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Abstract
In this paper, we study the existence and uniqueness of solutions for two classes of
boundary value problems for impulsive Caputo type fractional Hahn difference
equations, by using the Banach contraction mapping principle and the nonlinear
alternative of Leray–Schauder. The obtained results are well illustrated by examples.
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1 Introduction and preliminaries
Our purpose of this paper is to establish the existence and uniqueness results for two im-
pulsive fractional Hanh difference boundary value problems. More precisely, we consider
the first boundary value problem of order νk , 0 < νk ≤ 1,

⎧
⎪⎪⎨

⎪⎪⎩

c
tk

Dνk
qk ,ωk x(t) = f (t, x(t)), t ∈ Jk , k = 0, 1, 2, . . . , m,

�x(tk) = ϕk(x(t–
k )), k = 1, 2, . . . , m,

ξ1x(0) + ξ2x(T) = ξ3,

(1)

and the second boundary value problem of order νk , 1 < νk ≤ 2,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c
tk

Dνk
qk ,ωk x(t) = f (t, x(t)), t ∈ Jk , k = 0, 1, 2, . . . , m,

�x(tk) = ϕk(x(t–
k )), k = 1, 2, . . . , m,

tk Dqk ,ωk x(t+
k ) – tk–1 Dqk–1,ωk–1 x(t–

k ) = ϕ∗
k (x(t–

k )), k = 1, 2, . . . , m,

x(0) = η1, tm Dqm ,ωm x(T) = η2,

(2)

where c
tk

Dνk
qk ,ωk is the fractional quantum Hahn difference operator of Caputo type, 0 <

qk < 1, ωk ≥ 0, k = 0, 1, 2, . . . , m, f : J ×R → R, J = [0, T], ϕ,ϕ∗
k : R → R, k = 1, 2, . . . , m, are

given functions, �x(tk) = x(tk) – x(t–
k ), tk Dqk ,ωk is the first order quantum Hahn difference

operator on interval Jk , k = 0, 1, 2, . . . , m, and given constants ξ1, ξ2, ξ3,η1,η2 ∈R.
The q-calculus appeared as a connection between mathematics and physics, especially,

in elementary particle physics, which have used quantum numbers to present the discrete
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values of energy levels in atoms. In 1910, Jackson [1] introduced the notion of q-derivative
as

Dqf (t) =

⎧
⎨

⎩

f (t)–f (qt)
t(1–q) , t �= 0,

f ′(0), t = 0,
(3)

provided that f ′(0) exists. He also was the first to develop q-calculus and q-difference equa-
tions in a systematic way. The book by Kac and Cheung [2] covers many of the fundamental
aspects of quantum calculus and also q-special functions. The q-calculus has many ap-
plications in mathematical areas such as orthogonal polynomials, basic hypergeometric
functions, combinatorics, the calculus of variations, quantum mechanics, and the theory
of relativity. Some recent results in quantum calculus can be found in [3–9] and the refer-
ences cited therein.

Hahn [10] introduced his difference operator Dq,ω as

Dq,ωf (t) =

⎧
⎨

⎩

f (qt+ω)–f (t)
t(q–1)+ω

, t �= ω0,

f ′(ω0), t = ω0,
(4)

provided that f is differentiable at ω0, where q ∈ (0, 1) and ω ≥ 0 are fixed. Here f is de-
fined on an interval I ⊆R containing ω0 := ω/(1 – q). The Hahn difference operator unifies
(in the limit) the two most well known and used quantum difference operators: the Jack-
son q-difference derivative Dq, where q ∈ (0, 1), defined by (3), for ω = 0, and the forward
difference Dω for q → 1, defined by

Dωf (t) =
f (t + ω) – f (t)

ω
, (5)

where ω > 0 is a fixed constant. The Hahn difference operator is a successful tool for
constructing families of orthogonal polynomials and investigating some approximation
problems (cf. [11–14]). For some recent results on the boundary value problems of Hahn
difference equations we refer to [15–19] and references therein.

Let us emphasize that the definition (3) does not remain valid for impulse points tk ,
k ∈ Z, such that tk ∈ (qt, t). For example, let [0, T], T > 4 be a dense interval and t = 2 be
an impulsive point, i.e., f (2+) �= f (2–). Then we have D1/2f (4+) �= D1/2f (4–), which implies
that D1/2f (4) does not exist. On the other hand, this situation does not arise for impul-
sive equations on q-time scales {0, . . . , q2t, qt, t}, as the domains consist of isolated points
covering the case of consecutive points of t and qt with impulsive points tk /∈ (qt, t). Due
to this reason, the subject of impulsive quantum difference equations on dense domains
could not be studied. In [20], the authors modified the classical quantum calculus on [a, b]
by defining

aDqf (t) =

⎧
⎨

⎩

f (t)–f (qt+(1–q)a)
(1–q)(t–a) , t �= a,

limt→a aDqf (t), t = a.
(6)

Observe that if tk , k = 1, 2, . . . , are impulse points with f (t+
k ) = f (tk), then, by setting

[a, b) = [tk , tk+1), there is no impulse point in [a, b). With the help of definition (6), a se-
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ries of impulsive quantum initial and boundary value problems were studied. We refer the
interested reader to the recent monograph [21] for details.

In [22], the authors defined a quantum shifting operator by

aΦq(m) = qm + (1 – q)a, (7)

m, a ∈ R with m ≥ a. Then the q-derivative of a function f on an interval [a, b] in (6) can
be rewritten as

aDqf (t) =

⎧
⎨

⎩

f (t)–f (aΦq(t))
t–aΦq(t) , t �= a,

limt→a aDqf (t), t = a.
(8)

Now, we consider the interval [a, b] ⊆R, the quantum numbers 0 < q < 1, ω ≥ 0, and

θ =
ω

1 – q
+ a, (9)

with θ ∈ [a, b]. The Hahn difference operator was generalized recently in [23] to aDq,ω

defined by

aDq,ωf (t) =

⎧
⎨

⎩

f (t)–f (qt+a(1–q)+ω)
(t–a)(1–q)–ω

, t �= θ ,

f ′(θ ), t = θ ,
(10)

provided that f is differentiable at θ .
Next, we introduce a new quantum Hahn shifting operator by

θΦq(m) = qm + (1 – q)θ . (11)

As a special case, if ω = a = 0, then (11) is reduced to classical quantum shifting in [1]. If
ω = 0, then (11) is reduced to the q-shifting in (7) studied in [20], and if a = 0, then (11) is
reduced to Hahn shifting as appeared in [10]. In addition, the iterated k-times of quantum
shifting is defined by

θΦ
k
q (m) = θΦ

k–1
q

(
θΦq(m)

)
= qkm +

(
1 – qk)θ ,

with θΦ
0
q (m) = m.

Proposition 1 The following relations hold:
(i) (1 – q)(t – a) – ω = (1 – q)(t – θ ) = t – θΦq(t);

(ii) θΦq(θ ) = θ ;
(iii) (1 – qk)a + ω[k]q = (1 – qk)θ , where [kq] = (1 – qk)/(1 – q), k = 0, 1, 2, . . . .

The next definition modifies the definition (10) (studied in [23]), taking into account
Proposition 1(i)–(iii).
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Definition 1 Let f be a function defined on [a, b]. The quantum Hahn difference operator
is defined by

aDq,ωf (t) =

⎧
⎨

⎩

f (t)–f (θ Φq(t))
t–θ Φq(t) , t �= θ ,

f ′(θ ), t = θ ,
(12)

provided that f is differentiable at θ .

Definition 2 Assume f : [a, b] → R is a given function and consider two points c, d ∈
[a, b]. The q, ω-quantum Hahn integral of f from c to d is defined by

∫ d

c
f (s)a dq,ωs :=

∫ d

θ

f (s)a dq,ωs –
∫ c

θ

f (s)a dq,ωs, (13)

where

∫ t

θ

f (s)a dq,ωs =
[
t – θΦq(t)

]
∞∑

i=0

qif
(
θΦ

i
q(t)

)
, (14)

for t ∈ [a, b], provided that the series converges at t = c and t = d.

Let us define the θ -power function as

(n – m)(0)
θ = 1, (n – m)(k)

θ =
k–1∏

i=0

(
n – θΦ

i
q(m)

)
, k ∈ N∪ {∞}. (15)

For example, (n – m)(4)
θ = (n – m)(n – θΦq(m))(n – θΦ

2
q (m))(n – θΦ

3
q (m)). More generally, if

γ ∈R, then

(n – m)(γ )
θ =

∞∏

i=0

(n – θΦ
i
q(m))

(n – θΦ
γ +i
q (m))

,

with θΦ
γ
q (m) = qγ m + (1 – qγ )θ , γ ∈R. For example,

(n – m)( 3
2 )

θ =
(n – m)(n – θΦq(m))(n – θΦ

2
q (m)) · · ·

(n – θΦ
3
2

q (m))(n – θΦ
5
2

q (m))(n – θΦ
7
2

q (m)) · · ·
.

Let us state the definitions of Riemann–Liouville type of fractional derivative and inte-
gral of quantum Hahn calculus and also Caputo type fractional derivative, which can be
found in [24].

Definition 3 The fractional quantum Hahn difference of Riemann–Liouville type of order
ν ≥ 0 on an interval [a, b] is defined by (aD0

q,ωf )(t) = f (t) and

(
aDν

q,ωf
)
(t) =

1
Γq(l – ν) aDl

q,ω

∫ t

a

(
t – θΦq(s)

)(l–ν–1)
θ

f (s)a dq,ωs, ν > 0,

where l is the smallest integer greater than or equal to ν .
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Definition 4 Let ν ≥ 0 and f be a function defined on [a, b]. The fractional quantum Hahn
integral of Riemann–Liouville type is given by (aI0

q,ωf )(t) = f (t) and

(
aIν

q,ωf
)
(t) =

1
Γq(ν)

∫ t

a

(
t – θΦq(s)

)(ν–1)
θ

f (s)a dq,ωs, ν > 0, t ∈ [a, b].

Definition 5 The fractional quantum Hahn difference of Caputo type ν ≥ 0 on an interval
[a, b] is defined by (c

aD0
q,ωf )(t) = f (t) and

(c
aDν

q,ωf
)
(t) =

1
Γq(l – ν)

∫ t

a

(
t – θΦq(s)

)(l–ν–1)
θ aDl

q,ωf (s)a dq,ωs, ν > 0,

where l is the smallest integer greater than or equal to ν .

If ω = 0, then θ = a and the above fractional quantum Hahn calculus is reduced to frac-
tional quantum calculus on the interval [a, b] as appeared in [22].

Theorem 1 ([24]) Let α,β ∈R
+, λ ∈ (–1,∞) and θ ∈ [a, b]. The following formulas hold:

(i) (aIα
q,ω(x – a)(λ)

θ )(t) = Γq(λ+1)
Γq(α+λ+1) (t – a)(α+λ)

θ ;

(ii) (aDα
q,ω(x – a)(λ)

θ )(t) = Γq(λ+1)
Γq(λ–α+1) (t – a)(λ–α)

θ .

Theorem 2 ([24]) Let f (t) be a function defined on an interval [a, b], β ,ν ∈ R
+, α ∈ (N –

1, N) and θ ∈ [a, b]. Then, we have:
(i) (aIβ

q,ωaIν
q,ωf )(t) = (aIν

q,ωaIβ
q,ωf )(t) = (aIβ+ν

q,ω f )(t);
(ii) (aDβ

q,ωaIβ
q,ωf )(t) = (c

aDβ
q,ωaIβ

q,ωf ) = f (t);
(iii) (aIα

q,ωaDα
q,ωf )(t) = f (t) + c1(t – a)(α–1)

θ + c2(t – a)(α–2)
θ + · · · + cN (t – a)(α–N)

θ ;
(iv) (aIα

q,ω
c
aDα

q,ωf )(t) = f (t) + d0 + d1(t – a)(1)
θ + d2(t – a)(2)

θ + · · · + dN–1(t – a)(N–1)
θ , for

some ci, dj ∈R, i = 1, 2, . . . , N , j = 0, 1, . . . , N – 1.

The rest of the paper is organized as follows: In Sect. 2.1 we prove the existence and
uniqueness results for the the impulsive Hahn difference boundary value problem (1),
while the corresponding results for the impulsive Hahn difference boundary value prob-
lem (2) are presented in Sect. 2.2. Examples illustrating the obtained results are presented
in Sect. 3.

2 Impulsive fractional Hahn difference equations
To establish our results, we define intervals Jk = [tk , tk+1), k = 0, 1, 2, . . . , m – 1, Jm = [tm, T]
and J = [0, T], with impulsive points 0 = t0 < t1 < · · · < tk < tk+1 < · · · < tm < tm+1 = T . In ad-
dition, we define the space PC(J ,R) = {x : J → R : x(t) is continuous everywhere except
for some tk at which x(t+

k ) and x(t–
k ) exist and x(t+

k ) = x(tk), k = 1, 2, . . . , m}. Observe that
PC(J ,R) is a Banach space equipped with the norm ‖x‖ = sup{|x(t)| : t ∈ J}. From Sect. 1,
we replace all parameters, a, q, ω and ν of fractional quantum Hahn calculus in Defini-
tions 3–5 by tk , qk , ωk and νk , k = 0, 1, 2, . . . , m, respectively. Also we assume that

θk =
ωk

1 – qk
+ tk ∈ Jk , k = 0, 1, 2, . . . , m.
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In the next subsections, the fractional quantum Hahn calculus is used to establish the
existence and uniqueness results for the impulsive fractional Hahn difference boundary
value problems (1) and (2).

2.1 Impulsive problem of fractional quantum Hahn difference equation of order
0 < νk ≤ 1

In this subsection, we investigate the impulsive Hahn difference boundary value problem
(1).

The following lemma deals with the linear variant of problem (1) and gives a represen-
tation of the solution.

Lemma 1 Let ξ1 + ξ2 �= 0 and h ∈ C(J ,R) be a given function. Then, the function x is a
solution of the impulsive Hahn difference boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

c
tk

Dνk
qk ,ωk x(t) = h(t), t ∈ Jk , k = 0, 1, 2, . . . , m,

�x(tk) = ϕk(x(t–
k )), k = 1, 2, . . . , m,

ξ1x(0) + ξ2x(T) = ξ3,

(16)

if and only if

x(t) =
ξ3

ξ1 + ξ2
–

ξ2

ξ1 + ξ2

[ m∑

i=0

(
ti I

νi
qi ,ωi

h
)(

t–
i+1

)
+

m∑

j=1

ϕj
(
x
(
t–
j
))

]

+
k–1∑

i=0

(
ti I

νi
qi ,ωi

h
)(

t–
i+1

)
+

k∑

j=1

ϕj
(
x
(
t–
j
))

+
(

tk Iνk
qk ,ωk

h
)
(t), (17)

for t ∈ Jk , k = 0, 1, 2, . . . , m, with
∑b

a(·) = 0, when b < a.

Proof Applying Theorem 2(iv), for t ∈ J0, we obtain

t0 Iν0
q0,ω0

(c
t0 Dν0

q0,ω0 x
)
(t) = x(t) = c0 +

(
t0 Iν0

q0,ω0 h
)
(t),

for some c0 ∈ R. In particular, when t = t–
1 , it follows that

x
(
t–
1
)

= c0 +
(

t0 Iν0
q0,ω0 h

)(
t–
1
)
.

For t ∈ J1, using the same process, we have

x(t) = x(t1) +
(

t1 Iν1
q1,ω1 h

)
(t).

The impulsive condition, x(t1) = x(t–
1 ) + ϕ1(x(t–

1 )), yields

x(t) = x
(
t–
1
)

+ ϕ1
(
x
(
t–
1
))

+
(

t1 Iν1
q1,ω1 h

)
(t)

= c0 +
(

t0 Iν0
q0,ω0 h

)(
t–
1
)

+ ϕ1
(
x
(
t–
1
))

+
(

t1 Iν1
q1,ω1 h

)
(t).
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Repeating the above argument, for t ∈ Jk , k = 0, 1, 2, . . . , m, we get

x(t) = c0 +
k–1∑

i=0

(
ti I

νi
qi ,ωi

h
)(

t–
i+1

)
+

k∑

j=1

ϕj
(
x
(
t–
j
))

+
(

tk Iνk
qk ,ωk

h
)
(t), (18)

with
∑b

a(·) = 0, when b < a. Since x(0) = c0 and

x(T) = c0 +
m∑

i=0

(
ti I

νi
qi ,ωi

h
)(

t–
i+1

)
+

m∑

j=1

ϕj
(
x
(
t–
j
))

,

with t–
m+1 = T , we can compute, with boundary condition in (16), that

c0 =
ξ3

ξ1 + ξ2
–

ξ2

ξ1 + ξ2

[ m∑

i=0

(
ti I

νi
qi ,ωi

h
)(

t–
i+1

)
+

m∑

j=1

ϕj
(
x
(
t–
j
))

]

.

Substituting the constant c0 in the integral equation (18), we obtain the desired result in
(17). The converse follows by direct computation. The proof is completed. �

In the following, for convenience we use the abbreviation

(
tk Iνk

qk ,ωk
f
(
s, x(s)

))
(t) =

1
Γqk (νk)

∫ t

tk

(
t – θk Φqk (s)

)(νk –1)
θk

f
(
s, x(s)

)
tk dqk ,ωk s

=
(

tk Iνk
qk ,ωk

fx
)
(t),

for k = 0, 1, 2, . . . , m, and put

Λ1 =
(

1 +
|ξ2|

|ξ1 + ξ2|
)(

L1

m∑

i=0

(ti+1 – ti)(νi)
θi

Γqi (νi + 1)
+

L2

2
m(m + 1)

)

,

Λ2 =
|ξ3|

|ξ1 + ξ2| +
(

1 +
|ξ2|

|ξ1 + ξ2|
)(

M
m∑

i=0

(ti+1 – ti)(νi)
θi

Γqi (νi + 1)
+

N
2

m(m + 1)

)

.

Now, we are in the position to establish the existence of a unique solution of problem (1)
by using the Banach contraction mapping principle.

Theorem 3 Let f : J ×R →R and ϕk : R →R, k = 1, 2, . . . , m, be given functions satisfying

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ L1|x – y|, L1 > 0,∀t ∈ J , x, y ∈R, (19)

and

∣
∣ϕk(x) – ϕk(y)

∣
∣ ≤ L2|x – y|, L2 > 0,∀x, y ∈R. (20)

If

Λ1 < 1, (21)

then problem (1) has a unique solution on J .
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Proof In view of Lemma 1, we transform the boundary value problem (1), into an operator
equation x(t) = Ax(t), where A : PC(J ,R) → PC(J ,R) is defined by

Ax(t) :=
ξ3

ξ1 + ξ2
–

ξ2

ξ1 + ξ2

[ m∑

i=0

(
ti I

νi
qi ,ωi

fx
)(

t–
i+1

)
+

m∑

j=1

ϕj
(
x
(
t–
j
))

]

+
k–1∑

i=0

(
ti I

νi
qi ,ωi

fx
)(

t–
i+1

)
+

k∑

j=1

ϕj
(
x
(
t–
j
))

+
(

tk Iνk
qk ,ωk

fx
)
(t), t ∈ J .

Also we define a set Br by Br = {x ∈ PC(J ,R) : ‖x‖ ≤ r} where r > Λ2/(1 – Λ1). It should be
shown that ABr ⊂ Br . Setting supt∈J |f0| = M, maxj|ϕj(0)| = N , where f0 = f (t, 0), and using
|fx| ≤ |fx – f0| + |f0| and |ϕj(x)| ≤ |ϕj(x) – ϕj(0)| + |ϕj(0)|, j = 1, 2, 3, . . . , m, for any x ∈ Br , we
have

∣
∣Ax(t)

∣
∣

≤ |ξ3|
|ξ1 + ξ2| +

|ξ2|
|ξ1 + ξ2|

[ m∑

i=0

(
ti I

νi
qi ,ωi

|fx|
)(

t–
i+1

)
+

m∑

j=1

∣
∣ϕj

(
x
(
t–
j
))∣

∣

]

+
k–1∑

i=0

(
ti I

νi
qi ,ωi

|fx|
)(

t–
i+1

)
+

k∑

j=1

∣
∣ϕj

(
x
(
t–
j
))∣

∣ +
(

tk Iνk
qk ,ωk

|fx|
)
(t)

≤ |ξ3|
|ξ1 + ξ2| +

|ξ2|
|ξ1 + ξ2|

[ m∑

i=0

(
ti I

νi
qi ,ωi

(|fx – f0| + |f0|
))(

t–
i+1

)

+
m∑

j=1

(∣
∣ϕj

(
x(tj)

)
– ϕj(0)

∣
∣ +

∣
∣ϕj(0)

∣
∣
)
]

+
k–1∑

i=0

(
ti I

νi
qi ,ωi

(|fx – f0| + |f0|
))(

t–
i+1

)

+
k∑

j=1

(∣
∣ϕj

(
x(tj)

)
– ϕj(0)

∣
∣ +

∣
∣ϕj(0)

∣
∣
)

+
(

tk Iνk
qk ,ωk

(|fx – f0| + |f0|
))

(t)

≤ |ξ3|
|ξ1 + ξ2| +

|ξ2|
|ξ1 + ξ2|

[

(L1r + M)
m∑

i=0

(
ti I

νi
qi ,ωi

(1)
)(

t–
i+1

)
+ (L2r + N)

m∑

j=1

(1)

]

+ (L1r + M)
m∑

i=0

(
ti I

νi
qi ,ωi

(1)
)(

t–
i+1

)
+ (L2r + N)

m∑

j=1

(1)

= Λ1r + Λ2 < r.

This show that ‖Ax‖ ≤ r, which leads to ABr ⊂ Br . Now, we will prove that the operator
A is a contraction by using (21). For any x, y ∈ Br , we have

∣
∣Ax(t) – Ay(t)

∣
∣

≤ |ξ2|
|ξ1 + ξ2|

[ m∑

i=0

(
ti I

νi
qi ,ωi

|fx – fy|
)(

t–
i+1

)
+

m∑

j=1

∣
∣ϕj

(
x
(
t–
j
))

– ϕj
(
y
(
t–
j
))∣

∣

]

+
k–1∑

i=0

(
ti I

νi
qi ,ωi

|fx – fy|
)(

t–
i+1

)
+

k∑

j=1

∣
∣ϕj

(
x
(
t–
j
))

– ϕj
(
y
(
t–
j
))∣

∣
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+
(

tk Iνk
qk ,ωk

|fx – fy|
)
(t)

≤ L1‖x – y‖
(

|ξ2|
|ξ1 + ξ2|

m∑

i=0

(
ti I

νi
qi ,ωi

(1)
)(

t–
i+1

)
+

m∑

i=0

(
ti I

νi
qi ,ωi

(1)
)(

t–
i+1

)
)

+ L2‖x – y‖
( |ξ2|

|ξ1 + ξ2| + 1
) m∑

j=1

(1)

= Λ1‖x – y‖,

which yields ‖Ax – Ay‖ ≤ Λ1‖x – y‖. From (21), we conclude that the operator A is a
contraction on Br . By the Banach contraction mapping principle, therefore, the impulsive
boundary value problem of fractional quantum Hahn difference equation (1) has a unique
solution x on J such that ‖x‖ ≤ r. The proof is complete. �

Corollary 1 Let constants ξ1 �= 0 and ξ2 = 0 in (1), then we have the impulsive initial value
problem

⎧
⎪⎪⎨

⎪⎪⎩

c
tk

Dνk
qk ,ωk x(t) = f (t, x(t)), t ∈ Jk , k = 0, 1, 2, . . . , m,

�x(tk) = ϕk(x(t–
k )), k = 1, 2, . . . , m,

x(0) = ξ3
ξ1

.

(22)

If the functions f and ϕi, i = 1, 2, . . . , m, satisfy (19) and (20), respectively, and if

L1

m∑

i=0

(ti+1 – ti)(νi)
θi

Γqi (νi + 1)
+

L2

2
m(m + 1) < 1,

then the impulsive initial value problem of fractional quantum Hahn difference equation
(22) has a unique solution on J .

2.2 Impulsive problem of fractional quantum Hahn difference equation of order
1 < νk ≤ 2

Consider now the impulsive fractional Hahn difference boundary value problem (2).

Lemma 2 Let g ∈ C(J ,R). Then, the function x is a solution of the impulsive Hahn differ-
ence boundary value problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c
tk

Dνk
qk ,ωk x(t) = g(t), t ∈ Jk , k = 0, 1, 2, . . . , m,

�x(tk) = ϕk(x(t–
k )), k = 1, 2, . . . , m,

tk Dqk ,ωk x(t+
k ) – tk–1 Dqk–1,ωk–1 x(t–

k ) = ϕ∗
k (x(t–

k )), k = 1, 2, . . . , m,

x(0) = η1, tm Dqm ,ωm x(T) = η2,

(23)
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if and only if

x(t) = η1 +

(

η2 –
m∑

j=0

(
tj I

νj–1
qj ,ωj g

)(
t–
j+1

)
–

m∑

i=1

ϕ∗
i
(
x
(
t–
i
))

) k∑

i=0

(
[ti+1] – ti

)

+
k–1∑

i=0

[(
ti I

νi
qi ,ωi

g
)(

t–
i+1

)
+ ϕi+1

(
x
(
t–
i+1

))]

+
k∑

i=1

{
(
[ti+1] – ti

)
i–1∑

j=0

[(
tj I

νj–1
qj ,ωj g

)(
t–
j+1

)
+ ϕ∗

j+1
(
x
(
t–
j+1

))]
}

+
(

tk Iνk
qk ,ωk

g
)
(t), (24)

for t ∈ Jk , k = 0, 1, 2, . . . , m, with
∑b

a(·) = 0, when b < a and

[ti+1] =

⎧
⎨

⎩

ti+1, ti+1 ≤ tk ,

t, ti+1 > tk .

Proof Taking the Riemann–Liouville fractional quantum Hahn integral of order ν0 to the
first equation in (23) and applying Theorem 2(iv), for t ∈ J0, we get

t0 Iν0
q0,ω0

(c
t0 Dν0

q0,ω0 x
)
(t) = x(t) = c0 + c1(t – t0)(1)

θ0
+

(
t0 Iν0

q0,ω0 g
)
(t). (25)

From the first condition, x(0) = η1, we have c0 = η1 and from (15) with k = 1, for t = t–
1 , we

obtain

x
(
t–
1
)

= η1 + c1(t1 – t0) +
(

t0 Iν0
q0,ω0 g

)(
t–
1
)
, (26)

with (a – b)(1)
θ = (a – b), a, b ∈R. In addition, we can formulate from (25) that

t0 Dq0,ω0 x(t) = c1 +
(

t0 Iν0–1
q0,ω0 g

)
(t),

and then t0 Dq0,ω0 x(t–
1 ) = c1 + (t0 Iν0–1

q0,ω0 g)(t–
1 ).

For t ∈ [t1, t2) = J1, we have

x(t) = x
(
t+
1
)

+ t1 Dq1,ω1 x
(
t+
1
)
(t – t1) +

(

t1
Iν1

q1,ω1 g
)
(t). (27)

Since

x
(
t+
1
)

= x
(
t–
1
)

+ ϕ1
(
x
(
t–
1
))

= η1 + c1(t1 – t0) +
(

t0 Iν0
q0,ω0 g

)(
t–
1
)

+ ϕ1
(
x
(
t–
1
))

,

and

t1 Dq1,ω1 x
(
t+
1
)

= t0 Dq0,ω0 x
(
t–
1
)

+ ϕ∗
1
(
x
(
t–
1
))

= c1 +
(

t0 Iν0–1
q0,ω0 g

)(
t–
1
)

+ ϕ∗
1
(
x
(
t–
1
))

,
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then (27) can be written as

x(t) = η1 + c1(t1 – t0) +
(

t0 Iν0
q0,ω0 g

)(
t–
1
)

+ ϕ1
(
x
(
t–
1
))

+ (t – t1)
[
c1 +

(
t0 Iν0–1

q0,ω0 g
)(

t–
1
)

+ ϕ∗
1
(
x
(
t–
1
))]

+
(

t1
Iν1

q1,ω1 g
)
(t).

Repeating the above process, for t ∈ Jk , we get

x(t) = η1 + c1

k∑

i=0

(
[ti+1] – ti

)
+

k–1∑

i=0

[(
ti I

νi
qi ,ωi

g
)(

t–
i+1

)
+ ϕi+1

(
x
(
t–
i+1

))]

+
k∑

i=1

{
(
[ti+1] – ti

)
i–1∑

j=0

[(
tj I

νj–1
qj ,ωj g

)(
t–
j+1

)
+ ϕ∗

j+1
(
x
(
t–
j+1

))]
}

+
(

tk Iνk
qk ,ωk

g
)
(t). (28)

To compute c1, we have

η2 = tm Dqm ,ωm x(T) = c1 +
m∑

j=0

(
tj I

νj–1
qj ,ωj g

)(
t–
j+1

)
+

m∑

i=1

ϕ∗
i
(
x
(
t–
i
))

,

which leads to

c1 = η2 –
m∑

j=0

(
tj I

νj–1
qj ,ωj g

)(
t–
j+1

)
–

m∑

i=1

ϕ∗
i
(
x
(
t–
i
))

.

Therefore, the result in (24) holds when substituting the constant c1 in (28). The converse
follows by direct computation. This competes the proof. �

To accomplish our goal, we define the operator G : PC(J ,R) → PC(J ,R) by

Gx(t) = η1 +

(

η2 –
m∑

j=0

(
tj I

νj–1
qj ,ωj fx

)(
t–
j+1

)
–

m∑

i=1

ϕ∗
i
(
x
(
t–
i
))

) k∑

i=0

(
[ti+1] – ti

)

+
k–1∑

i=0

[(
ti I

νi
qi ,ωi

fx
)(

t–
i+1

)
+ ϕi+1

(
x
(
t–
i+1

))]

+
k∑

i=1

{
(
[ti+1] – ti

)
i–1∑

j=0

[(
tj I

νj–1
qj ,ωj fx

)(
t–
j+1

)
+ ϕ∗

j+1
(
x
(
t–
j+1

))]
}

+
(

tk Iνk
qk ,ωk

fx
)
(t). (29)

The Banach fixed point theorem and Leray–Schauder’s nonlinear alternative will be used
to study the existence and uniqueness results for the impulsive Hahn difference boundary
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value problem (2). Now, we set

Λ3 = T
m∑

i=0

(ti+1 – ti)(νi–1)
θi

Γqi (νi)
+

m∑

i=0

(ti+1 – ti)(νi)
θi

Γqi (νi + 1)
+

m∑

i=1

(ti+1 – ti)
i–1∑

j=0

(tj+1 – tj)
(νj–1)
θj

Γqj (νj)
,

Λ4 = mT +
m∑

i=1

(ti+1 – ti)i, Λ5 = L1Λ3 + L2m + L3Λ4, Λ6 = |η1| + |η2|T .

Theorem 4 Let f and ϕk be given functions satisfying (19) and (20), respectively, for all
k = 1, 2, . . . , m. Assume the ϕ∗

k : R→ R such that

∣
∣ϕ∗

k (x) – ϕ∗
k (y)

∣
∣ ≤ L3|x – y|, L3 > 0,∀x, y ∈R. (30)

If Λ5 < 1, then the impulsive fractional quantum Hahn difference boundary value problem
(2) has a unique solution on J .

Proof The existence of a unique solution for the problem (2) will be proved by consider-
ing an operator equation x = Gx, where G is defined by (29). Consider the set BR = {x ∈
PC(J ,R) : ‖x‖ ≤ R}, where a positive constant R satisfies

R >
Λ6 + Λ3M + mN + Λ4K

1 – Λ5
,

and K = maxj |ϕ∗
j (0)| and constants M, N are defined in the proof of Theorem 3. We claim

that GBR ⊂ BR. Since

∣
∣Gx(t)

∣
∣

≤ |η1| +

(

|η2| +
m∑

j=0

(
tj I

νj–1
qj ,ωj |fx|

)(
t–
j+1

)
+

m∑

i=1

∣
∣ϕ∗

i
(
x
(
t–
i
))∣

∣

) m∑

i=0

(ti+1 – ti)

+
m–1∑

i=0

[(
ti I

νi
qi ,ωi

|fx|
)(

t–
i+1

)
+

∣
∣ϕi+1

(
x
(
t–
i+1

))∣
∣
]

+
m∑

i=1

{

(ti+1 – ti)
i–1∑

j=0

[(
tj I

νj–1
qj ,ωj |fx|

)(
t–
j+1

)
+

∣
∣ϕ∗

j+1
(
x
(
t–
j+1

))∣
∣
]
}

+
(

tm Iνm
qm ,ωm |fx|

)
(T),

and |fx| ≤ |fx – f0| + |f0| ≤ L1R + M, |ϕj(x)| ≤ |ϕj(x) – ϕj(0)| + |ϕj(0)| ≤ L2R + N , |ϕ∗
j (x)| ≤

|ϕ∗
j (x) – ϕ∗

j (0)| + |ϕ∗
j (0)| ≤ L3R + K , j = 1, 2, 3, . . . , m, for any x ∈ BR, we have

∣
∣Gx(t)

∣
∣ ≤ Λ6 + RΛ5Λ3M + mN + Λ4K < R,

which yields ‖Gx‖ ≤ R. To prove the contraction property of operator G, for any x, y ∈ BR,
we consider the inequalities

∣
∣Gx(t) – Gy(t)

∣
∣

≤ T
m∑

j=0

(
tj I

νj–1
qj ,ωj |fx – fy|

)(
t–
j+1

)
+ T

m∑

i=1

∣
∣ϕ∗

i
(
x
(
t–
i
))

– ϕ∗
i
(
y
(
t–
i
))∣

∣
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+
m–1∑

i=0

[(
ti I

νi
qi ,ωi

|fx – fy|
)(

t–
i+1

)
+

∣
∣ϕi+1

(
x
(
t–
i+1

))
– ϕi+1

(
y
(
t–
i+1

))∣
∣
]

+
m∑

i=1

{

(ti+1 – ti)
i–1∑

j=0

[(
tj I

νj–1
qj ,ωj |fx – fy|

)(
t–
j+1

)

+
∣
∣ϕ∗

j+1
(
x
(
t–
j+1

))
– ϕ∗

j+1
(
y
(
t–
j+1

))∣
∣
]
}

+
(

tm Iνm
qm ,ωm |fx – fy|

)
(T)

≤ L1‖x – y‖T
m∑

j=0

(
tj I

νj–1
qj ,ωj (1)

)(
t–
j+1

)
+ L3‖x – y‖T

m∑

i=1

(1)

+ L1‖x – y‖
m–1∑

i=0

(
ti I

νi
qi ,ωi

(1)
)(

t–
i+1

)
+ L2‖x – y‖

m–1∑

i=0

(1)

+ L1‖x – y‖
m∑

i=1

(ti+1 – ti)
i–1∑

j=0

(
tj I

νj–1
qj ,ωj (1)

)(
t–
j+1

)

+ L3‖x – y‖
m∑

i=1

(ti+1 – ti)
i–1∑

j=0

(1) + L1‖x – y‖(tm Iνm
qm ,ωm (1)

)
(T)

= L1Λ3‖x – y‖ + L2m‖x – y‖ + L3Λ4‖x – y‖
= Λ5‖x – y‖.

Then we get ‖Gx – Gy‖ ≤ Λ5‖x – y‖ which implies that G is a contraction operator as
Λ5 < 1. Therefore problem (2) has a unique solution x on J . �

Lemma 3 (Nonlinear alternative for single valued maps, [25]) Let E be a Banach space,
C a closed, convex subset of E, U an open subset of C and 0 ∈ U . Suppose that F : U → C
is a continuous, compact (that is, F(U) is a relatively compact subset of C) map. Then
either

(i) F has a fixed point in U , or
(ii) There is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF(u).

Theorem 5 Assume that the functions f : J × R → R, ϕk , ϕ∗
k : R → R, k = 1, 2, . . . , m, are

continuous. In addition, we suppose that:
(H1) There exist a continuous nondecreasing function ψ1 : [0,∞) → (0,∞) and a contin-

uous function p : J →R
+ such that

∣
∣f (t, x)

∣
∣ ≤ p(t)ψ1

(|x|) for each (t, x) ∈ J ×R.

(H2) There exist continuous nondecreasing functions ψ2,ψ3 : [0,∞) → (0,∞) such that

∣
∣ϕk(x)

∣
∣ ≤ ψ2

(|x|) and
∣
∣ϕ∗

k (x)
∣
∣ ≤ ψ3

(|x|),

for all x ∈R, k = 1, 2, . . . , m.
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(H3) There exists a constant Q > 0 such that

Q
Λ6 + p∗ψ1(Q)Λ3 + ψ2(Q)m + ψ3(Q)Λ4

> 1,

where p∗ = sup{p(t) : t ∈ J}.
Then the impulsive fractional quantum Hahn difference boundary value problem (2) has
at least one solution on J .

Proof Let us prove the theorem by applying Lemma 3. For a positive number ρ , we define
the set Bρ = {x ∈ PC(J ,R) : ‖x‖ ≤ ρ}. Clearly, Bρ is a closed, convex subset of PC(J ,R). Let
{xn} be a sequence converging to x. Then for t ∈ J , we obtain

∣
∣Gxn(t) – Gx(t)

∣
∣

≤
( m∑

j=0

(
tj I

νj–1
qj ,ωj |fxn – fx|

)(
t–
j+1

)
–

m∑

i=1

∣
∣ϕ∗

i
(
xn

(
t–
i
))

– ϕ∗
i
(
x
(
t–
i
))∣

∣

)

×
k∑

i=0

(
[ti+1] – ti

)
+

k–1∑

i=0

[(
ti I

νi
qi ,ωi

|fxn – fx|
)(

t–
i+1

)

+
∣
∣ϕi+1

(
xn

(
t–
i+1

))
– ϕi+1

(
x
(
t–
i+1

))∣
∣
]

+
k∑

i=1

{
(
[ti+1] – ti

)

×
i–1∑

j=0

[(
tj I

νj–1
qj ,ωj |fxn – fx|

)(
t–
j+1

)
+

∣
∣ϕ∗

j+1
(
xn

(
t–
j+1

))
– ϕ∗

j+1
(
x
(
t–
j+1

))∣
∣
]
}

+
(

tk Iνk
qk ,ωk

|fxn – fx|
)
(t) → 0, as n → ∞.

Hence the operator G is continuous which is one of assumptions in Lemma 3. In the next
step, we will prove the compactness of operator G.

For t ∈ J and x ∈ Bρ , we have

∣
∣Gx(t)

∣
∣

≤ |η1| +

(

|η2| +
m∑

j=0

(
tj I

νj–1
qj ,ωj |fx|

)(
t–
j+1

)
+

m∑

i=1

∣
∣ϕ∗

i
(
x
(
t–
i
))∣

∣

) k∑

i=0

(
[ti+1] – ti

)

+
k–1∑

i=0

[(
ti I

νi
qi ,ωi

|fx|
)(

t–
i+1

)
+

∣
∣ϕi+1

(
x
(
t–
i+1

))∣
∣
]

+
k∑

i=1

{
(
[ti+1] – ti

)
i–1∑

j=0

[(
tj I

νj–1
qj ,ωj |fx|

)(
t–
j+1

)
+

∣
∣ϕ∗

j+1
(
x
(
t–
j+1

))∣
∣
]
}

+
(

tk Iνk
qk ,ωk

|fx|
)
(t)

≤ |η1| +

(

|η2| + p∗ψ1(ρ)
m∑

j=0

(
tj I

νj–1
qj ,ωj (1)

)(
t–
j+1

)
+ ψ3(ρ)

m∑

i=1

(1)

) m∑

i=0

(ti+1 – ti)

+ p∗ψ1(ρ)
m–1∑

i=0

(
ti I

νi
qi ,ωi

(1)
)(

t–
i+1

)
+ ψ2(ρ)

m∑

i=1

(1)
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+
m∑

i=1

{

(ti+1 – ti)
i–1∑

j=0

[
p∗ψ1(ρ)

(
tj I

νj–1
qj ,ωj (1)

)(
t–
j+1

)
+ ψ3(ρ)

]
}

+ p∗ψ1(ρ)
(

tm Iνm
qm ,ωm (1)

)
(T)

≤ |η1| + |η2|T + p∗ψ1(ρ)

(

T
m∑

j=0

(tj+1 – tj)
(νj–1)
θj

Γqj (νj)
+

m∑

i=0

(ti+1 – ti)(νi)
θi

Γqi (νi + 1)

+
m∑

i=1

(ti+1 – ti)
i–1∑

j=0

(tj+1 – tj)
(νj–1)
θj

Γqj (νj)

)

+ ψ2(ρ)m

+ ψ3(ρ)

(

mT +
m∑

i=1

(ti+1 – ti)i

)

:= K .

Hence, we obtain ‖Gx‖ ≤ K , which means that the set GBρ is a uniformly bounded set.
Next we let τ1, τ2 ∈ Jk for some k ∈ {0, 1, 2, . . . , m} with τ1 < τ2, and let x ∈ Bρ . Then we see
that

∣
∣Gx(τ2) – Gx(τ1)

∣
∣ ≤

(

|η2| + p∗ψ1(ρ)
m∑

j=0

(
tj I

νj–1
qj ,ωj (1)

)(
t–
j+1

)
+ ψ3(ρ)m

)

|τ2 – τ1|

+ |τ2 – τ1|
k–1∑

j=0

[
p∗ψ1(ρ)

(
tj I

νj–1
qj ,ωj (1)

)(
t–
j+1

)
+ ψ3(ρ)

]

+ p∗ψ1(ρ)
[(

tk Iνk
qk ,ωk

(1)
)
(τ2) –

(
tk Iνk

qk ,ωk
(1)

)
(τ1)

]

=

(

|η2| + p∗ψ1(ρ)
m∑

j=0

(tj+1 – tj)
(νj–1)
θj

Γqj (νj)
+ ψ3(ρ)m

)

|τ2 – τ1|

+ |τ2 – τ1|
k–1∑

j=0

[

p∗ψ1(ρ)
(tj+1 – tj)

(νj–1)
θj

Γqj (νj)
+ ψ3(ρ)

]

+ p∗ψ1(ρ)
[( (τ2 – tk)(νk )

θk

Γqk (νk + 1)

)

–
( (τ1 – tk)(νk )

θk

Γqk (νk + 1)

)]

.

The right-hand side of the above inequality tends to zero as τ1 → τ2 (independently of x).
This shows that the set GBρ is an equicontinuous set. Therefore the set GBρ is relatively
compact. From the above and Arzelá–Ascoli theorem, the operator G is completely con-
tinuous or compact. Hence one more of assumptions of Lemma 3 holds.

The result will follow from Lemma 3 if we can prove the boundedness of the set of all
solutions to equations x = λGx for λ ∈ (0, 1). Let x be a solution of problem (2). Then, for
t ∈ J , we recall the computations in proving that G is bounded. For λ ∈ (0, 1), let x = λGx.
Then we have

∣
∣x(t)

∣
∣ ≤ Λ6 + p∗ψ1

(‖x‖)Λ3 + ψ2
(‖x‖)m + ψ3

(‖x‖)Λ4,
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which yields

‖x‖
Λ6 + p∗ψ1(‖x‖)Λ3 + ψ2(‖x‖)m + ψ3(‖x‖)Λ4

≤ 1.

By assumption (H3), there exists a positive constant Q such that ‖x‖ �= Q. Let us de-
fine U = {x ∈ Bρ : ‖x‖ < Q}. It is obvious that G : U → PC(J ,R) is continuous and com-
pletely continuous. Therefore, there is no x ∈ ∂U such that x = λGx for some λ ∈ (0, 1).
By Lemma 3, thus, we get the result that G has a fixed point x ∈ U which is a solution of
problem (2) on J . The proof is completed. �

3 Examples
In this section we give examples to illustrate the usefulness of our main results.

Example 1 Consider the following impulsive fractional quantum Hahn difference bound-
ary value problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c
tk

D
k+2
k+3
k+1
k+2 , 1

k2+5k+6
x(t) = 1

2 ( e–t

t+17 )( x2(t)+2|x(t)|
1+|x(t)| ) + 2

7 , t ∈ Jk , J = [0, 4],

�x(tk) = 1
k+18 | sin x(t–

k )|, tk = k, k = 1, 2, 3,
1
2 x(0) + 2

3 x(4) = 4
5 .

(31)

Here νk = (k + 2)/(k + 3) < 1, qk = (k + 1)/(k + 2), ωk = 1/(k2 + 5k + 6), k = 0, 1, 2, 3, m = 3,
T = 4, ξ1 = 1/2, ξ2 = 2/3, ξ3 = 4/5.

In addition, we observe that θk = (1/(k + 3)) + k ∈ Jk , k = 0, 1, 2, 3. By using a mathematical
program, we can find that

(

1 +
|ξ2|

|ξ1 + ξ2|
) m∑

i=0

(ti+1 – ti)(νi)
θi

Γqi (νi + 1)
≈ 8.357863592111553,

1
2

(

1 +
|ξ2|

|ξ1 + ξ2|
)

m(m + 1) ≈ 9.428571428571431.

Setting

f (t, x) =
1
2

(
e–t

t + 17

)(
x2 + 2|x|
1 + |x|

)

+
2
7

and ϕk(x) =
1

k + 18
| sin x|,

we compute that

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ (1/17)|x – y| and

∣
∣ϕk(x) – ϕk(y)

∣
∣ ≤ (1/19)|x – y|.

Then we get Λ1 ≈ 0.987879636333851 < 1, by using L1 = 1/17 and L2 = 1/19. Hence, by
Theorem 3, the impulsive fractional quantum Hahn difference boundary value problem
(31) has a unique solution on [0, 4].
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Example 2 Consider the impulsive fractional quantum Hahn difference boundary value
problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c
tk

D
2k+3
k+2

k+3
k+5 , 1

k+5
x(t) = 1

(t+10)2 ( x8(t)
|x7(t)|+1 + 1), t ∈ Jk , J = [0, 4],

�x(tk) = k2

10(k2+1) |x(t–
k )| + 2, k = 1, 2, 3, tk = k,

tk D k+3
k+5 , 1

k+5
x(t+

k ) – tk–1 D k+2
k+4 , 1

k+4
x(t–

k ) = sin2 k
100 |x(t–

k )| + 3, k = 1, 2, 3, tk = k,

x(0) = 4
7 , t3 D 3

4 , 1
8

x(4) = 5
9 .

(32)

Here νk = (2k + 3)/(k + 2), 1 < νk ≤ 2, qk = (k + 3)/(k + 5), ωk = 1/(k + 5), k = 0, 1, 2, 3,
m = 3, T = 4, η1 = 4/7, η2 = 5/9. We find that θk = (1/2) + k ∈ Jk , k = 0, 1, 2, 3. By using a
mathematical program, we obtain constants as

Λ3 ≈ 40.771217238380451, Λ4 = 18, Λ6 ≈ 2.793650793650793.

Setting

f (t, x) =
1

(t + 10)2

(
x8

|x7| + 1
+ 1

)

,

ϕk(x) =
k2

10(k2 + 1)
|x| + 2 and ϕ∗

k (x) =
sin2 k
100

|x| + 3,

and choosing p(t) = (1/(t +10)2), ψ1(u) = u+1, ψ2(u) = (1/10)u+2 and ψ3(u) = (1/100)u+3,
it follows that

∣
∣f (t, u)

∣
∣ ≤ p(t)ψ1

(|u|),
∣
∣ϕk(u)

∣
∣ ≤ ψ2

(|u|),
∣
∣ϕ∗

k (u)
∣
∣ ≤ ψ3

(|u|),

for all u ∈ R, k = 1, 2, 3, which imply that conditions (H1)–(H2) hold. For p∗ = (1/100), by
direct computation, there exists a constant Q > 562.8514177160808 satisfying the inequal-
ity in (H3). Applying Theorem 5, we deduce that the impulsive fractional quantum Hahn
difference boundary value problem (32) has at least one solution on [0, 4].
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