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Abstract
In this paper, four different forms of a model to describe the dynamics of
autoimmune diseases (with emphasis on Guillain–Barré syndrome) are proposed. In
the first two cases, the immune response is supposed to be linear, while in the other
two cases it is supposed to be in the Holling type III form. In case of linear immune
response, the model has a basic reproduction number and shows forward bifurcation.
However, in the nonlinear Holling type III immune response cases, the model does
not have a basic reproduction number and two positive equilibria do exist for a range
of the parameters. The stability analysis of the model’s steady states has been
established. Our analytical results have been illustrated by numerical simulations.

MSC: 92Bxx; 37Fxx; 34Cxx

Keywords: Guillain–Barré syndrome; Steady states; Stability analysis; Tolerance;
Flare-up; Dormancy

1 Introduction
Understanding the way the immune system works and how autoimmune diseases occur is
a very complex process. However, the main task of the immune system is to prevent self-
reactive cells from attacking self organ by some kind of apoptosis processes [1]. Autoim-
mune diseases are a group of diseases of disturbance of the immune system like rheuma-
toid arthritis system lupus, insulin-dependent diabetes mellitus type-I (IDDM), multiple
sclerosis (MS), and others. An autoimmune disease occurs when any organ or tissue in
the body becomes a target for the immune system attacks [1, 2]. The cases of autoimmune
diseases can be characterized by tolerance, flare-ups, or dormancy. The principal defen-
dant in these cases is the T-cells. Also, virus infection is associated with the exacerbation
of the autoimmune diseases [3].

Guillain–Barré syndrome (GBS) is a scarce autoimmune disease in which the periph-
eral nerves are attacked by the person’s immune system [4]. This attack can affect the
nerves that control the muscle movement, as well as the nerves that transmit the pain, the
temperature, and the touch sensations [5]. Also, this attack can lead to loss of sensation
in arms and/or legs and muscle weakness. This syndrome can affect people of all ages,
but it is more popular in adult males [6]. Approximately one person in every 100,000 is
affected. Most patients of this disease fully recover from even the most severe cases. Typ-
ically, symptoms continue for a few weeks, where most cases recover without acute and
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long-term neurological complications. The first symptoms of GBS include tingling sen-
sations or at least weakness. Usually, these symptoms begin in the legs and can spread to
other organs like the arms and face. Severe cases of GBS are rare, but for those individu-
als, these symptoms can lead to paralysis of the legs, the arms, or the muscles in the face.
In 20–30% of patients, it is hard to breathe because the chest muscles are affected. Also,
the ability to speak or even swallow may become affected in the severe cases of GBS. The
life of these cases is threatened, and affected patients should be treated in intensive care
units [7]. The treatment of this disease may include some immunological therapies and
supportive care. Even in the best of settings, 3–5% of GBS patients die from complications
which can include blood infection, paralysis of the muscles that control breathing, cardiac
arrest, or lung clots [8–10].

Frequently, GBS is preceded by infection. This infection can be viral or bacterial. Also,
GBS may occur due to surgery or vaccine administration. As in the case of Zika virus
infection, a sudden increase in the number of patients of GBS has been observed in the
affected countries. Zika virus infection is a trigger of GBS, this is the most likely explana-
tion from the outbreaks of Zika virus infection and the GBS [11, 12]. The association of
GBS with Zika and other flavivirus has been reviewed in Uncini et al. [13]. Recently, the
transmission dynamics of Zika virus infection has been extensively studied [14–19] based
on models on the population level. For example, Bonyah and Okosun [15] studied the op-
timal control strategy to minimize the spread of Zika virus disease. The authors showed
that a strategy based on prevention, treatment of infected humans, and use of insecticide
to kill mosquitoes would be the best way to reduce the spread of Zika. Another research
[17] aimed to identify the recovery time and predict the endemic condition of Zika virus.
Moya [18] introduced and studied a mathematical model for the transmission of Zika virus
disease on the population level where two time delays (one delay for the beginning of hu-
man symptoms and the other is the time taken by the mosquito to develop the pathogen)
have been considered. Charles et al. [19] developed and analyzed a spatiotemporal model
to describe the transmission dynamics of Zika virus disease and deduced potential con-
trol strategies. In addition to the equilibrium and stability analyses, the authors showed
the existence of traveling wave solutions that propagate with the speed of disease spread.
However, the dynamics GBS (which is a complication of Zika) is poorly studied. In this
work, four different forms of a model describing the dynamics of autoimmune diseases
with emphasis on Guillain–Barré syndrome are introduced.

To the best of our knowledge, this is the first research that attempts to model Guillain–
Barré syndrome. In Sect. 2, we model the mechanism of Guillain–Barré syndrome by
proposing a simple model as a system of two ordinary differential equations. In Sect. 3,
we propose a linear immune response and investigate the model with two cases of the
growth function of the target cell population. In Sect. 4, we propose a nonlinear immune
response with the same two cases of the growth function of the target cell population.
Finally, we summarize and conclude our results in Sect. 5.

2 The model
There are several medical literature sources on autoimmune diseases but there are few
mathematical literature papers. Here, we present the first paper that represents the
Guillain–Barré syndrome as a simple mathematical model. Consider x(t) to be the pop-
ulation size of the target cells (healthy cells) at time t which determine the symptoms of
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autoimmune disease patients. Therefore, if it is large, then the symptoms are mild; oth-
erwise, the symptoms are severe. Let y(t) be the population size of the immune cells in-
ducement at time t. The growth function of the target cell population G1(x(t)) and the
personal immune response function G2(x(t), y(t)) play the basic role in our model. Then
the dynamics of the target cells and the immune cells give us the following basic model of
the Guillain–Barré syndrome:

dx(t)
dt

= G1
(
x(t)

)
– βx(t)y(t),

dy(t)
dt

= G2
(
x(t), y(t)

)
– γ y(t),

(1)

where the term βx(t)y(t) represents the damage that occurred in the target cells due to
their interaction with the immune system and the parameter γ is the death rate of the
immune cells.

3 Linear immune response function
3.1 Linear target cell growth function
Firstly, we propose that the evolution of the target cells population, in the simplest form,
is a linear function of x(t). Then model (1) reads as follows:

dx(t)
dt

= F1
(
x(t), y(t)

)
= λ – μx(t) – βx(t)y(t),

dy(t)
dt

= F2
(
x(t), y(t)

)
= kx(t)y(t) – γ y(t),

(2)

where λ is the rate of producing new cells of the target cells from the bone marrow, μ is
the natural death rate of the target cells, β is the rate at which the immune cells find and
attack the target cells [20, 21], and k is the average magnitude of activation of the immune
response per unit time.

Model (2) is nonlinear and has no time-dependent explicit solution. Therefore, we study
the model at the long time run. Equating the derivatives of (2) by zero and solving the
resulting nonlinear algebraic system with respect to the equilibrium state variables x̄, ȳ,
we get the two equilibria

E1,0 =
(

λ

μ
, 0

)′
and E1,1 = (x̄1, ȳ1)′ =

(
γ

k
,

kλ – μγ

βγ

)′
=

(
γ

k
,
μ

β
(R0,1 – 1)

)′
, (3)

where the ′ means vector transpose. The endemic equilibrium E1,1 does exist if and only
if the basic reproduction number R0,1 > 1, where

R0,1 =
kλ

γμ
. (4)

The local stability analysis of these equilibria is established by studying the Jacobian
matrix of (2) at these equilibria. The Jacobian matrix evaluated at the trivial equilibrium
E1,0 is

J1,0 =

(
–μ – βλ

μ

0 kλ
μ

– γ

)

.



Elettreby et al. Advances in Difference Equations        (2019) 2019:208 Page 4 of 18

It has the eigenvalues –μ and kλ
μ

– γ . Hence, the trivial (boundary) equilibrium E1,0 is
locally asymptotically stable if and only if R0,1 < 1.

Similarly, the Jacobian matrix computed at the endemic (interior) equilibrium E1,1 is

J1,1 =

(
– kλ

γ
– βγ

k
k kλ–μγ

βγ
0

)

.

Its trace is tr(J1,1) = –kλ/γ < 0, while its determinant is det(J1,1) = kλ – μγ > 0 if and only
if R0,1 > 1. Hence, E1,1 is locally asymptotically stable iff R0,1 > 1. We summarize the above
results in the following proposition.

Proposition 1 The linear target cell growth function’s model (2) has a boundary equilib-
rium E1,0 which is locally asymptotically stable if and only if the basic reproduction number
R0,1 < 1. Moreover, it has an interior equilibrium E1,1 that exists if and only if R0,1 > 1. This
interior equilibrium E1,0 is locally asymptotically stable whenever it exists.

Global stability analysis could be done with an approach based on the use of Liapunov
functions. For the trivial (boundary) equilibrium, we consider the following Liapunov
function:

V1,0 = k
(

x –
λ

μ
–

λ

μ
ln

μx
λ

)
+ βy. (5)

Its time derivative is

V̇1,0 = kẋ
(

1 –
λ

μx

)
+ β ẏ = k

(
1 –

λ

μx

)
(λ – μx – βxy) + β(kxy – γ y)

= λk
(

1 –
λ

μx

)(
1 –

μx
λ

)
– γβy

(
1 –

kλ

μγ

)

= –λk
(√

λ

μx
–

√
μx
λ

)2

– γβy(1 – R0,1).

Hence, V̇1,0 < 0 if R0,1 < 1. Thus, the boundary equilibrium E1,0 is globally asymptotically
stable iff R0,1 < 1.

Similarly, the global stability of the endemic equilibrium E1,1 for R0,1 > 1 could be shown
by considering the Liapunov function

V1,1 = k
(

x –
γ

k
–

γ

k
ln

kx
γ

)
+ β

(
y – ȳ1 – ȳ1 ln

y
ȳ1

)
. (6)

Its time derivative over trajectories is

V̇1,1 = kẋ
(

1 –
γ

kx

)
+ β ẏ

(
1 –

ȳ1

y

)

= μγ

(
1 –

γ

kx

)(
1 –

kx
γ

)
+ kβ

(
1 –

γ

kx

)(
γ

k
ȳ1 – xy

)
+ β(kxy – γ y)

(
1 –

ȳ1

y

)
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= μγ

(
1 –

γ

kx

)(
1 –

kx
γ

)
+ βγ ȳ1

(
2 –

γ

kx
–

kx
γ

)

= –γ (μ + β ȳ1)
(√

γ

kx
–

√
kx
γ

)2

< 0.

Hence, the endemic equilibrium E1,1 is globally asymptotically stable whenever it exists,
and we show the following proposition.

Proposition 2 The boundary (trivial) equilibrium E1,0 for the linear target cell growth
function’s model (2) is globally asymptotically stable if its basic reproduction number R0,1 <
1, while if R0,1 > 1, then the endemic (interior) equilibrium E1,1 is globally asymptotically
stable.

It is clear that the stability of the endemic state E1,1 cancels the stability of the trivial
one E1,0. However, if the parameters λ, μ, and γ are kept fixed, then a value of R0,1 > 1
corresponds to a value of k > γμ/λ. Hence, the essential difference between the two cases
is the value of the parameter k.

Numerical simulations for model (2) have been carried out, where it is revealed that the
solutions do not depend on the initial conditions, see Fig. 1(a), (b), (c). The figure shows
a tolerance of the immune response, i.e., the induced immune cells cannot be activated,
y(t) vanishes, and the autoimmune disease does not develop. The figure shows further
that if k is small, then the damage is small, the immune-induced cells are not activated,
and the number of target cells does not decrease. However, if the value of k is large, then
the damage is great, the immune-induced cells are activated, and the number of target
cells decreases. Therefore, the patient with a higher value of k has a higher probability of
developing an autoimmune disease. Moreover, increasing the value of k moves the case of

Figure 1 The first three figures show the curves of target cells x(t) and the immune cells induced y(t) at
β = 0.5, x(0) = 10, y(0) = 1, and different values of the parameters. The fourth one shows that it does not
depend on the initial values of x(t), y(t) where we take another initial value x1(0) = 11, y1(0) = 2
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Figure 2 The first three figures show the curves of target cells x(t) and the immune cells induced y(t) at
β = 0.5, x(0) = 10, y(0) = 1, and different values of the parameters. The fourth one shows that it does not
depend on the initial values of x(t), y(t) where we take another initial values x1(0) = 11, y1(0) = 2

the patient from tolerance to acute. After some time, the acute symptoms shift to a chronic
case.

Simulations with different values of the above parameters have been done, and they
showed that the steady state E1,1 is always stable. Figure 2 shows acute and chronic symp-
toms, which means that the immune-induced cells are activated, y(t) does not vanish, and
the patient develops an autoimmune disease.

3.2 Nonlinear target cell growth function
Assume now that the evolution of the target cells population is a nonlinear function of
x(t), and it is in logistic form [22, 23]. Hence, model (1) reads as follows:

dx(t)
dt

= λ – μx(t) + px(t)
(

1 –
x(t)

L

)
– βx(t)y(t),

dy(t)
dt

= kx(t)y(t) – γ y(t),
(7)

where p is the maximum proliferation rate of the target cells and L is the target cell pop-
ulation density at which proliferation shuts off. The added term (logistic term) represents
the created target cells by the proliferation of the target cells, and the parameter β is as
defined above [20, 21, 23].

Again, to find the steady states (x, y)′ of system (7), we put

dx(t)
dt

∣
∣∣∣
(x,y)

= F1(x, y) = 0,

dy(t)
dt

∣∣∣
∣
(x,y)

= F2(x, y) = 0.
(8)



Elettreby et al. Advances in Difference Equations        (2019) 2019:208 Page 7 of 18

On solving the equations of system (8), we get the following steady states:

E2,0 = (x, 0)′, E2,1 =
(

γ

k
,

kλ

βγ
+

(p – μ)
β

–
pγ

kβL

)′
,

where

x =
L

2p
(
(p – μ) +

√
(p – μ)2 + 4pλ/L

)
.

The second steady state E2,1 does exist if and only if

Lk
(
kλ + (p – μ)γ

)
> pγ 2. (9)

This inequality is equivalent to

k >
2pγ

L(p – μ +
√

(p – μ)2 + 4pλ/L)
. (10)

The local stability of the boundary equilibrium point E2,0 = (x, 0) is studied by consider-
ing its corresponding Jacobian matrix

J2,0 =

(
–
√

(p – μ)2 + 4pλ/L –βx
0 kx – γ

)

,

which has the eigenvalues ε1 = –
√

(p – μ)2 + 4pλ/L < 0 and ε2 = kx – γ . Hence, the bound-
ary equilibrium point E2,0 is locally asymptotically stable if and only if R0,2 < 1, where

R0,2 =
kL(p – μ +

√
(p – μ)2 + 4pλ/L)
2pγ

(11)

is the basic reproduction number [24] for model (7). Similarly, the Jacobian matrix of
model (7) evaluated at the endemic equilibrium E2,1 is

J2,1 =

(
– pλ

kL – kλ
γ

– βγ

k
k2λ
βγ

+ k(p–μ)
β

– pγ

βL 0

)

.

It is clear that the trace of J2,1 is negative, while its determinant is positive if and only
if condition (10) holds (i.e., when R0,2 > 1). Hence, the interior (endemic) equilibrium is
locally asymptotically stable whenever it exists. The above results are summarized in the
following proposition.

Proposition 3 Model (7) has a trivial equilibrium E2,0 that is locally asymptotically stable
if and only if R0,2 < 1. For R0,2 ≥ 1, an endemic equilibrium E2,1 does exist and is locally
asymptotically stable whenever it exists.

Different values of the model parameters that satisfy the stability condition of the steady
state E2,0 have been considered. The simulations show that the solutions do not depend on
the initial values of x(0) and y(0). Figure 3(a), (b) show tolerance of the immune response,
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Figure 3 The curves of x(t) and y(t) at different values of the parameters and at the initial point x(0) = 15,
y(0) = 2

Figure 4 The curves of the target cells x(t) and the induced immune cells y(t) at λ = 0.1, μ = 0.1, β = 0.5,
γ = 0.1, p = 3, and L = 100 and different values of the parameter k

i.e., the induced immune cells cannot be activated, y(t) vanishes, and the autoimmune
disease does not develop.

Figure 4 describes different cases of the autoimmune symptoms which depend on the
value of the parameter k. Figure 4(a), where k = 0.005, shows a scarce evolution of the
induced immune cells, but the target cells still predominate the disease, and there are
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no symptoms. Figure 4(b), where k = 0.01, exhibits a decreasing of the target cells and
increase of the induced immune cells, which shows a relatively low level of target cells and
mild symptoms. Figure 4(c), where k = 0.05, shows repeated flare-up of the autoimmune
disease. Figure 4(d), where k = 0.5, exhibits rapid progression of the disease and severe
symptoms. Note that the target cells suddenly decrease and there is only a few of them in
the chronic case. Therefore, the patient with a higher value of k has a higher probability of
developing an autoimmune disease. Also, increasing the value of k makes the case of the
patient move from tolerance to acute to chronic.

4 Holling type III immune response function
4.1 Linear target cell growth function
Different patients may have different immune response functions. This may be due to the
kind of the immune cells or the patient’s condition. Here, we propose that the evolution
of the target cells population, in the simplest form, is a linear function of x(t), but the
evolution of the immune cells is a functional response of Holling type III. Then our model
can take the following form:

dx(t)
dt

= λ – μx(t) – βx(t)y(t),

dy(t)
dt

=
mx(t)2y(t)2

h2 + x(t)2y(t)2 – γ y(t),
(12)

where the parameter m is the maximum proliferation rate of immune cells caused by
the antigen presented cells (APCs). The parameter h is the number of damaged cells
at which the proliferation of immune cells is half of the maximum m. Then the term
mx(t)2y(t)2/(h2 + x(t)2y(t)2) is the proliferation rate of immune cells by APCs. This non-
linear personal immune response function is biologically more reasonable than the linear
one. This model represents cross-reactivity in the immune system. Here, we consider only
the case μ ≥ γ .

4.1.1 Equilibria and stability
To evaluate the steady states (x, y) of system (12), we put

dx(t)
dt

∣
∣∣
∣
(x,y)

= F1(x, y) = 0,

dy(t)
dt

∣∣
∣∣
(x,y)

= F2(x, y) = 0.
(13)

On solving the equations of system (13), we get the following three steady states:

E3,0 =
(

λ

μ
, 0

)′
, E3,1 = (x–, y–)′, E3,2 = (x+, y+)′,

where

y– =
(mλ2 – 2βγμh2) –

√
(mλ2 – 2βγμh2)2 – 4γ 2h2μ2(β2h2 + λ2)

2γ (β2h2 + λ2)
,
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y+ =
(mλ2 – 2βγμh2) +

√
(mλ2 – 2βγμh2)2 – 4γ 2h2μ2(β2h2 + λ2)

2γ (β2h2 + λ2)
,

and

x– =
λ

(μ + βy–)
, x+ =

λ

(μ + βy+)
.

Simple computations show that both equilibria E3,1 and E3,2 do exist if and only if

m ≥ 2hμγ

λ2

(
hβ +

√
λ2 + h2β2

)
:= m�. (14)

The following proposition summarizes the above results.

Proposition 4 In addition to the trivial equilibrium E3,0 that exists under no constraint,
model (12) has two positive endemic equilibria E3,1 and E3,2, which exist if and only if the
maximum proliferation rate m is greater or equal to the critical level m� given by formula
(14).

It is easy to check that

lim
m→∞ y– = 0, lim

m→∞ y+ = ∞, and y–
(
m�

)
= y+

(
m�

)
. (15)

Hence, model (12) does not have a basic reproduction number. Moreover, m� is the critical
proliferation rate [25, 26] above which endemic equilibria do exist, while below which no
endemic equilibrium exists, see Fig. 5. Motivated by the work shown in [24], the ratio
m/m� is the minimum eradication effort of the disease. Therefore, we show the following
proposition.

Proposition 5 Model (12) has no basic reproduction number, and the minimum effort
required to clear the infection is mλ2/[2hμγ (hβ +

√
λ2 + h2β2)].

Figure 5 Bifurcation diagram for model (12) with parameter values λ = 10, μ = 0.1, β = 0.5, γ = 0.1, and
h = 30. The solid curves correspond to the stable equilibria (Ē3,2 for the higher line and Ē3,0 for the lower line),
while the dashed-dotted horizontal line corresponds to the unstable equilibrium Ē3,1
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To study the local stability of these steady states, we linearize system (12) and compute
the Jacobian matrix at each steady state. At the trivial equilibrium E3,0 = ( λ

μ
, 0)′, the Jaco-

bian matrix reads

J3,0 =

(
–μ – βλ

μ

0 –γ

)

.

It has the eigenvalues ε1 = –μ < 0, ε2 = –γ < 0. Hence, the boundary equilibrium point E3,0

is always locally asymptotically stable.
The Jacobian matrix, for model (12), evaluated at the conjugate interior equilibria E3,1 =

(x–, y–)′ and E3,2 = (x+, y+)′ is

J3,1 =

⎛

⎝
– λ

x–
–βx–

2γ 2h2

mx3
–

2γ 2h2

mx2
–y–

– γ

⎞

⎠ and J3,2 =

⎛

⎝
– λ

x+
–βx+

2γ 2h2

mx3
+

2γ 2h2

mx2
+y+

– γ

⎞

⎠ ,

respectively. It is clear that the trace of the Jacobian matrix at the endemic equilibrium
(x̄, ȳ)′ is

tr(J) =
2γ 2h2

mx̄2ȳ
–

λ

x̄
– γ

=
2γ 2h2

mλ2ȳ
(μ + β ȳ)2 – (μ + β ȳ) – γ

=
1

mλ2ȳ
[(

2μγ 2h2 +
(
2βγ 2h2 – mλ2)ȳ

)
(μ + β ȳ) – mγ λ2ȳ

]

=
1

mλ2ȳ
[
β
(
2βγ 2h2 – mλ2)ȳ2 +

(
4μβγ 2h2 – mλ2(μ + γ )

)
ȳ + 2γ 2h2μ2]

=
–1
m

[(
βm + 2γ 2)ȳ + m(μ – γ )

]
< 0.

However, the determinant of the Jacobian matrix evaluated at any endemic equilibrium
(x̄, ȳ)′ is

det(J) =
λ

x̄

(
γ –

2γ 2h2

mx̄2ȳ

)
+

2βγ 2h2

mx̄2 =
1
x̄

(
γ λ –

2γ 2h2λ

mx̄2ȳ
+

2βγ 2h2

mx̄

)

=
γ

x̄

(
λ –

2γμh2

mλ

(
β +

μ

ȳ

))
=

γ

mλx̄ȳ
((

mλ2 – 2γμβh2)ȳ – 2γμ2h2)

=
γ

mλx̄
(
2μβγ h2 – mλ2 + 2γ

(
λ2 + β2h2)ȳ

)
.

Hence, for the equilibrium E3,1, the determinant of its corresponding Jacobian is

det(J3,1) =
–γ

mλx̄–

√(
mλ2 – 2βγμh2

)2 – 4γ 2h2μ2
(
β2h2 + λ2

)
< 0.

However, for the equilibrium E3,2, the determinant of its corresponding Jacobian is

det(J3,2) =
γ

mλx̄+

√(
mλ2 – 2βγμh2

)2 – 4γ 2h2μ2
(
β2h2 + λ2

)
> 0.
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Thus, the endemic equilibrium E3,1 is unstable whenever it exists, while the endemic equi-
librium E3,2 is locally asymptotically stable whenever it exists, and we show the following
proposition.

Proposition 6 Model (12) has a trivial equilibrium E3,0 that always exists and is always
locally asymptotically stable. If m ≥ m�, two endemic equilibria E3,1 and E3,2 start to ap-
pear, where E3,1 is always unstable, while E3,2 is always locally asymptotically stable.

4.1.2 Transient behavior
In order to see the dynamics of the components x and y, the local and global attractors of
the model, and to appropriately present our results, we project the first quadrant {(x, y) :
0 ≤ x, y < ∞} on the square {(X, Y ) : 0 < X, Y ≤ 1} using the transformation

X =
1

1 + x
and Y =

1
1 + y

. (16)

Hence, model (12) could be rewritten as

dX
dt

= –X2
[
λ + μ –

μ

X
– β

(
1
X

– 1
)(

1
Y

– 1
)]

,

dY
dt

= –Y 2
[

m(1 – X)2(1 – Y )2

h2X2Y 2 + (1 – X)2(1 – Y )2 – γ

(
1
Y

– 1
)]

.
(17)

Model (17) has the three equilibria

Ē1,0 =
(

μ

λ + μ
, 1

)′
, Ē3,1 = (X3,1, Y3,1)′, and Ē1,1 = (X3,2, Y3,2)′, (18)

which correspond, respectively, to E3,0, E3,1, and E3,2, where

X3,1 =
μ + β ȳ–

λ + μ + ȳ–
, X3,2 =

μ + β ȳ+

λ + μ + ȳ+
, Y3,1 =

1
1 + ȳ–

, and Y3,2 =
1

1 + ȳ+
.

Figure 6 shows the trajectory analysis of the model. Part (a) is produced with parameter
values corresponding to m < m�, where no endemic equilibrium exists. Thus, the trivial
equilibrium Ē3,0 is the global attractor. However, part (b) is drawn with parameter values
as shown in the legend of Fig. 6 and a value of m > m�, where two endemic equilibria
coexist with the trivial one. It shows that Ē3,0 and Ē3,2 are the only two attractors for the
trajectories, while Ē3,1 lies on the separating between the basin of attractors for Ē3,0 and
Ē3,2.

Based on the strategy shown in [24], it is noteworthy that the disease could be cleared if
control measures aiming at reducing the rate m to slightly less than m� have been applied.
Moreover, for m ≥ m�, solutions depend on the initial conditions [27] in the sense that
the fate of a trajectory (i.e., the attractor) could either be the trivial equilibrium E3,0 or
the stable endemic equilibrium E3,2 depending on the initial conditions, see Fig. 6. If we
consider the bifurcation diagram (see Fig. 5) in the plane (m, ȳ), then the level of ȳ corre-
sponding to the unstable equilibrium E3,1 is sometimes called the break point. Numerical
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Figure 6 The trivial equilibrium Ē3,0 is represented by the circle “ ”, the unstable endemic equilibrium Ē3,1 is
denoted by the rhombus “ ”, and the stable endemic equilibrium Ē3,2 is represented by the star “ ”.
Simulations have been done with parameter values λ = 10, μ = 0.1, β = 0.5, γ = 0.1, and h = 30. Part (a) is
produced withm = 0.8m� , while part (b) is produced withm = 1.5m�

Figure 7 Time-series analysis for model (17) with parameter values λ = 10, μ = 0.1, β = 0.5, γ = 0.1, h = 30,
andm = 1.8m� . The solid horizontal lines correspond to the stable equilibria (Ē3,0 for the higher line and Ē3,2
for the lower line), while the dashed-dotted horizontal line corresponds to the unstable equilibrium Ē3,1 . The
trajectory of solid curve signed with stars “ ” is produced with initial values X = 0.03 and Y = 0.94, while that
signed with pluses “ ” has initial data X = 0.0001 and Y = 0.999. The sign-free solid trajectory curve is
produced with initial conditions X = 0.1 and Y = 0.9

simulations show that even if y is reduced to below the break point, it is not necessary that
the trajectory is attracted by the trivial equilibrium, see Fig. 7.

4.2 Nonlinear target cell growth function
In this subsection, we propose that the evolution of the target cells population is a nonlin-
ear function of x(t), the logistic form, but the evolution of the immune cells is a functional
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response of Holling type III. Then our model can take the following form:

dx(t)
dt

= λ – μx(t) + px(t)
(

1 –
x(t)

L

)
– βx(t)y(t),

dy(t)
dt

=
mx(t)2y(t)2

h2 + x(t)2y(t)2 – γ y(t).
(19)

Here, we consider only the case μ ≥ γ . To compute the equilibria of this model, we put
the derivative in its left-hand side equal to zero and solve the resulting nonlinear algebraic
equation in terms of x and y. The analysis shows that it has a trivial equilibrium

E4,0 = (x, 0)′,

where

x =
L

2p
(
(p – μ) +

√
(p – μ)2 + 4pλ/L

)
,

under the existence condition p > μ. Moreover, it has other nontrivial (endemic) equilibria

E = (x, y)′,

whose components x and y are defined through

F(x̄) = a0x4 + a1x3 + a2x2 + a3x + a4 = 0, (20)

y =
λ

βx
+

(p – μ)
β

–
px
βL

, (21)

where
• a0 = γ p2 > 0,
• a1 = Lp(βm – 2γ (p – μ)),
• a2 = L(γ (p – μ)2L – mβ(p – μ)L – 2γ λp),
• a3 = λL2(2γ (p – μ) – mβ),
• a4 = γ L2(h2β2 + λ2) > 0.
Once a solution x̄ for (20) is obtained, we substitute in (21) to get its corresponding ȳ.

However, x̄ is the root of a fourth degree polynomial. Before studying the existence of
feasible solutions for (20), we state the following theorem that is known as “Descartes’ rule
of signs” and determines the number of positive and negative real roots for any polynomial.

Theorem 7 (Descartes’ rule of signs [28]) Let F(x), written in ascending or descending
order, be a polynomial function with constant real coefficients and have nonzero constant
term. Then:
The number of positive real zeros of F(x) is either:

1. The same as the number of variations of the sign in F(x), or
2. Less than the number of variations of the sign in F(x) by a positive even integer.

The number of negative real zeros of P(x) is either:
1. The same as the number of variations of the sign in F(–x), or
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Figure 8 Bifurcation diagram in the plane (m, ȳ) for parameter values λ = 0.1, μ = 0.1, β = 0.5, γ = 0.1, h = 60,
p = 3, and L = 100. The diagram shows that two endemic equilibria do exist for high enough values ofm. The
dashed-dotted curve corresponds to the unstable endemic equilibrium, while the solid one corresponds to
the stable endemic equilibrium

2. Less than the number of variations of the sign in F(–x) by a positive even integer.
A zero of multiplicity N must be counted N times.

We are concerned only with the positive real roots of this fourth degree equation (20).
Taking into account that both a0 and a4 are positive, while a1 and a3 have different signs,
depending on the value of m with respect to the other parameters, then, regardless of
the sign of a2, equation (20) will have either two positive real roots (say, x1 and x2) or
it will have no root. Except m, if all other parameters have been kept fixed, then high
enough values of m ensure the existence of two feasible (positive) solutions for (20), while
small enough values of m show non-existence of positive solutions for (20), see Fig. 8.
Consequently, we compute the corresponding values of y at equilibrium, and therefore
model (19) will have either two conjugate interior equilibria or no interior equilibrium.
When it exists, the interior equilibrium corresponding to the higher feasible solution of ȳ
is expected to be locally asymptotically stable, while its conjugate is unstable.

A bifurcation diagram in the plane (λ, m) is shown in Fig. 9. The diagram shows the
critical value of m (say, m�) separating between non-existence and existence of positive
endemic equilibria. If the pair (λ, m) is chosen below this curve, then model (19) will have
only the trivial equilibrium E4,0, while if this pair is chosen from the region above that
curve, then model (19) will have two endemic equilibria, in addition to the trivial equilib-
rium E4,0.

Similar to the case of model (12), the current model has no basic reproduction number
and, for some range of the parameters, the model exhibits multiple endemic equilibria.
Thus, clearing the disease depends on the initial conditions, or could be implemented by
applying control measures aiming to reduce m to slightly below the threshold m�.

Following the same way as in section (4.1.2) and using transformation (16), the current
model is simulated. Figure 10 confirms our analytical results, where the model has two
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Figure 9 Bifurcation diagram in the plane (λ,m∗) for parameter values μ = 0.1, β = 0.5, γ = 0.1, h = 60, p = 3,
and L = 100. The curve shows the critical value ofm below which no endemic equilibrium exists, while above
which two endemic equilibria do exist

Figure 10 The trivial equilibrium Ē4,0 is represented by the circle “ ”, the unstable endemic equilibrium Ē4,1 is
denoted by the rhombus “ ” and the stable endemic equilibrium Ē4,2 is represented by the star “ ”.
Simulations have been done with parameter values λ = 10, μ = 0.1, β = 0.5, γ = 0.1, h = 60, p = 3, and
L = 100. Part (a) is produced withm = 0.8m� , while part (b) is produced withm = 1.5m� , wherem� = 0.1335

endemic equilibria for high enough values of m (i.e., m > m�), while it has no endemic
equilibrium if m < m�.

5 Summary and conclusion
Guillain–Barré syndrome (GBS) is potentially life threatening. GBS patients are supposed
to be admitted for monitoring. They have to monitor breathing, heart rate, and blood
pressure. When a patient’s ability to breathe is impaired, they have to be put on a ventila-
tor. All patients have to be observed for such complications as infection, changes of blood
pressure, blood coagulating changes, or heart beat changes. GBS has unknown cure, while
treatment improves symptoms and decreases duration. Given the autoimmune nature of
the disease, its acute phase is typically treated with immunotherapy such as plasma ex-
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change to remove antibodies from the blood or intravenous immunoglobulin. It is con-
sidered as autoimmune disease, so treatment is either plasma exchange to decrease blood
antibodies or intravenous immunoglobulin. It is effective if used 7 to 10 days from the be-
ginning of symptoms. If muscle weakness persists after acute phase treatment, the patient
will be treated by rehabilitation.

To the best of our knowledge this is the first mathematical model for GBS. The inter-
action between the target cells and the immune cell inducement is generally described by
model (1). Depending on the form of the target cell growth and the immune response, four
cases of the model have been studied. In cases where the immune response is assumed to
be linear, the model has a basic reproduction number (BRN) which is a function of the
activation rate of the immune response k. If the BRN is reduced to below one (i.e., k re-
duces to below some threshold), then the disease dies out where the trivial equilibrium is
globally stable, while if the BRN is higher than one (i.e., k is above this threshold), then a
unique endemic equilibrium exists and is locally asymptotically stable, which means that
the disease persists. In the cases where the immune response is assumed to be nonlinear
and in the form of Holling type III, the model does not have a basic reproduction number.
Moreover, the model has a trivial equilibrium that is always locally asymptotically stable.
However, if all parameters have been kept fixed except the maximum proliferation rate of
the immune cells m, then, for m above some threshold (denoted by m�), two conjugate en-
demic equilibria start to appear. The endemic equilibrium with higher level of immune cell
inducement y+ is always locally stable, while the other is unstable. This behavior means
that the initial conditions play a role in the fate of trajectories. In other words, clearing
the disease depends on the initial conditions. Motivated by the work shown in [24], our
results show that control measures aiming at reducing the maximum proliferation rate m
to slightly below the critical threshold m� ensure a successful elimination of the disease.
Our results show further that early detection of the disease gives a better chance of cure
since the value of y0 is small enough.
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