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Abstract
So far, mobility in fish population has not been given sufficient attention, although
movement and spatial heterogeneity can be an important dynamic feature that plays
a critical role in their exploitation. Having a qualitative framework to describe and
estimate movement and growth based on tagging data is necessary for efficient
control and management of the fishing industry. Here, we construct an
advection-diffusion-reaction model for the fish population structured to track the
population densities of both the tagged fish and the tag-free fish, in which the
impulsive tagging practice is incorporated, while continuous tagging is assumed to
be done on off springs of trackable tagged fish, or on those in the same swarm as the
trackable tagged fish. Using the traveling wave coordinate, we derive analytical
expression for the solutions to the model system. We derive the explicit expression for
the level of tagged fish which increases in a periodic impulsive fashion. Stability and
phase plane analyses are also carried out to determine different behavior permitted
by the model system.

Keywords: Advection-diffusion-reaction model; Fish mobility; Traveling wave
solution; Stability analysis; Impulsive tagging

1 Introduction
Migration that involves movements among different habitats of is a common characteris-
tics of marine and freshwater fish populations. They are large in spatial scale compared to
their movements within the home range of the aquatic species [1]. As stated in [1], migra-
tion is an important and integral element of the life history of many fish species in aquatic
systems. The manner in which fish migrates is often linked to the necessity of seeking re-
sources such as food, shelter, or mates [1]. According to Sibert et al. [2], a crucial aspect of
fisheries is that the constituents are highly heterogeneous nature in space and time. This
feature significantly effects their management, so that fish mobility and distribution have
to be precisely described using appropriate models that take into account both spatial and
temporal variations. Marine populations can be overexploited if management decisions
do not account for spatial structuring [3–5]. However, although spatial structuring is a
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common aspect of fish life history, it is often overlooked or omitted in modeling of fish
population dynamics due to insufficient data or lack of understanding [4, 6, 7].

It has recently become more common that our knowledge of long distance movements
of animals comes from tagging studies. With fish spatial distribution, it is beyond cur-
rent technology to track individuals very far, so that tagging data tell us where tagged fish
were released and where they were recovered. Knowledge of the movement patterns of
populations or individuals is sought by the fisheries managers and biologists in order to
assess the interaction between aquatic species in different spatial locations and to define
the functioning of stocks. According to Hilborn [8], tagging studies, though, are often the
only way to assess total stock size.

The two strategies used routinely to assess exploited fish stocks are statistical catch-at-
age (SCAA) and tag-recovery models [9]. In [10], Pine et al. gave a brief review of popula-
tion models that can be used to estimate population size, with the intention that fisheries
biologists may be assisted in designing tagging studies by considering the underlying as-
sumptions, available basic models and specialized software.

In 2001, the movement and tag attrition parameters from skipjack tuna tagging data off
the Maldives was modeled by an advection-diffusion-reaction model, utilizing two sets
of field data collected during two periods of the early 1990s [11]. When their analytical
results were compared with the previous analyses in regards to skipjack fisheries man-
agement in the Maldives and in the Indian Ocean, it was discovered that the movements
were very variable in space and time, and it was difficult to observe consistent patterns
between the two data sets. In 2002, Bertignac et al. [12] developed a spatial, multigear,
multispecies population dynamics model which simulated the tropical tunas in the Pa-
cific Ocean. It includes a fish movement model based on a diffusion-advection equation.
The simulation model was shown to be capable of predicting a distribution of skipjack
catch rates, of the different fleets involved in the fisheries that is consistent with observa-
tion. In 2005, Faugeras and Maury [13] proposed an advection-diffusion size-structured
fish population model to simulate the dynamics of skipjack tuna population in the Indian
Ocean. Their model is fully spatialized and oceanographic and biological data were uti-
lized to parameterize movements which naturally react to environmental variations. More
recently, Boonrangsiman et al. [14] proposed a stage-structure model of fisheries which
incorporated a time delay. The single prey population and a predator population were
differentiated with respect to their reproduction ability into an immature and a mature
stage. Steady state analyses were carried out. It was shown that the steady state may lose
its stability under certain conditions and a Hopf bifurcation may take place at a critical
time delay. The model was shown to permit a transition to chaotic behavior.

With respect to traveling wave solutions in models of fisheries, we discovered that, in
[15], a simple model was introduced. The direction in which organisms prefer to move
is guided by their sensing. They showed that the model has a one parameter family of
compact traveling waves or “swarms”. Also, the model possesses traveling front solutions
that describe the migration of population from a region in which the population density is
higher to that where the density is lower. Notably, their model simulates realistic features
of organism aggregations whose speed increases with the density which has been observed
in fish schools.

To our knowledge, none of the previous advection-diffusion-reaction models have been
structured into populations of tagged and untagged fisheries. Incorporation of these dis-
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tinctive characteristics could lead to greater accuracy and precision of stock size estimates
from tagging studies and thus improve understanding and management of fisheries. Here,
we therefore propose an advection-diffusion-reaction model to describe fish movement,
tracking population densities of tagged fish and untagged fish. This is extended to model
periodic tagging, leading us to an impulsive advection-diffusion-reaction model system.
We first derive analytical solutions for the model system during the time between consec-
utive tagging. By introducing traveling wave coordinate, we derive an equivalent system
of ordinary differential equations whose analytical solution can be found. This analytical
solution can then be modified to take into account periodic tagging. Stability analysis is
also carried out after which plots of traveling wave solutions are shown and discussed.

2 Model system
We let T(x, t) and N(x, t) be, respectively, numbers per unit area (densities) of tagged and
untagged fish populations at the time t and spatial position x. Incorporating fish move-
ment with a diffusion term, we write the following advection-diffusion-reaction equations
for the rates of change of T(x, t) and N(x, t) under impulsive tagging:

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= k�t,

∂T
∂t

=
∂

∂x

(

ρ
∂T
∂x

)

–
∂

∂x
(uT) – d0T + bT T , (1)

∂N
∂t

=
∂

∂x

(

ρ
∂N
∂x

)

–
∂

∂x
(uN) – d0N – bT T

+ bS(T + N)
(
εS – (T + N)

)
(2)

�T
(
0, t+)

= pN(0, t),
�N

(
0, t+)

= –pN(0, t)

}

t = k�t, k = 1, 2, 3, . . . , (3)

where ρ is the diffusion coefficient, assumed to be a positive constant. The first terms on
the right of (1) and (2) thus model the dispersive movement of fish as a diffusion process.
The second terms on the right of (1) and (2) are added to account for the “directed” move-
ment as an advection process. d0 is the motility rate constant for both populations, and
bs corresponds to the rate of birth of untagged fish from S(x, t) = T(x, t) + N(x, t), the sum
of tagged and untagged fish populations, modeled by a logistic growth function, εS being
the carrying capacity of the environment. Apart from the periodic tagging described by
Eq. (3), the untagged fish individuals are assumed to be continuously tagged at the rate
bT T which takes into account of the possibility that the tagged individuals can attract un-
tagged fish to move together in a directional fashion within the same swarm and hence
the untagged fish become caught and tagged at a higher rate. In addition, off springs of
tagged fish may be more readily tagged at the rate proportional to the amount of tagged
fish at each moment in time. Realistically, this tagging effect is a function which may also
depend on spatial distance and time. However, we are using the linear expression bT T as
the first order approximation of this function, assuming that the higher order terms in
its expansion are much smaller, and let the dimensions of distance and time be taken into
account by T which is expected to become smaller as we travel further along downstream.

To support the above assumption, we refer to [16], where Birnir and Maury observe that
the intrinsic dynamics of a school of fish and its migration is a perplexing and fascinating
phenomenon which presents us with many complications in our attempts at optimization
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and management. This is essentially due to the fact that individual fish has the tendency
to adjust their speed and movement direction to those of the school to which they belong.
The fish population organizes and maintains schools from a basic mechanism in predator
avoidance and survival tactics. The extraordinary speed at which individual fish reacts in
unison to predatory attacks appears to result from the quick transfer of information locally
among members of a school. These groups turn together collectively and produce “escape
waves” [16].

In (3), at the location x = 0, a fraction p of untagged fish is recruited and tagged, thereby
increasing the density of tagged fish by pN(t, 0) every time period of �t.

We first consider the time between tagging, t �= k�t, k = 1, 2, 3, . . . . The model of interest
in this case then consists of the following equations:

∂T
∂t

=
∂

∂x

(

ρ
∂T
∂x

)

–
∂

∂x
(uT) – d0T + bT T , (1)

∂N
∂t

=
∂

∂x

(

ρ
∂N
∂x

)

–
∂

∂x
(uN) – d0N – bT T + bS(T + N)

(
εS – (T + N)

)
. (2)

Adding (1) and (2), one obtains

∂S
∂t

=
∂

∂x

(

ρ
∂S
∂x

)

–
∂

∂x
(uS) – d0S + bSS(εS – S). (4)

2.1 Traveling wave coordinate
We now introduce the traveling wave coordinate

z = x – c(t – t0),

assuming that the wave of fish movement is traveling at a constant speed c, t0 being the
time of interest. Letting τ (z) = T(x, t), n(z) = N(x, t), s(z) = S(x, t), and (·)′ stands for the
derivative with respect to z, we have

∂S
∂x

= s′,
∂2S
∂x2 = s′′,

∂S
∂t

= –cs′,

and

∂T
∂x

= τ ′,
∂2T
∂x2 = τ ′′,

∂T
∂t

= –cτ ′.

Thus, Eq. (4) becomes

ρs′′ + (c – u)s′ + (bSεS – d0)s – bSs2 = 0 (5)

while (1) becomes

ρτ ′′ + (c – u)τ ′ + (d0 + bT )τ = 0. (6)
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3 Analytical solutions
During k�t < t < (k + 1)�t, k = 1, 2, 3, . . . , we seek a traveling wave solution in the form

s′ = Bsm – As, (7)

where m, A, and B are positive constants, which gives

s′′ =
(
mBsm–1 – A

)(
Bsm – As

)
= mB2s2m–1 + A2s – (AB + mAB)sm. (8)

Substituting (7)–(8) into (5), one obtains

ρ
(
A2s – (AB + mAB)sm + mB2s2m–1) + (c – u)

(
Bsm – As

)
+ (bSεS – d0)s – bSs2 = 0.

For a traveling wave solution to exist, we see that we must set m = 3/2. Then, equating
coefficients of like terms, we obtain

ρA2 – (c – u)A + (–d0 + bSεS) = 0 (9)

from the coefficients of s,

–5ρA + 2(c – u) = 0 (10)

from the coefficients of s3/2, and

3ρB2 – 2bs = 0 (11)

from the coefficients of s2. Solving (10), one obtains

A =
2(c – u)

5ρ
(12)

since ρ is a positive constant. Upon substituting into (9) into (12), one obtains

–
6(c – u)2

25ρ
+ (–d0 + bSεS) = 0 (13)

noting here that we need

bSεS > d0.

Now, to solve (6), we seek a solution of the form

τ = (Cz + τ0)e–Dz, τ0 = τ (z = 0) = T(0, t0), (14)

where C and D are positive constants, for which

τ ′ = –Dτ + Ce–Dz, (15)

τ ′′ = –Dτ ′ – CDe–Dz = –D
(
–Dτ + Ce–Dz) – CDe–Dz = D2τ – 2CDe–Dz. (16)
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Substituting (14)–(16) into (6) yields ρ(D2(Cz + τ0)e–Dz – 2CDe–Dz) + (c – u)(–D(Cz +
τ0)e–Dz + Ce–Dz) + (–d0 + bT )(Cz + τ0)e–Dz = 0. Equating coefficients of the terms e–Dz in
the above equation yields

ρD2τ0 – 2dCD + (c – u)(C – Dτ0) + (–d0 + bT )τ0 = 0. (17)

Equating coefficients of the terms ze–Dz yields

ρCD2 – (c – u)CD + (–d0 + bT )C = 0

or

ρD2τ0 – (c – u)Dτ0 + (–d0 + bT )τ0 = 0. (18)

Subtracting (18) from (17) gives

–2ρCD + (c – u)C = 0

or

D =
c – u
2ρ

(19)

while (18) then gives

–d0 + bT = ρD2. (20)

We note that, since D > 0, we must set

c > u (21)

and

bT > d0. (22)

Using (19) and (20) in (13), one obtains a simplified relation as follows:

bSεS = bT –
ρD2

25
. (23)

3.1 Traveling wave solution
To now derive the traveling wave solution for s, we re-write Eq. (7) as

∫ s′

Bs3/2 – As
dz =

∫

dz.

Letting μ = s1/2, the above integral may be written as

∫ 2μdμ

(Bμ3 – Aμ2)
=

∫ 2 dμ

μ(Bμ – A)
=

∫

dz.
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Upon using partial fraction decomposition, we can carry out the integral to obtain

ln

∣
∣
∣
∣
Bs1/2 – A

s1/2

∣
∣
∣
∣ =

A
2

(z – z0) (24)

or

|A – Bs1/2|
s1/2 = κeAz/2,

where

κ =
|A – Bs1/2

0 |
s1/2

0
,

with s0 = s(z = 0) = S(x = 0, t = t0). To find a wave front solution of (6) as a decreasing
function of z, we assume that A > Bs1/2

0 , and then the solution is

s =
A2e–Az

(κ + Be–Az/2)2 . (25)

Thus, from (14) and (25), we obtain

S(x, t) =
A2e–A(x–c(t–t0))

(κ + Be–A(x–c(t–t0))/2)2 , (26)

T(x, t) =
(
C

(
x – c(t – t0)

)
+ τ0

)
e–D(x–c(t–t0)), (27)

N(x, t) = S(x, t) – T(x, t), (28)

where the parameters are related according to (11), (12), (19), (20), and (23), subject to the
conditions (21) and (22) as well as bSεS > d0.

4 Stability analyses during no tagging
We now first consider each separate state variable, τ (z) then s(z).

4.1 Tagged population
During k�t < t < (k + 1)�t, k = 1, 2, 3, . . . , we introduce in (6) the new variables: X = τ (z),
and Y = τ ′(z), which lead us to the following system of first order nonlinear equations in
X and Y :

X ′ = Y , (29)

Y ′ =
d0 – bT

ρ
X –

c – u
ρ

Y . (30)

The only steady state of (29)–(30) is (X0, Y0) = (0, 0). We have the following result.

Theorem 1 For the system (29)–(30), we have the following.
1. If (21) and (22) hold, the steady state (X0, Y0) = (0, 0) of (29)–(30) is locally

asymptotically stable.
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2. If (21) or (22) is violated, such that

c < u (31)

or

d0 – bT > 0 (32)

then (X0, Y0) = (0, 0) is unstable.

Proof The Jacobian matrix of (29)–(30) at (X0, Y0) is

J(X0, Y0) =

(
0 1

d0–bT
ρ

– c–u
ρ

)

.

If (20) and (21) hold, we have

Trace J(X0, Y0) = –
c – u

ρ
< 0

and

Det J(X0, Y0) = –
d0 – bT

ρ
> 0.

Hence, (X0, Y0) is locally asymptotically stable.
On the other hand if we have (31) while (22) holds, Trace J(X0, Y0) > 0, and (X0, Y0) is a

saddle point or an unstable focus. If conditions (32) and (21) hold, then (X0, Y0) is a saddle
point, which is unstable. �

4.2 Total fish density
During k�t < t < (k + 1)�t, we introduce in (5) the new variables: U = s(z), and V = s′(z),
which leads us to the following system of first order nonlinear equations in U and V :

U ′ = V , (33)

V ′ =
d0 – bSεS

ρ
U +

bS

ρ
U2 –

c – u
ρ

V . (34)

If

bSεS – d0 > 0 (35)

there are two physically meaningful steady states, (U0, V0) = (0, 0) and (U1, V1) = ( bSεS–d0
bS

,
0). We can state and prove the following stability result:

Theorem 2 For the system (33)–(34), if (21), and (35) hold, then:
1. (U0, V0) is locally asymptotically stable.
2. (U1, V1) is an unstable saddle point.
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Proof The Jacobian matrix of (33)–(34) at (0, 0) is

J(0, 0) =

(
0 1

d0–bSεS
ρ

– c–u
ρ

)

.

So, we have

Trace J(U0, V0) = –
c – u

ρ
< 0

and

Det J(U0, V0) = –
d0 – bSεS

ρ
> 0

which means the eigenvalues have negative real parts and so (U0, V0) is asymptotically
stable. At (U1, V1), the Jacobian is

J(U1, V1) =

(
0 1

–d0+bSεS
ρ

– c–u
ρ

)

.

Then

Det J(U0, V0) = –
–d0 + bSεS

ρ
< 0.

Hence, we conclude that (U1, V1) is a saddle point, which completes the proof. �

Combining the analyses of both 2 dimensional systems without impulsive tagging, we
may conclude that, if (21), (22) and (35) hold, its washout solution (0, 0, 0, 0) is asymptoti-
cally stable as z → ∞, while the solution (0, 0, bSεS–d0

bS
, 0) is unstable.

We next consider the asymptotic behavior of the combined dynamic system.

5 Combined system under impulsive tagging
We now combine Eqs. (29)–(30) and (33)–(34), incorporating the impulsive tagging at
x = 0, tk = k�t, k = 1, 2, 3, . . . . Recall that N = S – T and z = x – c(t – t0). We thus arrive at
the following impulsive system at x = 0:

dX
dz

= Y ,

dY
dz

=
d0 – bT

ρ
X –

(c – u)
ρ

Y ,
dU
dz

= V ,

dV
dz

= d0–bSεS
ρ

U +
cbS

ρ
U2 – (c–u)

ρ
V

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x = 0, t �= tk , k = 1, 2, 3, . . . , (36)

�X
(
z+)

= cpU(z) – cpX(z),
�Y

(
z+)

= 0,
�U

(
z+)

= 0,
�V

(
z+)

= 0

x = 0, t = tk , k = 1, 2, 3, . . . . (37)
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Since the level of untagged fish n follows directly once we know the levels of tagged and
total populations with n(z) = s(z) – τ (z), it suffices for us to make sure that

n(z) = s(z) – τ (z) ≥ 0.

From the derivative of s(z) we immediately see that s(z) is strictly decreasing for all z ≥ 0.
On the other hand, τ (z) may initially increase until it reaches its maximum value at the
point where z = zM at which

τ ′ =
d
dz

[
(Cz + τ0)e–Dz] = –D(Cz + τ0)e–Dz + Ce–Dz = 0

giving

z = zM =
C – Dτ0

CD
,

which is positive if

τ0 < C/D (38)

and the maximum value of τ (z) is

τ (zM) =
C
D

e–1+Dτ0/C . (39)

Thus, we will be ensured that n(z) = s(z) – τ (z) > 0 for all z if we require τ (zM) < s(zM)
and τ ′(zM) < s′(zM). These can be both accomplished by C being sufficiently small, which
means the density of tagged fish should increase sufficiently slowly initially.

Considering (3), we see that the density of untagged fish is reduced by a fraction p of
its levels at k�t, k = 1, 2, 3, . . . , while the density of tagged fish is incremented at the same
amount at the same time. Thus, we can directly write the following solution for all t:

S(x, t) =
A2e–A(x–c(t–t0))

[κ + Be–A(x–c(t–t0))/2]2 , (40)

T(x, t) =
[
C

(
x – c(t – t0)

)
+ τ k

0
]
e–D(x–c(t–t0)), (k – 1)�t < t ≤ k�t, (41)

and

N(x, t) = S(x, t) – T(x, t), (42)

where

τ 1
0 = τ0 = τ ,

τ k
0 = τ k–1

0 + pN
(
0, (k – 1)�t

)
e–Dc((k–1)�t–t0), k = 2, 3, 4, . . .

(43)

for which the parameters are related according to (11), (12), (19), (20), and (23), subject to
the conditions (21) and (22).
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Based on the above solution, to ensure that the stock of tagged fish is not depleted at the
tagging station x = 0, so that T(x, t) > 0, we need

–cC(k�t – t0)) + τ k
0 > 0, (44)

where τ k
0 is given by (43). This is still conditional on our prior knowledge of the untagged

fish density. We then use the fact that N(x, t) = S(x, t) – T(x, t), where s(z) is an increasing
function and τ (z) is decreasing as t → ∞ (z becoming more and more negative) at a fixed
x, to find that

N(x, k�t) ≥ s0 – τ0, k = 1, 2, 3, . . . .

Thus, iteratively,

τ k
0 = τ k–1

0 + pN
(
0, (k – 1)�t

)
e–D(c((k–1)�t+t0)),

τ k
0 = τ k–2

0 + pN
(
0, (k – 2)�t

)
e–Dc((k–2)�t–t0) + pN

(
0, (k – 1)�t

)
e–Dc((k–1)�t–t0),

...

τ k
0 = τ 1

0 + p
k–1∑

i=1

N
(
0, (k – i)�t

)
e–Dc((k–i)�t–t0),

τ k
0 ≥ τ0 + p

k–1∑

i=1

(s0 – τ0)e–Dc(k–i)�t = τ0 +
p(s0 – τ0)e–Dc�t(1 – e–Dc(k–i)�t)

1 – e–Dc�t

≥ τ0 + p(s0 – τ0)e–Dc�t .

This leads us to the following lower bound p of the fraction of the untagged population
that we should tag so that the stock of tagged fish is sustainable:

p >
(

cC(k�t – t0)) – τ0

s0 – τ0

)

eDc�t ≡ p (45)

while the upper bound �t of the length of the time period we might go without tagging
is, by (44),

�t <
1
k

(

t0 +
τ k

0
cC

)

≡ �t. (46)

6 Discussion and conclusion
Figure 1 shows the plots of total fish density s, tagged fish density τ and untagged fish den-
sity n as functions of spatial dimension x for different time t between 0 and 6, as traveling
waves moving from left to right. Here, c = 0.1, A = 1, B = 1, C = 0.6, D = 1.25, u = 0.05,
τ0 = 0.3, s0 = 0.64, κ = 0.25, p = 0.2, ρ = 0.02, and t0 = 2.0. These are analytical solutions
of the system without impulsive tagging. We observe that the density of tagged fish rises
initially, then decreases the further we move from the reference location x = 0, while the
total number s decreases steadily with x.
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Figure 1 Traveling wave solution under no tagging. Plots of (a) total fish density s, (b) tagged fish density τ ,
and (c) untagged fish density n as functions of spatial dimension x for different time t between 0 and 6, as
traveling waves moving from left to right. Here, c = 0.1, A = 1, B = 1, C = 0.6, D = 1.25, u = 0.05, τ0 = 0.3,
s0 = 0.64, κ = 0.25, p = 0.2, ρ = 0.02, and t0 = 2.0

We also observe that, as time passes, the wave (or school) of tagged fish moves away
so that there will be less and less tagged fish at the starting position, until there would be
none left unless they are replenished. Impulsive tagging creates new stocks of tagged fish
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Figure 2 Solution with impulsive tagging. Time series of the density of tagged fish at the spatial position
x = 0, with impulsive tagging at the times t = k�t, �t = 3, k = 1, 2, 3, 4, . . . . Here, c = 0.1, A = 1, B = 1, C = 0.3,
D = 1.25, u = 0.05, τ0 = 0.3, s0 = 0.64, κ = 0.25, p = 0.2, ρ = 0.02, and t0 = 0

to replace the leaving swarms of fish which have been tagged earlier. This is modeled by
the impulsive system (1)–(3). We show in Fig. 2 the time series of the density of tagged fish
at the spatial position where x = 0, corresponding to the analytical solution of the model
system (1)–(3) with impulsive tagging, where the jumps in the level of tagged fish density
are observed as expected at the times t = k�t, �t = 3, k = 1, 2, 3, 4, . . . . Here, c = 0.1, A = 1,
B = 1, C = 0.3, D = 1.25, u = 0.05, τ0 = 0.3, s0 = 0.64, κ = 0.25, p = 0.2, ρ = 0.02, and t0 = 0.

We show a 3-dimensional plot of this impulsive case in Fig. 3 so that we are able to see
how the tagged fish density develops as we move in the spatial direction as well as when
time progresses. With these parametric values, the number of tagged fish will grow as time
passes as we keep replenishing it every �t = 3 units in time. Typically, t could be measured
in weeks, which means tagging is done every 3 weeks or so in this time series plot. If tagging
is spaced out more in time, we can expect the tagged fish stock to vanish quickly. On the
other hand, we have given conditions under which impulsive tagging ensures that fish
stocks do not get depleted as time passes.

We observe, from the traveling wave solution that we have derived and plotted in these
figures, that both tagged and non-tagged fish populations diminish to zero far down-
stream, which justifies our assumption made on using the linear term for the continuous
tagging effect in our model.

It is extremely difficult to keep track of and manage fisheries especially with the highly
mobile aquatic species. Utilizing Marine Protected Areas (MPAs) has been effective for
many relatively sluggish marine species, but it poses many limitations in testing and veri-
fication when dealing with highly mobile species due to their frequent movement outside
the protected area. In order to protect marine lives, restore biomass, and increase fishery
yields, a model such as ours can help to overcome these limitations by identifying designs
and predict potential outcomes.
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Figure 3 Three-dimensional view. 3D plot of tagged fish density with impulsive tagging. Here, t = k�t,
�t = 3, k = 1, 2, 3, 4, . . . , c = 0.1, A = 1, B = 1, C = 0.3, D = 1.25, u = 0.05, τ0 = 0.3, s0 = 0.64, κ = 0.25, p = 0.2,
ρ = 0.02 and t0 = 0

Tagging and marking of fish populations have become a common method used to ex-
amine movement patterns and estimate growth rates, as well as other parameters of in-
terest including their abundances. For the tagging study to be effective, careful planning is
needed to ensure that the tagging study’s objectives are met. Among the most important
considerations is the necessity to ensure that sufficient numbers of animals are marked and
recaptured to generate parameter estimates of sufficient precision to meet management
needs. Increases in the precision of estimates deriving from the analytical study of both
tagged population, continuous and/or impulsive, and untagged population may be pos-
sible by stochastic simulations without much difficulty. Employing appropriate analytical
methods, with the help of appropriate models providing valuable insight, would ensure
that the results are interpreted properly and accurately. Our model is, therefore, expected
to shed lights on how fish movement dynamics vary with the physical parameters, which
affects the design of effective alternatives to managing highly mobile stocks in the open
waters.
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