[b1 cosh (p(x + cz – αt)) + cos (Ωy)]2 , (12)

where

⎧
⎪⎪⎨

⎪⎪⎩

u0 > – 1
6 (4α + cp2),

3Ω2 = cp4 + (4α + 6u0)p2,

b2
1 = 4Ω2b2

Ω2+cp4 .

(13)

The solution represented by Eq. (12) is a periodic solitary solution which contains one
solitary wave and one periodic wave, its amplitude occurs periodically, oscillation varying
with variable y (see Fig. 2).

It is interesting that u0 plays an important role in the dynamics of cross soliton, cross
soliton degenerates into periodic solitary solution when u0 passes through – 1

6 (4α + cp2)
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Figure 2 The periodic solitary solution (12) with

u0 = –1
18 , c = –1, α = 1

2 , p =
√

1
3 , t = –1, z = 0

from the left side to the right side. This shows a kind of bifurcation phenomenon with
parameter u0 at the special value – 1

6 (4α + cp2).

4 Breather soliton of YTSF
Setting p = ip1 in Eq. (7), where p1 is a real number, then replacing p1 with p, Eq. (7)
changes into

A = 0, 3Ω2 = –cp4 + (4α + 6u0)p2, b2
1 =

4Ω2b2

Ω2 – cp4 . (14)

In this case, u0 > 1
6 (cp2 –4α) is required so that the conditions Ω > 0 and b2

1 > 0 are satisfied.
Taking p = ip1 in Eq. (10) and replacing p1 with p, we get the solution of Eq. (1) as follows:

u(x, y, z, t) =
cp2[b2

1 + 4b1 cos (p(x + cz – αt)) cosh (Ωy)]
2[b1 cos (p(x + cz – αt)) + cosh (Ωy)]2 , (15)

where

⎧
⎪⎪⎨

⎪⎪⎩

u0 > 1
6 (cp2 – 4α),

3Ω2 = –cp4 + (4α + 6u0)p2,

b2
1 = 4Ω2b2

Ω2–cp4 .

(16)

The solution represented by Eq. (15) is a breather soliton which is a soliton when the
trajectory defined by Eq. (15) propagating along the straight line x + cz – αt = constant,
and it also is a periodic wave as y = constant (see Fig. 3).

Combining the above results, we show two important dynamical features of cross
soliton, cross soliton degenerates into periodic solitary wave when u0 passes through
1
6 (cp2 – 4α) from the left side to the right side.

5 Doubly periodic solution
Setting Ω = iΩ1, p = ip1 in Eq. (7) and then replacing Ω1 with Ω , p1 with p, Eq. (7) changes
into

A = 0, 3Ω2 = cp4 – (4α + 6u0)p2, b2
1 =

4Ω2b2

Ω2 + cp4 . (17)
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Figure 3 The periodic solitary solution (15) with
u0 = 0, c = –1, α = 1

4 , p = 0.6, t = –1, z = 1

Here, u0 < 1
6 (cp2 – 4α) is required so that the conditions Ω > 0 and b2

1 > 0 can be satisfied.
Taking Ω = iΩ1, p = ip1 in Eq. (10) and replacing p1 with p, we get the solution of Eq. (1)
as follows:

u(x, y, z, t) =
cp2[b2

1 + 4b1 cos (p(x + cz – αt)) cos (Ωy)]
2[b1 cos (p(x + cz – αt)) + cos (Ωy)]2 , (18)

where

⎧
⎪⎪⎨

⎪⎪⎩

u0 < 1
6 (cp2 – 4α),

3Ω2 = cp4 + (4α + 6u0)p2,

b2
1 = 4Ω2b2

Ω2+cp4 .

(19)

The solution represented by Eq. (18) is a doubly periodic solution. This result shows
the breather soliton represented by Eq. (15) degenerated into doubly periodic as u0 passes
through 1

6 (cp2 – 4α) from the right side to the left side. This is also a bifurcation phe-
nomenon of breather soliton with parameter u0 at the special value 1

6 (cp2 – 4α). This is a
new dynamical feature of cross soliton.

By verifying that all the functions represented by Eq. (10), Eq. (12), Eq. (15), and Eq. (18)
are the solutions of the YTSF equation under the constraint Eq. (9), Eq. (13), Eq. (16), and
Eq. (19), respectively, it is important that the existence of cross-soliton solution Eq. (10),
periodic solitary solution Eq. (10), breather soliton Eq. (15), and doubly periodic solu-
tion Eq. (18) to YTSF equation is dependant on the different ranges of u0, respectively.
If we put one and the same velocity α, p, then the structure of solution is different in a
small neighborhood of u0 = 1

6 (cp2 – 4α) and u0 = – 1
6 (cp2 + 4α), respectively. Cross soliton

Eq. (10) changes to periodic solitary solution Eq. (12) when the parameter u0 varies from
the left side of u0 = – 1

6 (cp2 + 4α) to the right side, which shows soliton degeneracies of
cross soliton of the YTSF equation. And when u0 > Max{ 1

6 (cp2 – 4α), 1
6 (cp2 + 4α)}, there

occurs coexistence of two kinds of periodic and breather soliton Eq. (12) and Eq. (15).
Similarly, the structure of solution is also different in an arbitrary small neighborhood of
u0 = 1

6 (cp2 – 4α), doubly periodic solution Eq. (18) changes to breather soliton Eq. (15) as
u0 varies from the left side of u0 = 1

6 (cp2 – 4α) to the right side. The above results show
that the higher dimensional nonlinear evolution equation YTSF has rich dynamics of cross
soliton.
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6 Concluding
In this paper, we employ the parameter perturbation method for seeking dynamical feature
of a general nonlinear partial differential equation. According to the above discussion, we
draw the conclusion that for constant equilibrium solution (as a parameter) u0 of the YTSF
equation there exist two bifurcation values: one is 1

6 (cp2 – 4α) and another is – 1
6 (cp2 + 4α),

which is the value of soliton degeneracy of cross soliton and retroflexion of breather soliton
(light periodic breather changes into dark periodic breather), respectively. Around the
both sides at u0, the dynamics of solutions is all changed. The dynamics of cross soliton
of the YTSF equation is dependent on the value range of equilibrium solution u0 in the
equilibrium solution space of the YTSF equation. This is a new dynamical feature in a
nonlinear spatiotemporal dynamical system. In the future, we intend to study other kinds
of dynamics for the YTSF equation.
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