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Abstract
From the standpoint of fishery management, an essential component of the basic
information upon which policy can be based consists of intelligence from field data
and computations. In certain situations, these studies can provide quite a great deal
of the necessary information. However, in other situations they have not been able to
give unequivocal answers to important questions, especially where several influential
factors are involved in the whole jigsaw of the complex fishery system, in which their
relative abundance may vary with the intensity of the recruitment effort or with
spatial migration. Here, we propose and analyze a reaction–diffusion model for the
fish population incorporating time-dependent fishery intensity. Using the traveling
wave coordinate, we derive analytical solutions to the model system. Conditions on
the system parameters are derived which ensure stability of the system under study.
Phase portrait and traveling wave solution are plotted and discussed in order to gain
better insights into the spatial movement of the fish population in time.

Keywords: Reaction-diffusion equations; Time-dependent recruitment intensity;
Traveling wave coordinate; Stability analysis

1 Introduction
The movement of fish populations in space has often been neglected in dynamic models
of fisheries. However, this striking feature of spatial heterogeneity due to fish mobility is
essential from the point of view of fish management and exploitation. Undoubtedly, fish
population dynamics models play a crucial role in providing assessment of the fish abun-
dance and information on fishery exploitation level, since they form the scientific basis
for advised decision making on fisheries managements. Especially since the fishing indus-
try is facing increasing pressure due to the effects of climate changes, it is more pressing
than ever to carry out more detailed dynamical studies by proposing and analyzing more
complex models dealing more accurately with population distributions and spatial het-
erogeneity [1].

According to Sibert et al. [2], an important aspect of fisheries is their highly heteroge-
neous nature in space and time. This feature significantly effects their functioning, so that
fish mobility and distribution have to be accurately described using spatialized models.
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In 2007, Birnir and Maury [3] derived a system of ordinary differential equations from
a discrete system of Vicsek, Czirok et al. (1999) to describe the motion of a school of fish.
Equivariant bifurcation theory was utilized to derive linear and stationary solutions of the
model system as well as explore their stability. The author also showed that periodic and
toroidal solutions exist under deterministic perturbations and structurally stable hetero-
clinic connections. The model was applied to model the migration of the capelin which is
a pelagic fish that migrates extensively in the North Atlantic [3].

More recently, Boonrangsiman et al. [4] considered a stage-structure model applied to
fisheries. They incorporate a time delay into their model in which there is a single prey
population and a predator population that can be separated by reproduction ability into
an immature and a mature stage. Both predators in their model are allowed to hunt the
same prey. Their model system admits three nonnegative steady states, namely, a washout
steady state, a predator-free steady state, and a steady state at which all three populations
coexist. The coexistence steady state is shown to be stable for all time delays under certain
conditions on the system parameters. It is shown that instability and a Hopf bifurcation
may take place at a critical time delay, with a possibility of transition to chaotic behavior.

It has lately been more acceptable to represent movement with a diffusion process. Al-
though spatial advection-diffusion models have a long history in ecology [5–7], they have
only recently been applied to model fish movement [2, 8, 9].

In 2001, an advection-diffusion reaction equation was utilized to predict the movement
and tag attrition parameters from skipjack tuna tagging data that have been collected off
the Maldives, based on two sets of field data collected during two periods of the early
1990s [10]. When their results of the analysis and previous analyses were compared in
terms of management of skipjack fisheries in the Maldives and in the Indian Ocean, it was
found that the movements were highly variable in space and time, and it was not possible
to observe many consistent patterns between the two data sets.

In 2005, an advection-diffusion size-structured fish population model was proposed and
applied to simulate the skipjack tuna population in the Indian Ocean [1]. Their model
is fully spatialized, while movements are parameterized using a combination of oceano-
graphical and biological data in order to naturally react to variations in the environment.
An initial-boundary value problem was constructed then a unique positive solution was
shown to exist. A numerical scheme was chosen for the model simulation. The model pa-
rameters were estimated and the exact gradient of a Bayesian cost function was computed
measuring the distance between the outputs of the model and catch and length frequency
data. A sensitivity analysis was carried out which interestingly shows that not all parame-
ters can be estimated from the data.

In terms of traveling wave solutions in a fishery model, [11] introduced a simple model,
in which organisms prefer to move in the direction they are sensing. They found that the
model supports a one parameter family of compact traveling waves or “swarms”. Moreover,
the model has traveling front solutions, by which a population migrates from a region of
higher population density to that of a lower density. According to these authors, their
model reproduces features of realistic organism aggregations which have been observed
in fish schools whose speed increases with the density of the school. Their model is a
simple one-dimensional one-way system of the form

ρt +
(
ρu(ρ)

)
x = 0,
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where the density of organisms ρ (x, t) ≥ 0, and u is the speed of the moving organism
such as fish population.

To the best of our knowledge, none of the previous works have captured the effect of
recruitment intensity on the fish population dynamics, which could significantly impact
the functioning and management of the fishing industry. Here, we therefore propose a
reaction–diffusion model to describe fish movement, incorporating the factor of inten-
sity of recruitment which is assumed to vary with the fish population density, or count, at
that point in space and time. The key aspects of our model which make it different from
previous ones are that our model makes the explicit connection between the recruitment
intensity and the fish abundance, while taking into account the spatial dimension. More-
over, previous modeling studies mostly provided numerical solutions of the model, not
analytical ones, so that the relationship among different physical parameters and their
impacts on the important variables we need to track, namely fish population density and
recruitment intensity, are not very clear. The impacts of the two dependent variables on
one another can be discerned more distinctly by analysis of analytical solutions derived in
this study. Introducing a traveling wave coordinate, our model is found to be equivalent to
a system of ordinary differential equations which is analyzed in terms of its stability. The
analytical solution of the model is found, whose plots illustrate how waves of fish popu-
lation dynamically travel in the spatial direction as time progresses. More specifically, in
this study recruitment intensity is derived as a function of space and time, not taken to
be constant or modeled by simple terms as in many previous models. The effect, on the
fishing effort, of the amount of fish being caught, is modeled by a Monod-like catchability
rate function which is more realistic, so that the variations in the fishing effort for com-
mercial purposes can be better deduced and identified for more efficient management and
exploitation.

2 Model system
Here, we shall consider a fish population whose density X(r, t), in counts per unit area,
at the time t depends on the position in space, r, measured in the radial direction from a
point of reference at the center of the region of interest. It is assumed that the school of
fish spreads out in the radial direction, homogeneously in the angular direction, so that X
does not depend on the polar angle.

We let Y (r, t) be the recruitment intensity, or fishing effort, whose rate of change varies
directly as the rate of change of the population density at (r, t). Also incorporating fish
movement with a diffusion term, we arrive at the following equation for the rate of change
of X(r, t):

∂Y
∂t

= σ
∂X
∂t

– ω
∂2X
∂r2 , (1)

where the second term on the right represents the movement of the school of fish with
the diffusion constant ω, ω and σ being positive constants.

With the expansion of fisheries around the world, it has become necessary to be able
to accurately quantify fishing effort that the increase of which has threatened many fish
stocks and non-target species with collapse. According to McCluskey and Lewison [12],
deciding on the “best” method ultimately depends on the intended application of the quan-
tity. They suggested, however, that the quantification methods that best represent fishing



Suksamran and Lenbury Advances in Difference Equations        (2019) 2019:205 Page 4 of 18

effort on a broad scale are based on information on gear used and spatial distribution.
Spatial structuring of fish stocks also can arise from regional variations in the dynamics
of the fishery fleet, such as variation in fishing effort or gear use [13, 14].

According to Birnir and Maury [3], the intrinsic dynamics of a school of fish and its mi-
gration present us with a perplexing and fascinating problem which leads to many com-
plications in our optimization attempts. This is in part due to the observation that, as
mentioned by [13], the individual fish has the tendency to adjust their speed and move-
ment direction to those of the school to which they belong while, to make matters worse,
the internal structure of the school can be very complex. How fish organize and main-
tain schools from a basic mechanism to function as their predator avoidance and survival
tactics is still being actively investigated. The exceptional speed at which individual fish
reacts collectively to predatory attacks has been hypothesized to be owed to quick transfer
of information locally between school members. These groups turn together in unison and
produce “escape waves” [14]. The diffusion term is added to (2) in the attempt to capture
this phenomenon.

The recruitment intensity Y (r, t), on the other hand, increases more quickly if there
appears to be more fish in the fishing area. If the population is observed to decrease, fishing
effort would naturally be curtailed. Thus, the rate of fishing may be described as in the
following equation:

∂Y
∂t

= τXγ (k – X) –
ρXY

mY + X
, (2)

where the logistic model is assumed for the first term on the right, which represents the
perceived abundance of quarry as sensed by the hunting party, with the carrying capacity
of k so that if X exceeds the carrying capacity, the fishing intensity will decrease. The
parameters m, τandγ are positive constants to be determined in the solution of the model
using the traveling wave coordinate.

The second term on the right of (2) represents the effect, on the fishing effort, of the
amount of fish being caught, or catchability rate. If ρ is positive, as more fish are caught
the less intense fishing effort will become. If ρ is negative, the more fish are caught the
more intense fishing effort will become, since it is perceived by the fishermen that there is
an abundance of fish to be caught. If ρ is zero, there is no feedback on the fishing intensity
from current catchability. Here, we use a saturating function, with m a positive constant,
to account for the fact that at a certain level of X or Y , fishing cannot result in a higher yield
any more. To the best of our knowledge, such an expression has not been used in modeling
fish movements with recruitment. We base this term on the well-known Monod function
often utilized to model bio-reactors or predator-prey systems. In this term, if the fishing
intensity is kept constant, the amount caught will start to decrease when fish abundance
is high due to saturating demand. It may be observed that this term saturates to ρY in
the event that there is an abundance of fish (X → ∞), so that the rate of change of fishing
intensity Y then varies directly with Y . On the other hand, the term mY is included in
the denominator to reflect the fact that when fishing effort increases to a certain level,
the amount caught will become independent of the effort. There is a limit to how much it
could be caught.

In terms of the units, many factors can give rise to biases on attempts to measure fishing
effort [12]. For example, changes in regulation, number of fishing crew, length of trip or
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time spent actively fishing, or actual amount of gear utilized in the water, can all lead
to different and confounding interpretation of the unit “trip” of fishing effort. Thus, it is
suggested that multiple units of effort are used in order to minimize such biases of effort
measurements [12]. To overcome this problem, we carry out a non-dimensionalization of
the variables by letting

X = χX∗, Y = ηY ∗, t = Tt∗, r = Lr∗, c = Cc∗,

τ = θτ ∗, k = Kk∗, ρ = Rρ∗, m = Mm∗,

where σ c = 1. Substituting these into Eq. (1), and then dropping the stars, we arrive at the
following equations:

χ

T
∂X
∂t

=
cχω

L2
∂2X
∂r2 +

ηC
T

c
∂Y
∂t

and

η

T
∂Y
∂t

= χγ KθτkXγ – χγ +1θτXγ +1 –
χηRρXY

ηMmY + χX
.

Letting

C =
χ

η
, w =

cTω

L2 , θ =
η

Tχγ +1 , K =
η

χγ Tθ
, M =

χ

η
, R =

1
T

,

we may then write (1) for future use as

∂X
∂t

= w
∂2X
∂r2 + c

∂Y
∂t

(3)

and (2) remains the same, in which X and Y are now dimensionless.
Traveling wave coordinate.
We now introduce the traveling wave coordinate

z = r + vt,

assuming that the wave of fish movement is traveling at a constant speed v. Letting x(z) =
X(r, t), and y(z) = Y (r, t), Eq. (3) becomes

vx′ = wx′′ + cvy′ (4)

and (2) becomes

vy′ = τxr(k – x) – ρxy/(my + x), (5)

where (·)′ denotes the derivative with respect to z. Integrating (4), we find that an equation
that x and y satisfy is

vx = wx′ + cvy
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or

y =
x
c

–
wx′

cv
.

Substituting this into (5), we arrive at

vy′ = τxγ (k – x) – ρx
(

x
c

–
wx′

cv

)/
(my + x).

We now substitute the above into the term vy′ in Eq. (4) which now becomes

vx′ = wx′′ + c
(

τxr(k – x) – ρx
(

x
c

–
wx′

cv

)/
(my + x)

)
.

Multiplying the above equation by the factor my + x, we clear the equation of the de-
nominator:

vx′(my + x) = wx′′(my + x) + c
(

τxr(k – x)(my + x) – ρx
(

x
c

–
wx′

cv

))

or, upon re-arranging,

(
wx′′ – vx′ + cτxr(k – x)

)
(my + x) – cρx

(
x
c

–
wx′

cv

)
= 0.

We remove the dependence on y by substituting y = x
c – wx′

cv to obtain the following sec-
ond order ordinary differential equation on x which is equivalent to the model system of
partial differential equations (2)–(3):

(
wx′′ – vx′ + cτxr(k – x)

)(
m

(
x
c

–
wx′

cv

)
+ x

)
– cρx

(
x
c

–
wx′

cv

)
= 0. (6)

In the next section, we shall derive analytical solutions of our model as functions of
traveling wave coordinate z.

3 Analytical solutions
We seek a traveling wave solution in the form

x′ = ax – bxn (7)

so that

x′′ =
(
a – nbxn–1)x′. (8)

Substituting (7)–(8) into (6), one obtains

(
a – nbxn–1)(ax – bxn)[–mw2(ax – bxn) + (mvw + cvw)x

]
+ mvw

(
ax – bxn)2

–
(
mv2 + cv2)x

(
ax – bxn) +

(
ckτxγ – cτxγ +1)[–mw

(
ax – bxn) + (mv + cv)x

]
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+ cρw
(
ax2 – bxn+1) – cρvx2 = 0. (9)

Traveling wave solution for the case n = 3
2 ,γ = 1.

Upon closer inspection, we can see that the traveling wave solution will exist if n = 3
2 ,

and γ = 1. Using these values of n and γ , re-arranging (9) and equating coefficients of
like terms, we obtain the following set of equations which relate the model parameters
together. From the coefficients of x2:

(
a2w + ckτ

)
δ + mvwa2 – a

(
mv2 + cv2) + acρw – cρv = 0. (10)

From the coefficients of x5/2,

2a2bmw2 – 5abwδ – 4abmvw + 2b
(
mv2 + cv2) + 2ckτbmw – 2bcρw = 0. (11)

From the coefficients of x3,

(
3b2w – 2cτ

)
δ + 2mvwb2 – 5ab2mw2 = 0. (12)

Finally, from the coefficients of x7/2

3b3mw2 – 2cτbmw = 0, (13)

where

δ = mv + cv – amw.

Equations (10)–(13) can be re-arranged and combined to arrive at the following more
simplified equations relating the system parameters:

a =
2v
w

, (14)

b =
√

2cτ
3w

, (15)

ρ = –
2av(m – c)2

c2 , (16)

k =
av(c – 2m)

c2τ
. (17)

With the parameters that satisfy the conditions (14)–(17), we now derive the traveling
wave solution, by re-arranging Eq. (7) and integrating, with n = 3

2 , yielding

∫ dx
ax – bx3/2 =

∫
dz.

Letting s = x1/2, the above integral may be written as

∫ 2sds
(bs3 – as2)

=
∫ 2ds

s(bs – a)
= –

∫
dz.
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Upon using partial fraction decomposition, we can carry out the integral to obtain

ln

∣
∣∣∣
bx1/2 – a

bx1/2

∣
∣∣∣ = –

a
2

(z – z0) (18)

or

|a – bx1/2|
x1/2 = κe–az/2,

where

κ =
|a – bx1/2

0 |
x1/2

0
,

with x0 = x(z = 0) = X(r = 0, t = 0). The wave front solution is then

x =
a2eaz

(κ + beaz/2)2 . (19)

Since

y =
x
c

–
wx′

cv
=

x
c

–
w(ax – bxn)

cv
,

we are led to

y =
(v – wa)a2eaz

cv(κ + beaz/2)2 +
bwa3e3az/2

cv(κ + beaz/2)3 . (20)

In the space and time variables, the solution may be expressed as

X(r, t) =
a2ea(r+vt)

(κ + bea(r+vt)/2)2 , (21)

Y (r, t) =
(v – wa)a2ea(r+vt)

cv(κ + bea(r+vt)/2)2 +
bwa3e3a(r+vt)/2

cv(κ + bea(r+vt)/2)3 . (22)

Traveling wave solution for the case n = γ = 2.
Upon further inspection, we can see that the traveling wave solution will also exist if

n = γ = 2. Thus, re-arranging (7) and equating coefficients of like terms, we obtain the
following set of equations which relate the model parameters together:

From the coefficients of x2,

–a3mw2 + 2a2mvw + a2cvw – a
(
mv2 + cv2) + acdw – cρv = 0. (23)

From the coefficients of x3,

a2bmw2 – 3ab
(
–amw2 + mvw + cvw

)
– 2abmvw + b

(
mv2 + cv2)

+ ckτ (–amw + mv + cv) – bcρw = 0. (24)
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From the coefficients of x4,

–3ab2mw2 + 2b2(–amw2 + mvw + cvw
)

+ b2mvw

+ bckmτw – cτ (–amw + mv + cv) = 0. (25)

From the coefficients of x5,

2b3mw2 – bcτmw = 0. (26)

Equations (23)–(26) can be used to arrive at the following simpler relationships among
the system parameters.

We are now in the position to derive the analytical solution with the parameters that
satisfy the conditions (23)–(26). To now derive the traveling wave solution, we re-arrange
Eq. (7) and integrating to obtain

∫ dx
ax – bx2 = z + C,

which yields, upon integrating and using partial fraction decompositions,

ln

∣
∣∣
∣

x
a – bx

∣
∣∣
∣ = az + aC0

or

x
a – bx

= eaz/C,

where

C =
a – bx0

x0
, x0 = x.

Since

y =
x
c

–
wx′

cv
,

we are led to the analytical solution

x =
a
√

2weaz

C
√

2w +
√

cτeaz
, (27)

y =
x
c

–
w
cv

(
ax – bx2)

=
(

v – aw
cv

)
a
√

2weaz

C
√

2w +
√

cτeaz
+

a2bw
cv

( √
2weaz

C
√

2w +
√

cτeaz

)2

. (28)

In the space and time variables, the solution may be expressed as

X(r, t) =
a
√

2wea(r+vt)

C
√

2w +
√

cτea(r+vt)
, (29)
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Y (r, t) =
(

v – aw
cv

)
a
√

2wea(r+vt)

C
√

2w +
√

cτea(r+vt)
+

a2bw
cv

( √
2wea(r+vt)

C
√

2w +
√

cτea(r+vt)

)2

. (30)

We next carry out a stability analysis of the model system in this case where γ = 2. The
analysis for other values of γ will be less tractable but is expected to follow qualitatively
in a similar fashion.

4 Stability analyses
To investigate the stability of (6) in the case that γ = 2, we introduce in (6) the new vari-
ables: u = x(z), and υ = x′(z), which leads us to the following system of first order nonlinear
equations in u and υ :

u′ = υ ≡ F(u,υ), (31)

wυ ′ = –cτu2(k – u) + cρ
(vu – wυ)u

(mvu – mwυ + cvu)
+ vυ ≡ wG(u,υ). (32)

The steady states of (31)–(32) are found by equating F(u,υ) and G(u,υ) to zero. They
are (u,υ) = (u1, 0) and (u,υ) = (u2, 0) with

τu2 – kτu +
ρ

(c + m)
= 0. (33)

Thus,

u1,2 =
kτ ±

√
k2τ 2 – 4ρτ

c+m

2τ
. (34)

We note that u1,2 are real only if

k2τ 2 –
4ρτ

c + m
≥ 0. (35)

In what follows, we let

a1 ≡ c2ρ

v(c + m)2 –
v
w

, (36)

a2 ≡ 2cρ
w(c + m)

–
ck2τ

2w
–

ck
√

k2τ 2 – 4ρτ

c+m

2w
. (37)

We can then prove the following theorem on the stability of the model system (31)–(32).

Theorem 1 If (35) holds the steady state (u1, 0) is unstable for all parametric values, while
the steady state (u2, 0) will be stable provided

a1 > 0 (38)

and

k2τ – k
√

k2τ 2 –
4ρτ

c + m
–

4ρ

(c + m)
< 0. (39)
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Proof The Jacobian matrix of (31)–(32) at the steady state (u1, 0) is

J(u1, 0) =

⎛

⎝
0 1

ck2τ
2w +

ck
√

k2τ2– 4ρτ
c+m

2w – 2cρ
w(c+m)

v
w – c2ρ

v(c+m)2

⎞

⎠ .

The characteristic equation of (31)–(32) at (u1, 0) is then

λ2 + a1λ + a2 = 0 (40)

with a1 and a2 as defined in (36) and (37), respectively. For stability, we need the coeffi-
cients in (40) to be both positive. That is, we need a1 > 0 and a2 > 0.

However, we need (35) to hold for this steady state to exist. On multiplying (35) through
by c

2w , one sees that

2cρ
w(c + m)

–
ck2τ

2w
≤ 0

and hence, a2 ≤ 0 which means (u1, 0) is an unstable saddle point.
For the steady state(u2, 0), the Jacobian can be written as

J(u2, 0) =

(
0 1
β v

w – c2ρ

v(c+m)2

)

,

where

β = –
2ckτ

w
u2 +

3cτ
w

u2
2 +

cρ
w(c + m)

.

Thus, for stability, we need (38) to hold, and β < 0. Using (33), β becomes

β = kτu2 –
2ρ

(c + m)
.

Using (34) to substitute into u2, we find that β < 0 if

k2τ – k
√

k2τ 2 – 4ρτ

c+m

2
–

2ρ

(c + m)
< 0,

which is satisfied since condition (39) in the hypothesis of the theorem holds. This com-
pletes the proof. �

In Fig. 1, we show a phase portrait of the model system (31)–(32) in the case where
(35), (38) and (39) hold. The solution trajectories are seen as expected to tend towards
the steady state (u2, 0) which is a stable focus in Fig. 1(a). Some trajectories tend towards
(u1, 0) a little as z increases, but eventually get pushed away from the saddle point. We
also show in Fig. 1(b) a graph of u(z) = x(r, t) in this case, plotted as a function of the
traveling wave coordinate z. The fish population is seen here to travel in waves with ripples
of higher density alternating with low density that dampen as we look further into the
distance (z → ∞).
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Figure 1 Phase portrait. (a) Plot of the phase portrait of the model system (7)–(8) showing solution
trajectories in the vicinity of the two steady states, one of which is a saddle point and the other a stable focus
as predicted by Theorem 1. Here, S1 is the steady state (u1, 0) and S2 is (u2, 0). (b) Plot of fish population
density u as a function of traveling wave coordinate for t between 0 and 9. Here, a = 1

2 , b = 2, c = 4, ρ = 1
2 ,

k = 1
2 ,m = 1, τ = 2, v = 1

2 , and w = 1

5 Discussion and interpretation
In order to plot the traveling wave solutions to illustrate how a school of fish moves in space
and time, as well as compare the impacts of different efforts on the population abundancy
and pattern of mobility, we must find parametric values that satisfy the conditions (24)–
(27), or (33)–(36), together with the stability conditions (11) and (14)–(15).
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Figure 2 Traveling wave solution. Traveling waves of (a) fish density x, and (b) recruitment intensity y, as
functions of spatial position r for t from 0 (furthest left) to 9 (furthest right), given by (31)–(32). The waves are
seen moving from right to left. Here, a = 1,b = 1

2 , c = 3,ρ = – 2
9 , k =

4
9 ,κ = 0.5,m = 1,τ = 1

16 , v =
1
4 , and w = 1

2

With the parameter values chosen in such a manner, we are able to plot the analytical
solution given by (31)–(32), seen as a wave of movement of fish population from right
to left along the spatial direction r as time progresses in Fig. 2. Here, a = 1, b = 1

2 , c = 3,
ρ = – 2

9 , k = 4
9 , κ = 0.5, m = 1, τ = 1

16 , v = 1
4 , and w = 1

2 . We observe x and y to tend, in
an increasing fashion, toward their respective values at the stable steady state (u2, 0) as r
tends to infinity. If we focus on a single position, fixing r, then we see that the fish density
x increases as time increases, and similarly to the fishing intensity y. This is the case where
ρ < 0, in which the increase in fishing yield at each moment in time will increase the fishing
effort even more.

Figure 3 shows the analytical solution given by (39)–(40), seen as a wave of movement
of fish population from right to left along the spatial direction r as time progresses. Here,
a = 1

2 , b = 2, c = 4, ρ = 0, k = 1
4 , τ = 2, v = 1

2 , w = 1 and C = 1, chosen to satisfy (33)–(36).
This is the case that ρ = 0, which is when the current fishing yield does not have any impact
on the decision to increase or decrease the fishing effort.
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Figure 3 Traveling wave solution. Traveling waves of (a) fish density x, and (b) recruitment intensity y, as
functions of spatial position r for t from 0 (furthest left) to 9 (furthest right), given by (39)–(40). The waves are
seen moving from right to left. Here, a = 1

2 ,b = 2, c = 4,ρ = 0, k = 1
4 ,τ = 2, v = 1

2 ,w = 1 and C = 1

In both cases in which we are able to identify the traveling wave solutions, the current
catch yield does not impose a curb on the fishing effort (ρ ≤ 0). In the case where n = 3

2 ,γ =
1, it even encourages more intense fishing (ρ < 0). The traveling waves travel from right
to left along which, at a fixed time, the number of fish increases as we travel downstream
further from the point of reference (r → ∞), and the fishing intensity follows suit. On the
other hand, at a fixed location r, the number of fish increases as time progresses (t → ∞),
and the fishing intensity follows suit.

The stability of the steady state (u2, 0) where the fish population is not wiped out, which
is the desirable situation, is contingent on the condition (15) to hold. Considering (15),
we see that if k is large enough, the non-wipeout stability will be ensured, and the fish
population will tend towards a positive steady level as time progresses. The parameter k
may be seen as the carrying capacity of the environment, and high value of k means that
the environment is favorable in support of high levels of aquatic species.
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Figure 4 Three-dimensional illustrations. Three-dimensional plots of traveling wave solutions of (a) fish
density x, and (b) recruitment intensity y, as functions of spatial position r for t. Here,
a = 1

2 ,b = 2, c = 4,ρ = 0, k = 1
4 ,τ = 2, v = 1

2 ,w = 1 and C = 1

Finally, in Fig. 4, we show a three-dimensional plot of X and Y as functions of r and t.
The variations in population density and fishing intensity can be traced easily as we vary
the observation location or time.

Considering the plots in the above figures, we note that our model is able to exhibit real-
istic physical behavior, essentially due to our choice to incorporate impacts of recruitment
intensity on the model dynamics. If a simpler term were used for the impact of catchability
on the fishing intensity, specifically, if m = 0 in the catchability rate term in Eq. (2), reduc-
ing the term to a simpler linear form, the graphs of the levels of population density and
recruitment intensity will be different, since m influences the choice of a in the equations
relating all the system parameters, and hence impacts on the solution given in (21)–(22)
and (29)–(30). It would also be harder to fit our model to physical data if this parameter
is missing, limiting the degree of freedom. The conditions that ensure the system’s stabil-
ity also depend on m, for example in (39). The presence of this parameter ensures better
accuracy of the result.
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Now, if the factor mY + X is removed from the second term on the right of (2) altogether,
so that the term reduces to ρXY , the system will lose its stability. There would not be the
terms in (36) and (37) that allow a1 and a2 to be positive, thereby ensuring the system’s
stability. What this means is that, whatever the physical conditions, the levels of X or Y
eventually become unbounded unless they start from their respective steady state values.
This, apart from being less than realistic, would defeat the purpose of our modeling effort
to try to find the best way to manage and control the system.

As far as we can ascertain, articles that provide data which can be used in relation to our
model results are extremely rare, since most articles mainly reported on data that related
population density and fishing effort to ages or lengths of the fish species of interest. Lim-
ited data can be found that give time series of the fish population but the measurements
were done for very long time intervals, in years not in days or weeks that could be used
to calibrate our model. The studies cited in the introduction section [1–11] constructed
their models based on general observations and not on any rigorous physical data mea-
surements and relatively crude data was used in their model simulations. In fact, for this
reason, our modeling should be a valuable springboard and provide an impetus for re-
searchers to collect physical data that are more relevant to the effort at fisheries manage-
ment. To be able to fit the model to the data and estimate the system’s parametric values,
the data need to be collected with the appropriate units of time and space. The finer these
measurements are made, the more accurate the model’s solutions will be.

According to Cornejo-Donoso et al. [15], the use of Marine Protected Areas (MPA) has
become recognized as a viable management approach. However, if the goal is to manage
species that are relatively not as active, MPAs have been shown to be quite successful. On
the other hand, this type of spatial protection is not very successful in meeting this goal if
the organisms are highly mobile, moving frequently outside the protected area. A larger
MPA has been proposed to compensate for such extensive movements [15]. Since our
model describes the distribution of fish populations over time and space, it offers an ideal
tool that can provide valuable insights into MPA designs, and predict potential outcomes
of MPA utilization and management, in terms of to the appropriate sizes and boundaries
of MPAs as well as optimum recruitment scheduling and locations that protect marine
lives, maintain biomass, as well as increase fisheries productivity at the same time. In par-
ticular, we have shown that conditions on the physical conditions exist that ensure that
the population density will tend towards a bounded homogeneous value as time passes,
in certain situation in an oscillatory fashion in space (Fig. 1), or monotonic in fashion in
other circumstances (Figs. 3–4). If these conditions are not satisfied, then the desirable
trends in fish population may not be relied upon. We also can tell how the parameter a,
which is twice the ratio of the speed of the traveling wave v and the diffusion coefficient
w, significantly effects the trends in the fish population.

Concerning model limitations, some investigators may argue that predictions from our
model are subject to simplified movement assumptions and neglect of other important
factors that possibly influence the outcomes. Yet, we need to explore the limitations of
our model and the value of increasing the detail of the movement assumptions leading to
an increased behavioral complexity and mathematical intractability of the resulting model.
For example, our model assumes deterministic dynamics when a random, diffusive move-
ment could be more realistic. Stochastic simulations can easily be carried out to check
whether this will add significantly to the accuracy of the result or not. Another effect to
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which we have not paid attention in this paper is that of aggregations, which may be ag-
gregations in response to forces of the environment such as the surface temperature, and
other environmental factors that may be transported by ocean currents, as investigated
by Cornejo-Donoso et al. in [15]. Future research can involve weakly nonlinear stability
analysis to derive conditions under which aggregation may lead to the emergence of Turing
patterns or other interesting spatial distributions that have been observed and reported in
some literature [16].

6 Conclusion
Highly mobile aquatic species make tracking and management efforts to protect marine
lives, restore biomass, and increase fisheries yields extremely difficult. While Marine Pro-
tected Areas (MPAs) have been proposed and experimented upon to meet these goals for
many relatively sluggish marine species, their benefits to highly mobile species are doubt-
ful still due to their frequent movement outside the protected area, posing many limi-
tations in the testing and verification. Mathematical models can help to overcome these
limitations by identifying designs and predict potential outcomes. According to Cornejo-
Donoso et al. [15], large scaled protected areas can be effective in overfished stocks recov-
ery, pelagic fish protection ensuring significant rises in fisheries yields.

Numerous reports have been published in which simulations of individual movements
dynamics are carried out on heterogeneous spatial regions [17]. The main assumption in
these studies is that each fish individuals imitate the movement of nearby fishes, leading
to the formation and movements in aggregations [17]. A few researchers have argued that
predictions from these models are subject to simplified movement assumptions [15] in
assuming diffusive movement. However, by incorporating the influences of fishing inten-
sities that depends on space and time as well as the abundance of resources, our model
was shown to simulate different patterns of fish movements, depending upon different
values of the physical parameters, in the form of traveling wave fronts shown in Figs. 3–4,
or waves of fish migration with ripple effects as seen in Fig. 1. Our model is, therefore, ex-
pected to expand our understanding of how more insightful knowledge about fish move-
ment dynamics, and how they vary with the physical parameters, can affect the design of
effective alternatives to managing highly mobile stocks in the open waters.
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