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Abstract
In this paper, the dynamics of a discrete market share attraction model are
investigated. It shows that the system can undergo flip bifurcation and chaos. The
stability and bifurcation of a market share attraction model are analyzed by using the
bifurcation theory and the center manifold theorem. The system displays complex
dynamical behaviors, including period-1, 2, 4, 6, 8, 16 orbits, invariant cycle, a cascade
of period-doubling, quasi-periodic orbits, and the chaotic sets. Numerical simulations
illustrate the analysis and results.
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1 Introduction
Over the years, dynamics analysis of economic systems has mainly focused on the stability
behavior of the system equilibrium point. According to the theory of nonlinear dynamical
systems, the phenomena of fluctuations over time are not stochastic influences arising
from external factors, but because of the nonlinear relationship between the variables of
the economic system. Market share attraction models are used for analyzing Interbrand
competitive structures. These models have received more and more attention [1–5].

Recently, many research papers suggested that the mathematical model of economic
system dynamics is more realistic and appropriate when it is modeled by discrete-time
equations. The dynamics of the discrete-time models can exhibit much richer dynamics
than those observed in continuous-time counterparts and can lead to chaotic behaviors
[6–20].

A market share attraction model is as follows:

⎧
⎨

⎩

xt+1 = xt + λ1xt(Bs1t – xt),

yt+1 = yt + λ2yt(Bs2t – yt),
(1.1)

where xt and yt denote the marketing efforts of the two brands respectively. B denotes
the total sales potential of the market. s1t = xβ1

t /(xβ1
t + kyβ2

t ), s2t = kyβ2
t /(xβ1

t + kyβ2
t ). The

parameters β1 and β2 denote the elasticities of the attraction of firm (or brand) i with
regard to the effort of firm i. The parameter k denotes the relative effectiveness ratio of
the effort made by the firms. The parameters λ1 and λ2 measure the rate of adjustment.
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From system (1.1), the mapping form is obtained:

⎧
⎨

⎩

x′ → x + λ1x(B xβ1
xβ1 +kyβ2 – x),

y′ → y + λ2y(B kyβ2

xβ1 +kyβ2 – y),
(1.2)

where λ1, λ2, β1, β2, k, and B are real and positive parameters. We consider only the values
of the exponents β1 and β2 at the interval (0, 1) since empirical studies show that realistic
values are in this range.

Our objectives are to study the dynamical behaviors of system (1.2). Sufficient condi-
tions for the existence of flip bifurcation are derived by using the bifurcation theory and
the center manifold theorem. Moreover, system (1.2) shows a rich variety of nonlinear
dynamics, including bifurcations and chaos.

The paper is organized as follows. In Sect. 2, the stability and existence of the fixed
points of system (1.2) are discussed. In Sect. 3, the existence of flip bifurcation is obtained
by using the center manifold theorem and bifurcation theory. Numerical simulations are
illustrated to confirm the theoretical results in Sect. 4. Some conclusions are presented in
Sect. 5.

2 The existence and stability of the fixed points
We study the existence of fixed points. Also, we investigate the stability properties of sys-
tem (1.2). The fixed points of map (1.2) are the solutions of the following equations:

⎧
⎨

⎩

λ1x(B xβ1
xβ1 +kyβ2 – x) = 0,

λ2y(B kyβ2

xβ1 +kyβ2 – y) = 0.
(2.1)

For all parameter values, equation (2.1) has three solutions O(0, 0), P1(B, 0), and P2(0, B).
As the map does not define O, it is not a fixed point. P1 and P2 are the fixed points of the
map.

There is an interior fixed point E(x, y) of map (1.2), which is the solution of the following
system:

⎧
⎨

⎩

B xβ1
xβ1 +kyβ2 – x = 0,

B kyβ2

xβ1 +kyβ2 – y = 0.
(2.2)

From equation (2.2), we have

G(x) = k1/(1–β2)x(1–β1)/(1–β2) + x – B = 0. (2.3)

G is a continuous function, G(B) > 0, G(0) < 0, and G′(x) > 0 for x > 0, so there is a unique
positive solution, x∗ ∈ (0, B), the fixed point is E(x∗, B – x∗).

A particularly simple solution is obtained in the case β1 = β2, x∗ = B/(1 + k1/(1–β2)).
We will study the local stability of the fixed points.
The Jacobian matrix of system (1.2) at (x, y) is given as follows:

J(x, y) =

[
1 + λ1a1 –λ1b1

–λ2a2 1 + λ2b2

]

, (2.4)
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where

a1 =
(

Bx2β1 + Bk(β1 + 1)xβ1 yβ2

(xβ1 + kyβ2 )2 – 2x
)

,

b1 =
Bkβ2yβ2–1xβ1+1

(xβ1 + kyβ2 )2 ,

a2 =
Bkβ1yβ2+1xβ1–1

(xβ1 + kyβ2 )2 ,

b2 =
(

Bk2y2β2 + Bk(β2 + 1)xβ1 yβ2

(xβ1 + kyβ2 )2 – 2y
)

.

So the characteristic equation of the Jacobian matrix J can be written as

s2 – (2 + λ1a1 + λ2b2)s +
(
1 + λ1a1 + λ2b2 + λ1λ2(a1b2 – a2b1)

)
= 0. (2.5)

In order to study the stability at the positive fixed point, we use the following lemmas,
which can be easily proved by the relations between roots and coefficients of the quadratic
equation.

Let F(s) = s2 + Ms + N be the characteristic equation of eigenvalues associated with the
Jacobian matrix evaluated at a fixed point (x∗, y∗). Let s1 and s2 be the two roots of F(s), M
and N be coefficients of the quadratic equation.

Lemma 2.1 ([21]) We have the following definitions for (x∗, y∗):
(1) (x∗, y∗) is called a sink if |s1| < 1 and |s2| < 1, so the sink is locally asymptotically

stable;
(2) (x∗, y∗) is called a source if |s1| > 1 and |s2| > 1, so the source is locally unstable;
(3) (x∗, y∗) is called a saddle if |s1| > 1 and |s2| < 1 (or |s1| < 1 and |s2| > 1);
(4) (x∗, y∗) is non-hyperbolic if either |s1| = 1 or |s2| = 1.

Lemma 2.2 ([21]) Let F(s) = s2 + Ms + N . Suppose that F(1) > 0, s1 and s2 are two roots of
F(s) = 0. Then

(1) |s1| < 1 and |s2| < 1 if and only if F(–1) < 0, N < 1;
(2) |s1| < 1 and |s2| > 1 (or |s1| > 1 and |s2| < 1) if and only if F(–1) < 0;
(3) |s1| > 1 and |s2| > 1 if and only if F(1) > 0, N > 1;
(4) s1 = –1 and |s2| �= 1 if and only if F(–1) = 0 and M �= 0, 2;
(5) s1 and s2 are complex and |s1| = |s2| = 1 if and only if M2 – 4N < 0 and N = 1.

Now we state the following three propositions.

Proposition 1 The eigenvalues of J(B, 0) are s1 = 1 – λ1B and s2 = 1, then (B, 0) is non-
hyperbolic.

Proposition 2 The eigenvalues of J(0, B) are s1 = 1 and s2 = 1 – λ1B, then (0, B) is non-
hyperbolic.

For the fixed point O(0, 0), we can get a solution in the case of identical firms.
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Here we consider the symmetric case of identical firms obtained for

λ1 = λ2 = λ > 0, β1 = β2 = β > 0, k = 1.

Note that this steady state allocation belongs to the diagonal � = {(x, y)|x = y}.
For the symmetric map, the Jacobian matrix, computed at a point of the diagonal �, is

J(x, x) =

[
1 – 2λx + λB(β+2)

4 – λBβ

4
– λBβ

4 1 – 2λx + λB(β+2)
4

]

. (2.6)

The eigenvalues are

s1 = 1 +
1
2
λB – 2λx, s2 = 1 +

1
2
λB(1 + β) – 2λx.

The fixed point O(0, 0) has the following topological properties:

s1 = 1 +
1
2
λB, s2 = 1 +

1
2
λB(1 + β).

Proposition 3 The eigenvalues of J(0, 0) are s1 = 1 + 1
2λB > 1 and s2 = 1 + 1

2λB(1 + β) > 1,
then (0, 0) is a source; the source is locally unstable.

For the fixed point E(x∗, B – x∗), x∗ ∈ (0, B), we can get a special solution in the case of
identical firms E( B

2 , B
2 ).

Here we consider the symmetric case of identical firms obtained for

λ1 = λ2 = λ, β1 = β2 = β .

J(x, y) evaluated at the interior fixed point

J(x, y) =

[
1 + λa1 –λb1

–λa2 1 + λb2

]

, (2.7)

where

a1 =
(

Bx2β + Bk(β + 1)xβyβ

(xβ + kyβ )2 – 2x
)

, b1 =
Bkβyβ–1xβ+1

(xβ + kyβ )2 ,

a2 =
Bkβyβ+1xβ–1

(xβ + kyβ )2 , b2 =
(

Bk2y2β + Bk(β + 1)xβyβ

(xβ + kyβ )2 – 2y
)

.

The characteristic equation of (2.7) evaluated at the positive fixed point E(x∗, y∗) can be
written as

s2 – (2 + Gλ)s +
(
1 + Gλ + Hλ2) = 0, (2.8)

where G = a1 + b2, H = a1b2 – a2b1.
Let F(s) = s2 – (2 + Gλ)s + (1 + Gλ + Hλ2).
Then F(1) = Hλ2, F(–1) = Hλ2 + 2Gλ + 4.
Using Lemma 2.1, we obtain the local dynamics of the fixed point E(x∗, y∗).
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Proposition 4 Let E(x∗, y∗) be the positive fixed point of Eq. (1.2);
1. E is a sink if one of the following conditions holds:

(a) –2
√

H ≤ G < 0 and 0 < λ < – G
H .

(b) G < –2
√

H and 0 < λ < –G–
√

G2–4H
H .

So E locally asymptotically stable.
2. E is a source if one of the following conditions holds:

(a) –2
√

H ≤ G < 0 and λ > – G
H .

(b) G < –2
√

H and λ > –G+
√

G2–4H
H .

(c) G ≥ 0.
3. E is a saddle if the following condition holds:

G < –2
√

H and
–G –

√
G2 – 4H

H
< λ <

–G +
√

G2 – 4H
H

.

4. E is non-hyperbolic if one of the following conditions holds:
(a) G < –2

√
H and λ = –G±√

G2–4H
H and λ �= – 2

G , – 4
G .

(b) –2
√

H < G < 0 and λ = – G
H .

3 Bifurcation analysis
In this section, we discuss the flip bifurcation in system (1.2) at the positive fixed point
E(x∗, y∗). We choose parameter λ as a bifurcation parameter to study the flip bifurcation
of E(x∗, y∗) by using the center manifold theorem and the bifurcation theory [22–25].

Let FB1 = {(B, k,β ,λ) : λ = –G+
√

G2–4H
H , G < –2

√
H , B, k,β ,λ > 0}, or FB2 = {(B, k,β ,λ) : λ =

–G–
√

G2–4H
H , G < –2

√
H , B, k,β ,λ > 0}.

Let HB = {(B, k,β ,λ) : λ = – G
H , –2

√
H < G < 0, B, k,β ,λ > 0}.

The fixed point (x∗, y∗) can undergo a flip bifurcation when parameters vary in a small
neighborhood of FB1 or FB2, and the Neimark–Sacker bifurcation of E(x∗, y∗) if parameters
vary in a small neighborhood of HB.

3.1 Flip bifurcation analysis
We will discuss the flip bifurcation of (1.2) at E(x∗, y∗) when parameters vary in the small
neighborhood of FB1. Similar arguments can be applied to the other case FB2. Taking pa-
rameters (B, k,β ,λ1) arbitrarily from FB1, we consider system (1.2) with (B, k,β ,λ1), which
is described by

⎧
⎨

⎩

x′ → x + λ1x(B xβ

xβ +kyβ – x),

y′ → y + λ1y(B kyβ

xβ +kyβ – y).
(3.1)

Map (3.1) has a unique positive fixed point E(x∗, y∗), whose eigenvalues are s1 = –1, s2 =
3 + Gλ1 with |s2| �= 1 by Proposition 4, where x∗ = B/(1 + k1/(1–β)), y∗ = B – [B/(1 + k1/(1–β))].

Choosing λ∗ as a bifurcation parameter, we consider a perturbation of (3.1) as follows:

⎧
⎨

⎩

x′ → x + (λ1 + λ∗)x(B xβ

xβ +kyβ – x),

y′ → y + (λ1 + λ∗)y(B kyβ

xβ +kyβ – y),
(3.2)

where |λ∗| 
 1, which is a small perturbation parameter.
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Let u = x – x∗ and v = y – y∗. Then we transform the fixed point E(x∗, y∗) of map (3.2)
into the origin. We have

(
u
v

)

→

⎛

⎜
⎜
⎜
⎝

a11u + a12v + a13u2 + a14uv + a15v2 + e1u3 + e2u2v + e3v2u + e4v3

+ b1uλ∗ + b2vλ∗ + b3u2λ∗ + b4uvλ∗ + b5v2λ∗ + O((|u| + |v| + |λ∗|)4)
a21u + a22v + a23u2 + a24uv + a25v2 + d1u3 + d2u2v + d3v2u + d4v3

+ c1uλ∗ + c2vλ∗ + c3u2λ∗ + c4uvλ∗ + c5v2λ∗ + O((|u| + |v| + |λ∗|)4)

⎞

⎟
⎟
⎟
⎠

, (3.3)

where

a11 = 1 + λ1

(
Bx∗2β + Bk(β + 1)x∗βy∗β

(x∗β + ky∗β )2 – 2x∗
)

, a12 = –
λ1Bkβy∗β–1x∗β+1

(x∗β + ky∗β )2 ,

a13 =
λ1Bkβx∗β–1y∗β [(1 – β)x∗β + k(1 + β)y∗β ]

(x∗β + ky∗β )3 – 2,

a14 = λ1kBβx∗βy∗β–1 (β – 1)x∗β – k(β + 1)y∗β

(x∗β + ky∗β )3 ,

a15 = λ1kBβy∗β–2x∗β+1 (1 – β)x∗β + k(β + 1)y∗β

(x∗β + ky∗β )3 ,

b1 =
(

Bx∗2β + Bk(β + 1)x∗βy∗β

(x∗β + ky∗β )2 – 2x∗
)

,

b2 = –
Bkβy∗β–1x∗β+1

(x∗β + ky∗β )2 ,

b3 =
Bkβx∗β–1y∗β [(1 – β)x∗β + k(1 + β)y∗β ]

(x∗β + ky∗β )3 – 2,

b4 = kBβx∗βy∗β–1 (β – 1)x∗β – k(β + 1)y∗β

(x∗β + ky∗β )3 ,

b5 = kBβy∗β–2x∗β+1 (1 – β)x∗β + (kβ + 1)y∗β

(x∗β + ky∗β )3 ,

a21 = –
λ1Bkβy∗β+1x∗β–1

(x∗β + ky∗β )2 ,

a22 = 1 + λ1

(
Bk2y∗2β + Bk(β + 1)x∗βy∗β

(x∗β + ky∗β )2 – 2y∗
)

,

a23 = λ1kBβx∗β–2y∗β+1 (1 – β)ky∗β + (β + 1)x∗β

(x∗β + ky∗β )3 ,

a24 = λ1kBβx∗β–2y∗β+1 (β – 1)ky∗β – (β + 1)x∗β

(x∗β + ky∗β )3 ,

a25 = λ1kBβx∗βy∗β–1 (1 – β)ky∗β + (β + 1)x∗β

(x∗β + ky∗β )3 – 2,

c1 = –
Bkβy∗β+1x∗β–1

(x∗β + ky∗β )2 ,
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c2 =
(

Bk2y∗2β + Bk(β + 1)x∗βy∗β

(x∗β + ky∗β )2 – 2y∗
)

,

c3 = kBβx∗β–2y∗β+1 (1 – β)ky∗β + (β + 1)x∗β

(x∗β + ky∗β )3 ,

c4 = kBβx∗β–2y∗β+1 (β – 1)ky∗β – (β + 1)x∗β

(x∗β + ky∗β )3 ,

c5 = kBβx∗βy∗β–1 (1 – β)ky∗β + (β + 1)x∗β

(x∗β + ky∗β)3 – 2,

d1 =
λ1Bkβy∗β+1x∗β–3[(–3β – 2 – β2)x∗2β + 4k(β2 – 1)x∗βy∗β + k2(3β – β2 – 2)y∗2β ]

(x∗β + ky∗β )4 ,

d2 =
λ1Bkβx∗β–2y∗β [k2(β – 1)2y∗2β + (β + 1)2x∗2β + 2k(1 – 2β2)x∗βy∗β ]

(x∗β + ky∗β )4 ,

d3 =
λ1Bkβ2x∗β–1y∗β–1[–(1 + β)x∗2β + k2(1 – β)y∗2β ) + 4kβx∗βy∗β ]

(x∗β + ky∗β )4 ,

d4 =
λ1Bkβy∗β–2x∗β [(β2 – 1)(k2y∗2β + x∗2β) – 2k(1 + 2β2)x∗βy∗β ]

(x∗β + ky∗β )4 .

e1 =
λ1Bkβx∗β–2y∗β [(β2 – 1)(x∗2β + k2y∗2β ) – 2k(1 + 2β2)x∗βy∗β ]

(x∗β + ky∗β )4 ,

e2 =
λ1Bkβ2x∗β–1y∗β–1[(1 – β)x∗2β – k2(1 + β)y∗2β ) + 4kβx∗βy∗β ]

(x∗β + ky∗β )4 ,

e3 =
λ1Bkβx∗βy∗β–2[2(2β – 1 – β2)x∗2β – k(1 + β2)x∗βy∗β + k2(β + 1)2y∗2β ]

(x∗β + ky∗β )4 ,

e4 =
(
λ1Bkβx∗β+1y∗β–3[(2β – 3 – β2)x∗2β + 2k

(
2β2 – β – 3

)
x∗βy∗β

– k2(β2 + 4β + 3
)
y∗2β

])/((
x∗β + ky∗β

)4).

Constructing an invertible matrix

T =

(
a12 a12

–1 – a11 s2 – a11

)

and using the translation

(
u
v

)

= T

(
x̃
ỹ

)

,

then system (3.3) becomes

(
x̃
ỹ

)

→
(

–1
s2

)(
x̃
ỹ

)

+

(
f (u, v,λ∗)
g(u, v,λ∗)

)

, (3.4)

where

f
(
u, v,λ∗)

=
a13(s2 – a11) – a12a23

a12(s2 + 1)
u2 +

a14(s2 – a11) – a12a24

a12(s2 + 1)
uv
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+
a15(s2 – a11) – a12a25

a12(s2 + 1)
v2 +

b1(s2 – a11) – a12c1

a12(s2 + 1)
uλ∗

+
b2(s2 – a11) – a12c2

a12(s2 + 1)
vλ∗ +

b3(s2 – a11) – a12c3

a12(s2 + 1)
u2λ∗

+
b4(s2 – a11) – a12c4

a12(s2 + 1)
uvλ∗ +

b5(s2 – a11) – a12c5

a12(s2 + 1)
v2λ∗

+
e1(s2 – a11) – a12d1

a12(s2 + 1)
u3 +

e2(s2 – a11) – a12d2

a12(s2 + 1)
u2v

+
e3(s2 – a11) – a12d3

a12(s2 + 1)
v2u +

e4(s2 – a11) – a12d4

a12(s2 + 1)
v3

+ O
((|u| + |v| +

∣
∣λ∗∣∣)4),

g
(
u, v,λ∗)

=
a13(1 + a11) + a12a23

a12(s2 + 1)
u2 +

a14(1 + a11) + a12a24

a12(s2 + 1)
uv

+
a15(1 + a11) + a12a25

a12(s2 + 1)
v2 +

b1(1 + a11) + a12c1

a12(s2 + 1)
uλ∗

+
b2(1 + a11) + a12c2

a12(s2 + 1)
vλ∗ +

b3(1 + a11) + a12c3

a12(s2 + 1)
u2λ∗

+
b4(1 + a11) + a12c4

a12(s2 + 1)
uvλ∗ +

b5(1 + a11) + a12c5

a12(s2 + 1)
v2λ∗

+
e1(1 + a11) + a12d1

a12(s2 + 1)
u3 +

e2(1 + a11) + a12d2

a12(s2 + 1)
u2v

+
e3(1 + a11) + a12d3

a12(s2 + 1)
v2u +

e4(1 + a11) + a12d4

a12(s2 + 1)
v3

+ O
((|u| + |v| +

∣
∣λ∗∣∣)4),

and

u = a12(x̃ + ỹ), v = –(1 + a11)x̃ + (s2 – a11)ỹ,

uv = a12[–(1 + a11)x̃2 + (s2 – 2a11 – 1)x̃ỹ + a12(s2 – a11)ỹ2,

u2 = a2
12(x̃ + ỹ)2, v2 =

[
–(1 + a11)x̃ + (s2 – a11)ỹ

]2,

uv2 = a12(x̃ + ỹ)
[
–(1 + a11)x̃ + (s2 – a11)ỹ

]2,

u3 = a3
12(x̃ + ỹ)3, u2v = a2

12(x̃ + ỹ)2[–(1 + a11)x̃ + (s2 – a11)ỹ
]
,

v3 =
[
–(1 + a11)x̃ + (s2 – a11)ỹ

]3.

There exists a center manifold Wc(0, 0, 0) of Eq. (3.4) at the fixed point (0, 0) in a small
neighborhood of λ∗. From the center manifold theorem, we know that there exists a center
manifold

Wc(0, 0, 0)

=
{(

x̃, ỹ,λ∗) ∈ R3, ỹ = h∗(x̃,λ∗) = a1x̃2 + a2x̃λ∗ + a3λ
∗2 + O

((|x̃| +
∣
∣λ∗∣∣)3)} (3.5)
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for x̃ and λ∗ sufficiently small. Then the center manifold must satisfy

N
(
h∗(x̃,λ∗))

= h∗(–x̃ + f
(
x̃, h∗(x̃,λ∗),λ∗),λ∗) – s2h∗(x̃,λ∗) – g

(
x̃, h∗(x̃,λ∗),λ∗) = 0. (3.6)

Substituting (3.4) and (3.5) into (3.6) and comparing coefficients of (3.6), we obtain where
O((|x̃| + |λ∗|)3) is a function in (x̃,λ∗) at least of the third order, and

a1 = –
(1 + a11)[a14(1 + a11) + a12a24]

1 – s2
2

+
a12[(1 + a11)a13 + a12a23]

1 – s2
2

+
[a15(1 + a11) + a12a25](1 + a11)2

a12(1 – s2
2)

,

a2 =
(1 + a11)[b2(1 + a11) + a12c2]

a12(1 + s2)2 –
b1(1 + a11) + a12c1

(1 + s2)2 , a3 = 0.

Therefore, model (1.2) restricted to the center manifold is given by

F : x̃ → –x̃ + h1x̃2 + h2x̃λ∗ + h3x̃2λ∗ + h4x̃λ∗2 + h5x̃3 + O
((|x̃| +

∣
∣λ∗∣∣)4), (3.7)

where

h1 =
1

a12(s2 + 1)
{

a2
12

[
a13(s2 – a11) – a12a23

]
– a12(1 + a11)

[
a14(s2 – a11) – a12a24

]

+
[
a15(s2 – a11) – a12a25

]
(1 + a11)2},

h2 =
1

a12(1 + s2)
[[

a12b1(s2 – a11) – a2
12c1

]
– (1 + a11)

[
b2(s2 – a11) – a12c2

]]
,

h3 =
a2

a12(s2 + 1)
{

2a2
12

[
a13(s2 – a11) – a12a23

]

+ a12(s2 – 1 – 2a11)
[
a14(s2 – a11) – a12a24

]

– 2(1 + a11)(s2 – a11)
[
a15(s2 – a11) – a12a25

]}

+
a1

a12(s2 + 1)
{[

a12b1(s2 – a11) – a2
12c1

]

+ (s2 – a11)
[
b2(s2 – a11) – a12c2

]}
+

1
a12(s2 + 1)

{
a2

12
[
b3(s2 – a11) – a12c3

]

– a12(1 + a11)
[
b4(s2 – a11) – a12c4

]
+

[
b5(s2 – a11) – a12c5

]
(1 + a11)2},

h4 =
a2

a12(1 + s2)
{[

a12b1(s2 – a11) – a2
12c1

]
+ (s2 – a11)

[
b2(s2 – a11) – a12c2

]}
,

h5 =
1

a12(s2 + 1)
{

2a2
12a1

[
a13(s2 – a11) – a12a23

]

+ a1a12(s2 – 1 – 2a11)
[
a14(s2 – a11) – a12a24

]

+ a3
12

[
e1(s2 – a11) – a12d1

]
– a2

12(1 + a11)
[
e2(s2 – a11) – a12d2

]

–
[
e4(s2 – a11) – a12d4

]
(1 + a11)3

+
[
e3(s2 – a11) – a12d3

]
(1 + a11)2 – 2a1(1 + a11)(s2 – a11)

[
a15(s2 – a11) – a12a25

]}
.
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Figure 1 (a) Bifurcation diagram of map (1.2) with λ ∈ (0, 0.55), B = 10, k = 0.95, β = 0.2, the initial value is
(5, 5); (b) Maximum Lyapunov exponents corresponding to (a).

In order for map (3.7) to undergo a flip bifurcation, we require that two discriminatory
quantities α1 and α2 are not zero, where

α1 =
(

∂2F
∂ x̃∂λ∗ +

1
2

δF
δλ∗

δ2F
δx̃2

)

(0,0)
= h2,

and

α2 =
(

1
6

∂3F
∂ x̃3 +

(
1
2

δ2F
δx̃2

)2)

(0,0)
= h5 + h2

1.

From the above analysis and the theorem of [23], we have the following result.

Theorem 3.1 If α2 �= 0, then map (1.2) undergoes a flip bifurcation at the fixed point (x∗, y∗)
when the parameter λ varies in a small neighborhood of λ1. Moreover, if α2 > 0 (resp.,
α2 < 0), then the period-2 orbits that bifurcate from (x∗, y∗) are stable (resp., unstable).

In Sect. 4 we will give some values of parameters such that α2 �= 0; thus, the flip bifurca-
tion occurs as λ varies (see Fig. 1).

3.2 Neimark–Sacker bifurcation analysis
Finally, we discuss the Neimark–Sacker bifurcation of E(x∗, y∗) if parameters (B, k,β ,λ2)
vary in a small neighborhood of HB HB.

Taking parameters (B, k,β ,λ2) arbitrarily from HB, we consider system (1.2) with
(B, k,β ,λ1), which is described by

⎧
⎨

⎩

x′ → x + λ2x(B xβ

xβ +kyβ – x),

y′ → y + λ2y(B kyβ

xβ +kyβ – y).
(3.8)

Map (3.8) has a unique positive fixed point E(x∗, y∗).
Choosing λ∗ as a bifurcation parameter, we consider a perturbation of (3.8) as follows:

⎧
⎨

⎩

x′ → x + (λ2 + λ∗)x(B xβ

xβ +kyβ – x),

y′ → y + (λ2 + λ∗)y(B kyβ

xβ +kyβ – y),
(3.9)

where |λ∗| 
 1, which is a small perturbation parameter.
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Let u = x – x∗ and v = y – y∗. Then we transform the fixed point E(x∗, y∗) of map (3.9)
into the origin. We have

(
u
v

)

→
(

a11u + a12v + a13u2 + a14uv + a15v2 + e1u3 + e2u2v + e3v2u + e4v3 + O((|u| + |v|)4)
a21u + a22v + a23u2 + a24uv + a25v2 + d1u3 + d2u2v + d3v2u + d4v3 + O((|u| + |v|)4)

)

, (3.10)

where a11, a12, a13, a14, a15, e1, e2, e3, e4, a21, a22, a23, a24, a25, d1, d2, d3, d4 are given in
(3.3) by substituting λ for λ2 + λ∗.

Note that the characteristic equation associated with the linearization of map (3.10) at
(u, v) = (0, 0) is given by

s2 + P
(
λ̄∗)s + Q

(
λ̄∗) = 0,

where

P
(
λ̄∗) = –2 – G

(
λ2 + λ̄∗),

Q
(
λ̄∗) = 1 + G

(
λ2 + λ̄∗) + H

(
λ2 + λ̄∗)2.

Since parameters (B, k,β ,λ2) ∈ HB, the eigenvalues of (0, 0) are a pair of complex conjugate
numbers s, and s̄ with modulus one by Proposition 4, where

s, s̄ = –
P(λ̄∗)

2
± i

2

√

4Q
(
λ̄∗) – P2

(
λ̄∗) = 1 +

(λ2 + λ∗)
2

± i(λ2 + λ∗)
2

√
4H – G2.

Moreover, we have

|s|λ̄∗=0 =
√

Q(0) = 1, l =
d|s|
dλ̄∗ |λ̄∗=0 = –

G
2

�= 0.

Also, it requires that when λ̄∗ = 0, λm, λ̄m �= 1 (m = 1, 2, 3, 4) which is equivalent to P(0) �=
–2, 0, 1, 2. Note that (B, k,β ,λ2) ∈ HB. Thus, P(0) �= –2, 2. We only need to require that
P(0) �= 0, 1, which leads to

G2 �= 2H , 3H . (3.11)

Therefore, the eigenvalues s, s̄ of a fixed point (0, 0) of (3.10) do not lie in the intersection
of the unit circle with the coordinate axes when δ and (3.11) holds.

Next, we study the normal form of (3.10) at λ̄∗ = 0.
Let λ̄∗ = 0, μ = 1 + Gλ2

2 , ω = λ2
2

√
4H – G2.

T =

(
a12 0

μ – a11 –ω

)

.

Moreover, using the translation

(
u
v

)

= T

(
x̃
ỹ

)

,
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then system (3.10) becomes
(

x̃
ỹ

)

→
(

μ –ω

ω μ

)(
x̃
ỹ

)

+

(
f̃ (x̃, ỹ)
g̃(x̃, ỹ)

)

, (3.12)

where

f̃ (x̃, ỹ) =
a13

a12
u2 +

a14

a12
uv +

a15

a12
v2 +

e1

a12
u3 +

e2

a12
u2v +

e3

a12
v2u +

e4

a12
v3 + O

((|x̃| + |ỹ|)4),

g̃(x̃, ỹ) =
a13(μ – a11) – a12a23

a12ω
u2 +

a14(μ – a11) – a12a24

a12ω
uv

+
a15(μ – a11) – a12a25

a12ω
v2 +

e1(μ – a11) – a12d1

a12ω
u3

+
e2(μ – a11) – a12d2

a12ω
u2v +

e3(μ – a11) – a12d3

a12ω
v2u

+
e4(μ – a11) – a12d4

a12ω
v3 + O

((|x̃| + |ỹ|)4),

u2 = a2
12x̃2, uv = a12(μ – a11)x̃2 – a12ωx̃ỹ,

v2 = (μ – a11)2x̃2 – 2(μ – a11)ωx̃ỹ + ω2ỹ2,

v2u = a12(μ – a11)2x̃3 – 2a12(μ – a11)ωx̃2ỹ + a12ω
2x̃2ỹ2,

u2v = a2
12(μ – a11)x̃3 – a2

12ωx̃2ỹ

u3 = a3
12x̃3, v3 = (μ – a11)3x̃3 – 3ω(μ – a11)2x̃2ỹ + 3ω2(μ – a11)x̃ỹ2 – ω3ỹ3.

Therefore,

f̃x̃x̃ = 2a12a13 + 2a14(μ – a11) +
2a15

a12
(μ – a11)2, f̃x̃ỹ = –a14ω –

2a15

a12
(μ – a11)ω,

f̃ỹỹ =
a15

a12
ω2,

f̃x̃x̃x̃ = 6e1a2
12 + 6e2a12(μ – a11) + 6e3(μ – a11)2 +

6e4

a12
(μ – a11)3, f̃ỹỹỹ = –

e4

a12
ω2,

f̃x̃ỹỹ =
6

a12
ω2e4(μ – a11),

f̃x̃x̃ỹ = –4ωe3(μ – a11) – 2ωe2a12 –
6

a12

(
e4ω(μ – a11)2),

g̃x̃x̃ =
2
ω

{
a12

[
a13(μ – a11) – a12a23

]
+ (μ – a11)

[
a14(μ – a11) – a12a24

]

+
[
a15(μ – a11) – a12a25

]
(μ – a11)2},

g̃x̃ỹ =
1

a12

{
a12

[
a12a24 – a14(μ – a11)

]
– 2(μ – a11)

[
a15(μ – a11) – a12a25

]}
,

g̃ỹỹ =
2ω

a12

[
a15(μ – a11) – a12a25

]
,

g̃x̃x̃x̃ =
6
ω

{
a2

12
[
e1(μ – a11) – a12d1

]
+ a12(μ – a11)

[
e3(μ – a11) – a12d3

]

+
[
e3(μ – a11) – a12d3

]
(μ – a11)2
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+
[
e4(μ – a11) – a12d4

]
(μ – a11)3},

g̃ỹỹỹ =
6ω2

a12

[
a12d4 – e4(μ – a11)

]
,

g̃x̃ỹỹ =
6

a12
ω(μ – a11)

[
e4(μ – a11) – a12d4

]
,

g̃x̃x̃ỹ = 4(μ – a11)
[
a12d3 – e3(μ – a11)

]
+ 2a12

[
a12d2 – e2(μ – a11)

]

+
6

a12

[
a12d4 – e4(μ – a11)

]
(μ – a11)2

at point (0, 0).
In order for system (3.12) to undergo the Neimark–Sacker bifurcation, we require that

the following discriminatory quantity is not zero:

a =
{

– Re

(
(1 – 2s)s̄2

1 – s
ξ20ξ11

)

–
1
2
|ξ11|2 – |ξ02|2 + Re(s̄ξ21)

}∣
∣
∣
∣
λ̄∗=0

,

where

ξ20 =
1
8
[
(f̃x̃x̃ – f̃ỹỹ + 2g̃x̃ỹ) + i(g̃x̃x̃ – g̃ỹỹ – 2f̃x̃ỹ)

]
,

ξ11 =
1
4
[
(f̃x̃x̃ + f̃ỹỹ) + i(g̃x̃x̃ + g̃ỹỹ)

]
,

ξ02 =
1
8
[
(f̃x̃x̃ – f̃ỹỹ – 2g̃x̃ỹ) + i(g̃x̃x̃ – g̃ỹỹ + 2f̃x̃ỹ)

]
,

ξ21 =
1

16
[
(f̃x̃x̃x̃ + f̃x̃ỹỹ + g̃x̃x̃ỹ + g̃ỹỹỹ) + i(g̃x̃x̃x̃ + g̃x̃ỹỹ – f̃x̃x̃ỹ – f̃ỹỹỹ)

]
.

From the above analysis, we have the following theorem.

Theorem 3.2 If condition (3.11) holds and a �= 0, then map (1.2) undergoes the Neimark–
Sacker bifurcation at the fixed point (x∗, y∗) when the parameter λ varies in a small neigh-
borhood of λ2. Moreover, if a < 0 (resp., a > 0), then an attracting (resp., repelling) invariant
closed curve bifurcates from the fixed point for λ > λ2 (resp., λ < λ2).

4 Numerical simulations
In this section, we illustrate the above analytic results and show the complex dynamical be-
haviors by the bifurcation diagrams, phase portraits, and maximum Lyapunov exponents
for system (1.2).

For the sake of analysis, we consider the symmetric case of identical firms, let λ1 = λ2 = λ,
β1 = β2 = β . Then, from system (1.2), we obtain

⎧
⎨

⎩

x′ → x + λx(B xβ

xβ +kyβ – x),

y′ → y + λy(B kyβ

xβ +kyβ – y).
(4.1)

The bifurcation analyses are considered in the following cases:
(i) Varying λ in range 0 < λ < 0.51 and fixing β = 0.2, B = 10, k = 0.95;

(ii) Varying B in range 0 < B < 62.8 and fixing β = 0.2, λ = 0.08, k = 0.95;
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(iii) Varying β in range 0.3 < β < 1 and fixing k = 0.8, λ = 0.4, B = 10;
(iv) Varying k in range 0.35 < k < 2.5 and fixing β = 0.2, λ = 0.4, B = 10.
For case (i). The bifurcation diagram of system (1.2) in the (λ, x) plane for 0 < λ < 0.51

with initial values (x0, y0) = (5, 5) is given in Fig. 1(a) to show the dynamical changes as λ

varies. The maximum Lyapunov exponents corresponding to the bifurcation diagram in
Fig. 1(a) are given in Fig. 1(b).

In Fig. 1, we can see that there is a stable fixed point (5.1602, 4.8398) for 0 < λ < 0.3923,
and a flip bifurcation occurs at λ = 0.3923. We observe that there are period-2 orbits for
larger regions λ ∈ (0.3923, 0.4571).

Figure 2 shows the phase portraits which are associated with Fig. 1. For λ ∈ (0, 0.55),
there are period-1,2,4 orbits (in Fig. 2 (a)∼(c)). Figure 2(d) shows one of the stable fixed
points. Figure 2(e) shows that the Hopf bifurcations emerge from the fixed points at λ =
0.48. When λ = 0.495, we can see the chaotic sets in Fig. 2(f ). The maximum Lyapunov

Figure 2 Phase plane for map (1.2) with B = 10, k = 0.95, β = 0.2 and different λ.
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Figure 3 (a) Bifurcation diagram of map (1.2) with B ∈ (0, 62.8), β = 0.2, k = 0.95, λ = 0.08, the initial value is
(5, 5); (b) Maximum Lyapunov exponents corresponding to (a).

Figure 4 (a) Bifurcation diagram of map (1.2) with β ∈ (0, 1), k = 0.8, B = 10, λ = 0.35, the initial value is (5, 5);
(b) Maximum Lyapunov exponents corresponding to (a).

exponents corresponding to λ = 0.495 are larger than zero, which confirms the existence
of the chaotic sets in Fig. 1(b).

For case (ii). The bifurcation diagram of system (1.2) in the (B, x) plane for 0 < B < 62.8
with initial values (x0, y0) = (5, 5) is given in Fig. 3(a) to show the dynamical changes as B
varies. The maximum Lyapunov exponents corresponding to the bifurcation diagram in
Fig. 3(a) are given in Fig. 3(b).

In Fig. 3, a flip bifurcation occurs at B = 49.38 by Proposition 1. We observe that there
are period-2 orbits for larger regions B ∈ (49.38, 57.35). Other cases are similar to case (i).

For case (iii). The bifurcation diagram of system (1.2) in the (β , x) plane for 0 < β < 1
with initial values (x0, y0) = (5, 5) is given in Fig. 3(a) to show the dynamical changes as β

varies. The maximum Lyapunov exponents corresponding to the bifurcation diagram in
Fig. 4(a) are given in Fig. 4(b).

In Fig. 4, we can see that a flip bifurcation occurs at β = 0.6589 by Proposition 1. We
observe that there are period-2 orbits for larger regions β ∈ (0.6589, 0.903). Other cases
are similar to case (i).

For case (iv). The bifurcation diagram of system (1.2) in the (k, x) plane for 0.355 < k < 2.5
with initial values (x0, y0) = (5, 5) is given in Fig. 5(a) to show the dynamical changes as k
varies. The maximum Lyapunov exponents corresponding to the bifurcation diagram in
Fig. 5(a) are given in Fig. 5(b).
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Figure 5 (a) Bifurcation diagram of map (1.2) with k ∈ (0.35, 2.5), β = 0.2, B = 10, λ = 0.4, the initial value is
(5, 5); (b) Maximum Lyapunov exponents corresponding to (a).

In Fig. 5, there exist double period doubling bifurcations and chaos. We can see that a flip
bifurcation occurs at k = 0.9773 or k = 1.027 by Proposition 1. We observe that there are
period-2 orbits for regions k ∈ (0.6261, 0.9773) or k ∈ (1.027, 1.613). There are period-1,
2, 4, 6, 8, 16 orbits with k = 1, 0.7, 0.58, 1.95, 0.56, 0.55. When k = 0.45, 1.9, 2.15, we can see
the chaotic sets in Fig. 5(a). The maximum Lyapunov exponents corresponding to them
are greater than zero, which implies the existence of the chaotic sets in Fig. 5(b).

5 Discussion
In this paper, we discuss the dynamical behaviors of model (1.2). From the discussion in
Sect. 2, we know that there exist flip bifurcation and chaos about equilibrium as the pa-
rameters vary in the small neighborhood. We have obtained a global qualitative analysis of
model (1.2) depending on all parameters and showed that the model exhibits the bifurca-
tions. By choosing λ, B, β , k as bifurcation parameters, respectively, it was shown that the
model undergoes a series of bifurcations including the flip bifurcation, period doubling
bifurcation, and chaos. Moreover, system (1.2) exhibits many complex dynamic behav-
iors, including period-1, 2, 4, 6, 8, 16 orbits, invariant cycle, a cascade of period-doubling,
quasi-periodic orbits, and the chaotic sets. These results reveal far richer dynamics of the
discrete model compared to the continuous model.
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