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Abstract
In this work a coupled (LDG-CFEM) method for singularly perturbed Volterra
integro-differential equations with a smooth kernel is implemented. The existence
and uniqueness of the coupled solution is given, provided that the source function
and the kernel function are sufficiently smooth. Furthermore, the coupled solution
achieves the optimal convergence rate p + 1 in the L2 norm and a superconvergence
rate 2p at nodes for the numerical solution ÛN with the one-sided flux inside the
boundary layer region under layer-adapted meshes uniformly with respect to the
singular perturbation parameter ε .
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1 Introduction
Consider the following singularly perturbed Volterra integro-differential equation:

⎧
⎨

⎩

εu′(t) + a(t)u(t) +
∫ t

0 k(t, s)u(s) ds = f (t), t ∈ [0, T],

u(0) = u0,
(1.1)

where 0 < ε � 1 is the perturbation parameter. Here a(t) ≥ α > 0 for some constant α, f (t)
and k(t, s) are sufficiently smooth functions, and u is the unknown function. When putting
ε = 0 in (1.1), we obtain the reduced equation

a(t)u(t) +
∫ t

0
k(t, s)u(s) ds = f (t), (1.2)

which is a Volterra integral equation of the second kind. Singularly perturbed Volterra
integro-differential equations arise in many physical and biological problems (see, e.g., [1–
7]). A survey of singularly perturbed Volterra integral and integro-differential equations is
provided in [8]. For singularly perturbed problems, when the perturbed parameter ε ap-
proaches to zero, the width of the boundary layer becomes thinner. The behavior of u in
the boundary layer is hard to simulate numerically, i.e., the solution of (1.1) for the singu-
lar perturbation parameter ε varies very rapidly in a thin layer near t = 0 compared to the
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solution of (1.2) (see, e.g., [9, 10]). Traditional methods, such as finite difference or finite
element method, do not work well for these problems because they often produce oscil-
latory solutions which are inaccurate when the perturbed parameter ε is small. The goal
of this paper is to construct a robust numerical method for singularly perturbed Volterra
integro-differential equations.

Numerical methods for the solution of the singularly perturbed Volterra integral and
integro-differential equations include exponential finite difference method, finite dif-
ference method, implicit Runge–Kutta method, tension spline collocation method, the
Petrov–Galerkin method, the spectral method, and so on. From the numerical experi-
ments in [9], uniform convergence of the exponential finite difference method under a
Shishkin mesh at nodes was almost second order. In [10], Amiraliyev and Sevgin con-
structed an exponentially fitted difference scheme and analyzed the first order uniform
convergence property under uniform mesh in the discrete maximum norm. Cen and Li
[11] studied a finite difference scheme based on trapezoidal integration under the Shishkin
mesh, which is almost second-order uniformly convergent at nodes theoretically and nu-
merically. In [12], Kauthen proved the convergence of the implicit Runge Kutta methods
out of the boundary layer. Moreover, Horvat and Rogina [13] gave an analysis of the global
convergence properties of a new tension spline collocation solution at nodes, i.e., O(hm–1)
for singularly perturbed Volterra integro-differential equations and O(hm) for singularly
perturbed Volterra integral equations.

The local discontinuous Galerkin (LDG) method proposed by Cockburn and Shu [14]
has been shown to be highly stable and effective for convection-diffusion problems. Lars-
son, Thomée, and Wahlbin [15] applied the DG method in time to solve parabolic integro-
differential equations with a weakly singular kernel and provided the error estimate. In
[16], an hp-DG method was implemented to solve the Volterra integro-differential equa-
tion with a weakly singular kernel, and the exponential convergence property was inves-
tigated.

Though the DG method allows discontinuity between adjacent elements, it produces
more degrees of freedom than the continuous finite element method (CFEM) and hence
requires a large amount of computation. On the other hand, the standard Galerkin FEM
even on layer-adapted meshes lacks stability in spite of its good convergence proper-
ties.

A coupled (LDG-CFEM) approach was introduced by Alotto [17] in the framework
of rotating electrical machines. Perugia and Schötzau [18] studied the coupled method
for the modeling of elliptic problems arising in electromagnetics. Roos and Zarin [19],
Zarin [20] analyzed the NIPG-CFEM coupled method on the Shishkin mesh for two-
dimensional convection-diffusion problems with exponentially layers or characteristic
layers. Zhu and Xie [21, 22] applied a coupling of continuous finite element method
and discontinuous Galerkin method to solve convection-diffusion problems. Inspired by
the great success of the coupled (LDG-CFEM) method in solving elliptic equations and
convection-diffusion equation, in our work we aim to derive a coupled approach of LDG
and CFEM to solve the singularly perturbed Volterra integro-differential equations. The
basic idea is to decompose the region into two parts. In the boundary layer, CFEM is
adopted where the mesh size is comparable with ε, and the LDG method is used out of
the boundary layer for its stabilization. The coupled method is robust with respect to the
singularly perturbed parameter ε under layer-adapted meshes. Moreover, the 2p-order
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uniform superconvergence at nodes for the numerical solution ÛN in the L∞ norm on the
layer-adapted mesh is observed.

The paper is organized as follows. In Sect. 2, the coupled (LDG-CFEM) method for
singularly perturbed Volterra integro-differential equations is introduced. In Sect. 3, the
existence and uniqueness of the coupled solution are given. The implementation of the
coupled method on the Shishkin mesh and the improved graded mesh is presented in
Sect. 4. In Sect. 5, some concluding remarks are given.

2 The coupled (LDG-CFEM) method
To describe the coupled method, we first introduce the partition of the interval I := [0, T]
given by the nodal points 0 = t0 < t1 < · · · < tN = T . Denote the cell In = [tn–1, tn] and the
step-size hn = tn – tn–1 for n = 1, . . . , N . Let

τ = τN = min
{

T/2, ε(2p + 1) ln N
}

or

τ = τε = min
{

T/2, –ε(p + 1) ln ε
}

,

and divide both intervals (0, τ ) and (τ , T) into N/2 subintervals. The mesh is quasi-
uniform on (0, τ ) and on (τ , T). Denote T 1 = {In}N/2

n=1 , T 2 = {In}N
n=N/2+1. Define the piecewise

polynomial space V 1
N and V 2

N as the space of polynomials of degree p ≥ 1 and q ≥ 1 in each
cell In, respectively, i.e.,

V 1
N =

{
v1 ∈ H1([0, τ ]

)
: v1(0) = u0, v1|In ∈ Pp(In),∀In ∈ T 1},

V 2
N =

{
v2 ∈ L2([τ , T]

)
: v2|In ∈ Pq(In),∀In ∈ T 2}.

Multiplying (1.1) by v1 ∈ V 1
N , v2 ∈ V 2

N and integrating the resultant equations in each cell
In in T 1 and T 2, respectively, we obtain

ε

∫

In

U ′
1,N v1 dt +

∫

In

aU1,N v1 dt +
∫

In

∫ t

0
k(t, s)U1,N (s) dsv1(t) dt

=
∫

In

fv1 dt, ∀v1 ∈ V 1
N , (2.1)

and

ε

∫

In

U ′
2,N v2 dt +

∫

In

aU2,N v2 dt +
∫

In

∫ t

0
k(t, s)U2,N (s) dsv2(t) dt

=
∫

In

fv2 dt, ∀v2 ∈ V 2
N , (2.2)

respectively. Based on (2.1), the finite element method is implemented in the interval [0, τ ],
that is, find U1,N ∈ V 1

N , s.t.

ε

∫

In

U ′
1,N v1 dt +

∫

In

aU1,N v1 dt +
∫

In

∫ t

tn–1

k(t, s)U1,N (s) dsv1(t) dt

=
∫

In

fv1 dt –
∫

In

∫ tn–1

0
k(t, s)U1,N (s) dsv1(t) dt, ∀v1 ∈ V 1

N . (2.3)
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Similarly, the discontinuous Galerkin(DG) method is adopted by (2.2) in the interval [τ , T].
The DG scheme is to find U2,N ∈ V 2

N , s.t.,

–ε

∫

In

U2,N v′
2 dt +

∫

In

aU2,N v2 dt

+
∫

In

∫ t

tn–1

k(t, s)U2,N (s) dsv2(t) dt + ε(Û2,N )n(v2)–
n

= ε(Û2,N )n–1(v2)+
n–1 +

∫

In

fv2 dt –
∫

In

∫ τ

0
k(t, s)U1,N (s) dsv2(t) dt

–
∫

In

∫ tn–1

τ

k(t, s)U2,N (s) dsv2(t) dt, ∀v2 ∈ V 2
N , (2.4)

where Û2,N is the numerical flux, which plays an important role for the DG method.
In this article, the numerical flux (Û2,N )j is the one-sided form, i.e.,

(Û2,N )j =

⎧
⎨

⎩

(U1,N )j, j = N/2,

{U2,N }j – 1
2 [U2,N ]j = (U2,N )–

n , j = N/2 + 1, . . . , N ,
(2.5)

where the average {·} and the jump [·] are defined as follows:

{u}j =
u+

j + u–
j

2
, [u]j = u+

j – u–
j .

The combination of (2.4) and (2.5) leads to the LDG method: for n = N/2 + 1, . . . , N ,

–ε

∫

In

U2,N v′
2 dt +

∫

In

aU2,N v2 dt

+
∫

In

∫ t

tn–1

k(t, s)U2,N (s) dsv2(t) dt + ε(U2,N )–
n(v2)–

n

= ε(U2,N )–
n–1(v2)+

n–1 +
∫

In

fv2 dt –
∫

In

∫ τ

0
k(t, s)U1,N (s) dsv2(t) dt

–
∫

In

∫ tn–1

τ

k(t, s)U2,N (s) dsv2(t) dt, ∀v2 ∈ V 2
N . (2.6)

From the viewpoint of computation, when n = 1, (2.3) can be written as

–ε

∫

I1

U1,N v′
1 dt +

∫

I1

aU1,N v1 dt

+
∫

I1

∫ t

0
k(t, s)U1,N (s) dsv1(t) dt + ε(U1,N )1(v1)1

= εu0(v1)1 +
∫

I1

fv1 dt, ∀v1 ∈ V 1
N , (2.7)
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where (U1,N )1 = u0 is used. For n = 2, . . . , N/2, (2.3) becomes

–ε

∫

In

U ′
1,N v1 dt +

∫

In

aU1,N v1 dt

+
∫

In

∫ t

tn–1

k(t, s)U1,N (s) dsv1(t) dt + ε(U1,N )n(v1)n

= ε(U1,N )n–1(v1)n–1 +
∫

In

fv1 dt

–
∫

In

∫ tn–1

0
k(t, s)U1,N (s) dsv1(t) dt, ∀v1 ∈ V 1

N . (2.8)

For n = N/2 + 1, (2.6) could be written as

–ε

∫

IN/2+1

U2,N v′
2 dt +

∫

IN/2+1

aU2,N v2 dt

+
∫

IN/2+1

∫ t

τ

k(t, s)U2,N (s) dsv2(t) dt + ε(U2,N )–
N/2+1(v2)–

N/2+1

= ε(U1,N )N/2(v2)+
N/2 +

∫

IN/2+1

fv2 dt

–
∫

IN/2+1

∫ τ

0
k(t, s)U1,N (s) dsv2(t) dt, ∀v2 ∈ V 2

N , (2.9)

where (U2,N )–
N/2 = (U1,N )N/2 is used. For n = N/2 + 2, (2.6) becomes

–ε

∫

IN/2+2

U2,N v′
2 dt +

∫

IN/2+2

aU2,N v2 dt

+
∫

IN/2+2

∫ t

tN/2+1

k(t, s)U2,N (s) dsv2(t) dt + ε(U2,N )–
N/2+2(v2)–

N/2+2

= ε(U2,N )–
N/2+1(v2)+

N/2+1 +
∫

IN/2+2

fv2 dt –
∫

IN/2+2

∫ τ

0
k(t, s)U1,N (s) dsv2(t) dt

–
∫

IN/2+2

∫ tN/2+1

τ

k(t, s)U2,N (s) dsv2(t) dt, ∀v2 ∈ V 2
N . (2.10)

For n = N/2 + 3, . . . , N , (2.6) becomes

–ε

∫

In

U2,N v′
2 dt +

∫

In

aU2,N v2 dt

+
∫

In

∫ t

tn–1

k(t, s)U2,N (s) dsv2(t) dt + ε(U2,N )–
n(v2)–

n

= ε(U2,N )–
n–1(v2)+

n–1 +
∫

In

fv2 dt –
∫

In

∫ τ

0
k(t, s)U1,N (s) dsv2(t) dt

–
∫

In

∫ tn–1

τ

k(t, s)U2,N (s) dsv2(t) dt, ∀v2 ∈ V 2
N . (2.11)



Tao and Zhang Advances in Difference Equations        (2019) 2019:217 Page 6 of 16

3 The existence and uniqueness of the coupled method
The discrete Gronwall inequality plays a very important role in the existence and unique-
ness analysis. According to [23], the discrete Gronwall inequality is described as follows.

Lemma 3.1 Suppose ωn ≥ 0, fn ≥ 0, and yn ≥ 0 for n = 0, 1, . . . . Further, they satisfy, for
n = 1, 2, . . . , N ,

yn ≤ fn +
n–1∑

j=0

ωjyj.

Then, for any N ≥ 1, we have

yN ≤ exp

(N–1∑

i=0

ωi

)

max
0≤n≤N

fn.

Summing up (2.3) over the first l elements with l = 1, 2, . . . , N/2, we obtain, for any v1 ∈
V 1

N ,

Bl(U1, v1) � ε

∫ tl

0
U ′

1v1 dt +
∫ tl

0
aU1v1 dt +

∫ tl

0

∫ t

0
k(t, s)U1(s) dsv1(t) dt

=
∫ tl

0
fv1 dt. (3.1)

Equivalently, we have

Bl(U1, v1) � –ε

∫ tl

0
U1v′

1 dt +
∫ tl

0
aU1v1 dt

+
∫ tl

0

∫ t

0
k(t, s)U1(s) dsv1(t) dt + εU1(tl)v1(tl) – εu0v1(t0)

=
∫ tl

0
fv1 dt, (3.2)

where U1(t0) = u0 is used.
Similarly, summing up (2.6) over the first l elements on the interval [τ , T] with l =

1, 2, . . . , N/2, we obtain, for any v2 ∈ V 2
N ,

Bl(U2, v2) � –ε

∫ tl

τ

U2v′
2 dt +

∫ tl

τ

aU2v2 dt

+
∫ tl

τ

∫ τ

0
k(t, s)U1(s) dsv2(t) dt +

∫ tl

τ

∫ t

τ

k(t, s)U2(s) dsv2(t) dt

+ ε(U2)–
l (v2)–

l – εU1(τ )v+
2 (τ ) – ε

l–1∑

j=N/2+1

(U2)–
j [v2]j

=
∫ tl

τ

fv2 dt, (3.3)



Tao and Zhang Advances in Difference Equations        (2019) 2019:217 Page 7 of 16

with [v]j = v+
j – v–

j , where U–
2 (τ ) = U1(τ ) is used. Equivalently, we have

Bl(U2, v2) � ε

∫ tl

τ

U ′
2v2 dt +

∫ tl

τ

aU2v2 dt +
∫ tl

τ

∫ τ

0
k(t, s)U1(s) dsv2(t) dt

+
∫ tl

τ

∫ t

τ

k(t, s)U2(s) dsv2(t) dt + ε

l–1∑

j=N/2+1

[U2]j(v2)+
j

=
∫ tl

τ

fv2 dt, (3.4)

where U+
2 (τ ) = U–

2 (τ ) is used.

Lemma 3.2 For any v ∈ V 1
N , we have the identity

Bl(v, v) =
ε

2
v2(tl) –

ε

2
u2

0 +
∫ tl

0
av2 dt +

∫ tl

0

∫ t

0
k(t, s)v(s) dsv(t) dt.

Proof By (3.1) and direct integration, we reach the conclusion. �

Lemma 3.3 For any v1 ∈ V 1
N and v2 ∈ V 2

N , we have the identity

Bl(v2, v2) =
∫ tl

τ

av2
2 dt +

∫ tl

τ

∫ τ

0
k(t, s)v1(s) dsv2(t) dt +

∫ tl

τ

∫ t

τ

k(t, s)v2(s) dsv2(t) dt

+
ε

2

l–1∑

j=N/2+1

[v2]2
j +

ε

2
(
(v2)–

l
)2 –

ε

2
v2

1(τ ).

Proof By (3.3) and (3.4), we have, for U2 ∈ V 2
N ,

Bl(v2, v2) = –ε

∫ tl

τ

v2v′
2 dt +

∫ tl

τ

av2
2 dt

+
∫ tl

τ

∫ τ

0
k(t, s)v1(s) dsv2(t) dt +

∫ tl

τ

∫ t

τ

k(t, s)v2(s) dsv2(t) dt

+ ε(v2)–
l (v2)–

l – εv1(τ )v+
2 (τ ) – ε

l–1∑

j=N/2+1

(v2)–
j [v2]j, (3.5)

Bl(v2, v2) = ε

∫ tl

τ

v′
2v2 dt +

∫ tl

τ

av2
2 dt +

∫ tl

τ

∫ τ

0
k(t, s)v1(s) dsv2(t) dt

+
∫ tl

τ

∫ t

τ

k(t, s)v2(s) dsv2(t) dt + ε

l–1∑

j=N/2+1

[v2]j(v2)+
j , (3.6)

respectively. The summation of (3.5) and (3.6) leads to the conclusion, where v+
2 (τ ) = v1(τ )

is used. �

We now address the existence and uniqueness of discrete solutions.

Theorem 3.1 Suppose that f (t), a(t) are continuous in I , and the kernel function k(t, s) is
continuous in I × I with a(t) ≥ α > 0. U1,N is the CFEM solution of (2.3) and U2,N is the
LDG solution of (2.6). Then U1,N and U2,N are existent and unique.
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Proof As the dimensions of V 1
N and V 2

N are finite, we only need to prove that the solution
of (2.3) is U1,N = 0 and the solution of (2.6) is U2,N = 0 when f = 0 and u0 = 0. By Lemma 3.2
and u0 = 0, we obtain, for any U1 ∈ V 1

N ,

Bl(U1, U1) =
ε

2
U2

1 (tl) +
∫ tl

0
aU2

1 dt +
∫ tl

0

∫ t

0
k(t, s)U1(s) dsU1(t) dt = 0. (3.7)

Therefore,

ε

2
U2

1 (tl) +
∫ tl

0
aU2

1 dt = –
∫ tl

0

∫ t

0
k(t, s)U1(s) dsU1(t) dt.

When k(t, s) is bounded, i.e., ‖k(t, s)‖∞ ≤ M, we have

∣
∣
∣
∣

∫ tl

0

∫ t

0
k(t, s)U1(s) dsU1(t) dt

∣
∣
∣
∣

≤
∫ tl

0

∫ t

0

∣
∣k(t, s)

∣
∣
∣
∣U1(s)

∣
∣ds

∣
∣U1(t)

∣
∣dt

≤
(∫ tl

0
aU2

1 dt
) 1

2
(∫ tl

0

1
a

(∫ t

0

∣
∣k(t, s)

∣
∣
∣
∣U1(s)

∣
∣ds

)2

dt
) 1

2

≤ 1
2

∫ tl

0
aU2

1 dt +
1
2

∫ tl

0

1
a

(∫ t

0

∣
∣k(t, s)

∣
∣
∣
∣U1(s)

∣
∣ds

)2

dt. (3.8)

The combination of (3.7) and (3.8) implies

∫ tl

0
aU2

1 dt ≤
∫ tl

0

1
a

(∫ t

0

∣
∣k(t, s)

∣
∣
∣
∣U1(s)

∣
∣ds

)2

dt

≤ M2tl

α

∫ tl

0

∫ t

0
U2

1 (s) ds dt ≤ M2τ

α

l∑

i=1

∫

Ii

∫ ti

0
U2

1 (s) ds dt. (3.9)

Consequently, we get

α

∫ tl

0
U2

1 dt ≤
∫ tl

0
aU2

1 dt ≤ M2τ

α

l∑

i=1

hi

∫ ti

0
U2

1 (t) dt. (3.10)

Let yi =
∫ ti

0 U2
1 dt. Then (3.10) is written as

(

α –
M2τhl

α

)

yl ≤ M2τ

α

l–1∑

i=1

hiyi. (3.11)

Set h = max1≤l≤ N
2

hl . When h is small enough s.t. h ≤ α2

2M2τ
, we have

yl ≤ 2M2τ

α2

l–1∑

i=1

hiyi (3.12)

for l = 1, 2, . . . , N/2. By the discrete Gronwall inequality in Lemma 3.1, we have yN/2 = 0.
Thus U1 = 0.
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Similarly, by Lemma 3.3, we obtain, for any U2 ∈ V 2
N ,

Bl(U2, U2) =
∫ tl

τ

aU2
2 dt +

∫ tl

τ

∫ t

τ

k(t, s)U2(s) dsU2(t) dt

+
ε

2

l–1∑

j=N/2+1

[U2]2
j +

ε

2
(
(U2)–

l
)2

= 0, (3.13)

where f = 0 and U1 = 0 are used. Therefore,

∫ tl

τ

aU2
2 dt +

ε

2

l–1∑

j=N/2+1

[U2]2
j +

ε

2
(
(U2)–

l
)2 = –

∫ tl

τ

∫ t

τ

k(t, s)U2(s) dsU2(t) dt.

When k(t, s) is bounded, we have

∣
∣
∣
∣

∫ tl

τ

∫ t

τ

k(t, s)U2(s) dsU2(t) dt
∣
∣
∣
∣

≤
∫ tl

τ

∫ t

τ

∣
∣k(t, s)

∣
∣
∣
∣U2(s)

∣
∣ds

∣
∣U2(t)

∣
∣dt

≤
(∫ tl

τ

aU2
2 dt

) 1
2
(∫ tl

τ

1
a

(∫ t

0

∣
∣k(t, s)

∣
∣
∣
∣U2(s)

∣
∣ds

)2

dt
) 1

2

≤ 1
2

∫ tl

τ

aU2
2 dt +

1
2

∫ tl

τ

1
a

(∫ t

0

∣
∣k(t, s)

∣
∣
∣
∣U2(s)

∣
∣ds

)2

dt. (3.14)

The combination of (3.13) and (3.14) implies

∫ tl

τ

aU2
2 dt ≤

∫ tl

τ

1
a

(∫ t

τ

∣
∣k(t, s)

∣
∣
∣
∣U2(s)

∣
∣ds

)2

dt

≤ M2tl

α

∫ tl

τ

∫ t

τ

U2
2 (s) ds dt

≤ M2T
α

l∑

i=N/2+1

∫

Ii

∫ ti

τ

U2
2 (s) ds dt. (3.15)

Consequently, we get

α

∫ tl

τ

U2
2 dt ≤

∫ tl

τ

aU2
2 dt ≤ M2T

α

l∑

i=N/2+1

hi

∫ ti

τ

U2
2 (t) dt. (3.16)

Let zi =
∫ ti
τ

U2
2 dt. Then (3.16) is written as

(

α –
M2Thl

α

)

zl ≤ M2T
α

l–1∑

i=N/2+1

hizi. (3.17)
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Set h′ = max N
2 +1≤l≤N hl . When h′ is small enough s.t. h′ ≤ α2

2M2T , we have

zl ≤ 2M2T
α2

l–1∑

i=N/2+1

hizi (3.18)

for l = N/2 + 1, 2, . . . , N . By the discrete Gronwall inequality in Lemma 3.1, we have zN = 0.
Thus U2 = 0. �

4 Numerical experiments
Example Consider the singularly perturbed Volterra integro-differential equation (1.1)
with a = 1, k(t, s) = exp(s). The corresponding exact solution is given by

u(t) = exp(t – 1) + exp

(

–
(1 + ε)

ε
t
)

, t ∈ [0, 1],

which exhibits a boundary layer at t = 0 of thickness O(ε), with the initial condition u0 =
1 + exp(–1) and the right-hand side of equation (1.1) given by

f (t) = (ε + 1)et–1 – εe–(1+ε)t/ε – εe–t/ε +
e2t–1

2
+ ε –

1
2e

.

We implement the numerical schemes (2.3) and (2.6) in the intervals [0, τ ] and [τ , 1],
respectively, to solve this example. Denote UN = (U1,N , U2,N ), ÛN = (U1,N , Û2,N ). Herein
we denote

‖u – ÛN‖L∞([0,1]) = max
0≤i≤N

∣
∣u(ti) – ÛN (ti)

∣
∣,

‖u – UN‖L2([0,1]) =

( N∑

n=1

∫

In

(u – UN )2

)1/2

,

‖u – U1,N‖L∞([0,τ ]) = max
0≤i≤N/2

∣
∣u(ti) – U1,N (ti)

∣
∣,

‖u – U1,N‖L2([0,τ ]) =

(N/2∑

n=1

∫

In

(u – U1,N )2

)1/2

,

‖u – Û2,N‖L∞([τ ,1]) = max
N/2+1≤i≤N

∣
∣u(ti) – Û2,N (ti)

∣
∣,

‖u – U2,N‖L2([τ ,1]) =

( N∑

n=N/2+1

∫

In

(u – U2,N )2

)1/2

.

Now we observe the numerical results of the coupled approach under a Shishkin mesh,
in which the intervals [0, τ ] and [τ , 1] are each divided into N/2 equal subintervals. We first
take τ = τN = min{0.5, ε(2p + 1) ln N}. For this case, Table 1 and Table 2 show the errors of
the coupled solution UN in the L2 norm and the numerical solution ÛN in the L∞ norm
for ε = 10–6 and ε = 10–8, respectively. Taking ε as 10–4, 10–6, and 10–8, Fig. 1 and Fig. 2
demonstrate the convergence curve of the numerical solution ÛN in the L∞([0, 1]) norm
for p = 1 and p = 2, respectively. From Table 1, Table 2, Fig. 1, and Fig. 2, we observe that
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Table 1 Shishkin mesh, τN =min{0.5,ε(2p + 1) ln(N + 1)}, ε = 10–6

N p = 1 p = 2 p = 3

‖ · ‖∞ order ‖ · ‖L2 order ‖ · ‖∞ order ‖ · ‖L2 order ‖ · ‖∞ order ‖ · ‖L2 order

32 1.32e–2 1.58 9.80e–5 1.98 7.77e–4 2.66 4.93e–6 1.95 2.18e–6 4.40 1.54e–7 2.84
64 4.71e–3 1.49 2.51e–5 1.97 9.12e–5 3.09 1.10e–6 2.17 8.31e–8 4.71 1.84e–8 3.07
128 1.59e–3 1.56 6.50e–6 1.95 1.06e–5 3.10 2.21e–7 2.32 2.85e–9 4.87 1.98e–9 3.22
256 5.19e–4 1.62 1.71e–6 1.93 1.13e–6 3.23 4.13e–8 2.42 9.02e–11 4.98 1.99e–10 3.32

Table 2 Shishkin mesh, τN =min{0.5,ε(2p + 1) ln(N + 1)}, ε = 10–8

N p = 1 p = 2 p = 3

‖ · ‖∞ order ‖ · ‖L2 order ‖ · ‖∞ order ‖ · ‖L2 order ‖ · ‖∞ order ‖ · ‖L2 order

32 1.32e–2 1.58 9.57e–5 2.00 7.77e–4 2.66 7.05e–7 2.66 2.18e–6 4.40 1.54e–8 2.84
64 4.71e–3 1.49 2.39e–5 2.00 9.12e–5 3.09 1.27e–7 2.48 8.31e–8 4.71 1.84e–9 3.07
128 1.59e–3 1.56 5.99e–6 2.00 1.06e–5 3.10 2.34e–8 2.43 2.85e–9 4.87 1.98e–10 3.22
256 5.19e–4 1.62 1.50e–6 2.00 1.13e–6 3.23 4.24e–9 2.46 9.02e–11 4.98 1.99e–11 3.32

Figure 1 Convergence curve, Shishkin mesh,
τN =min{0.5,ε(2p + 1) ln(N + 1)}, p = 1

Figure 2 Convergence curve, Shishkin mesh,
τN =min{0.5,ε(2p + 1) ln(N + 1)}, p = 2

under this kind of Shishkin mesh, the following error estimate holds:

‖u – ÛN‖L∞([0,1]) ≤ C
(

ln N
N

)2p

,

where the constant C is independent of ε.
Then we take τ = τε = min{0.5, –ε(p + 1) ln ε}. For this case, Table 3 and Table 4 show the

errors of the coupled solution UN in the L2 norm and the numerical solution ÛN in the L∞
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Table 3 Shishkin mesh, τε =min{0.5, –ε(p + 1) lnε}, ε = 10–6

N p = 1 p = 2 p = 3

‖ · ‖∞ order ‖ · ‖L2 order ‖ · ‖∞ order ‖ · ‖L2 order ‖ · ‖∞ order ‖ · ‖L2 order

32 1.05e–1 1.51 1.66e–4 1.83 1.75e–2 2.59 4.94e–5 2.17 9.06e–5 4.98 1.73e–6 3.42
64 2.48e–2 2.08 4.32e–5 1.94 1.53e–3 3.52 7.94e–6 2.64 1.54e–6 5.88 1.24e–7 3.80
128 5.78e–3 2.10 1.09e–5 1.98 8.88e–5 4.10 1.07e–6 2.89 2.36e–8 6.03 8.05e–9 3.95
256 1.43e–3 2.01 2.74e–6 2.00 5.65e–6 3.97 1.37e–7 2.97 3.69e–10 6.00 5.08e–10 3.99

Table 4 Shishkin mesh, τε =min{0.5, –ε(p + 1) lnε}, ε = 10–8

N p = 1 p = 2 p = 3

‖ · ‖∞ order ‖ · ‖L2 order ‖ · ‖∞ order ‖ · ‖L2 order ‖ · ‖∞ order ‖ · ‖L2 order

32 1.70e–1 1.25 9.84e–5 1.98 4.02e–2 2.16 9.65e–6 1.95 4.16e–4 4.48 4.85e–7 3.16
64 4.69e–2 1.86 2.47e–5 1.99 4.49e–3 3.16 1.75e–6 2.46 8.52e–6 5.55 3.78e–8 3.68
128 1.04e–2 2.17 6.20e–6 2.00 2.94e–4 3.93 2.49e–7 2.81 1.33e–7 6.06 2.52e–9 3.91
256 2.54e–3 2.04 1.55e–6 2.00 1.78e–5 4.05 3.23e–8 2.95 2.06e–9 6.01 1.60e–10 3.98

Figure 3 Convergence curve, Shishkin mesh,
τε =min{0.5, –ε(p + 1) lnε}, p = 1

Figure 4 Convergence curve, Shishkin mesh,
τε =min{0.5, –ε(p + 1) lnε}, p = 2

norm for ε = 10–6 and ε = 10–8, respectively. Taking ε as 10–4, 10–6, and 10–8, Fig. 3 and
Fig. 4 demonstrate the convergence curve of the numerical solution ÛN in the L∞([0, 1])
norm for p = 1 and p = 2, respectively. From Table 3, Table 4, Fig. 3, and Fig. 4, we observe
that under this kind of Shishkin mesh, the following error estimate holds:

‖u – ÛN‖L∞ ≤ C
(

ln ε–1

N

)2p

,

where the constant C is independent of ε.
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In the following part, we focus on the numerical results on the improved graded mesh.
The first part [0, τ ] is divided into N/2 non-uniform subintervals with nodes as follows:

xj = τ ∗ (
(j – 1)/N

)λ, j = 1, 2, . . . , N/2 + 1.

On the other hand, the interval [τ , 1] is partitioned into N/2 equal subintervals. Appar-
ently the Shishkin mesh is a special case of the improved graded mesh with λ = 1. By
increasing the value of λ, more and more mesh points would concentrate in the neighbor-
hood of t = 0, i.e., the region of boundary layer. By taking λ = 2, we will observe that the
solution approximated better than the case of the Shishkin mesh.

In the case of τ = τN and λ = 2, Table 5 and Table 6 show the errors of the coupled so-
lution UN in the L2 norm and the numerical solution ÛN in the L∞ norm for ε = 10–6

and ε = 10–8, respectively. Taking ε as 10–4, 10–6, and 10–8, Fig. 5 and Fig. 6 demonstrate
the convergence curve of the numerical solution ÛN in the L∞([0, 1]) norm for p = 1 and
p = 2, respectively. For τ = τε and λ = 2, Table 7 and Table 8 show the errors of the coupled
solution UN in the L2 norm and the numerical solution ÛN in the L∞ norm for ε = 10–6

and ε = 10–8, respectively. Taking ε as 10–4, 10–6, and 10–8, Fig. 7 and Fig. 8 demonstrate
the convergence curve of the numerical solution ÛN in the L∞([0, 1]) norm for p = 1 and
p = 2, respectively. Compared with the existing numerical methods, our coupled approach
is robust and has a higher order of accuracy than these older methods, i.e., the numerical
solution ÛN in the L∞ norm on the layer-adapted mesh has 2p-order uniform supercon-
vergence.

Table 5 Improved graded mesh, λ = 2, τN =min{0.5,ε(2p + 1) ln(N + 1)}, ε = 10–6

N p = 1 p = 2 p = 3

‖ · ‖∞ order ‖ · ‖L2 order ‖ · ‖∞ order ‖ · ‖L2 order ‖ · ‖∞ order ‖ · ‖L2 order

32 3.73e–3 1.73 9.58e–5 2.00 4.62e–5 3.41 7.12e–7 2.80 1.72e–8 5.17 3.74e–9 3.48
64 1.11e–3 1.75 2.40e–5 2.00 4.14e–6 3.48 1.03e–7 2.78 4.26e–10 5.34 3.17e–10 3.56
128 3.21e–4 1.78 6.00e–6 2.00 3.50e–7 3.57 1.51e–8 2.78 9.92e–12 5.43 2.59e–11 3.62
256 9.17e–5 1.81 1.50e–6 2.00 2.86e–8 3.61 2.20e–9 2.78 2.20e–13 5.49 2.04e–12 3.66

Table 6 Improved graded mesh, λ = 2, τN =min{0.5,ε(2p + 1) ln(N + 1)}, ε = 10–8

N p = 1 p = 2 p = 3

‖ · ‖∞ order ‖ · ‖L2 order ‖ · ‖∞ order ‖ · ‖L2 order ‖ · ‖∞ order ‖ · ‖L2 order

32 3.73e–3 1.73 9.57e–5 2.00 4.62e–5 3.41 5.08e–7 3.00 1.72e–8 5.17 3.94e–10 3.55
64 1.11e–3 1.75 2.39e–5 2.00 4.14e–6 3.48 6.37e–8 2.99 4.26e–10 5.34 3.26e–11 3.59
128 3.21e–4 1.78 5.98e–6 2.00 3.50e–7 3.57 8.00e–9 2.99 9.92e–12 5.43 2.63e–12 3.63
256 9.17e–5 1.81 1.50e–6 2.00 2.86e–8 3.61 1.01e–9 2.99 2.20e–13 5.50 2.07e–13 3.67

Table 7 Improved graded mesh, λ = 2, τε =min{0.5, –ε(p + 1) lnε}, ε = 10–6

N p = 1 p = 2 p = 3

‖ · ‖∞ order ‖ · ‖L2 order ‖ · ‖∞ order ‖ · ‖L2 order ‖ · ‖∞ order ‖ · ‖L2 order

32 9.69e–3 2.04 9.65e–5 2.00 2.50e–4 3.84 1.89e–6 2.98 1.15e–7 5.55 1.33e–8 3.97
64 2.43e–3 2.00 2.41e–5 2.00 1.62e–5 3.95 2.37e–7 2.99 1.82e–9 5.98 8.36e–10 3.99
128 6.09e–4 2.00 6.03e–6 2.00 1.02e–6 3.99 2.97e–8 3.00 2.85e–11 6.00 5.23e–11 4.00
256 1.52e–4 2.00 1.51e–6 2.00 6.37e–8 4.00 3.72e–9 3.00 4.46e–13 6.00 3.27e–12 4.00
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Table 8 Improved graded mesh, λ = 2, τε =min{0.5, –ε(p + 1) lnε}, ε = 10–8

N p = 1 p = 2 p = 3

‖ · ‖∞ order ‖ · ‖L2 order ‖ · ‖∞ order ‖ · ‖L2 order ‖ · ‖∞ order ‖ · ‖L2 order

32 1.32e–2 2.17 9.57e–5 2.00 4.69e–4 3.98 5.77e–7 3.00 2.67e–7 5.99 2.37e–9 3.97
64 3.22e–3 2.04 2.39e–5 2.00 2.85e–5 4.04 7.23e–8 3.00 4.33e–9 5.95 1.49e–10 3.99
128 8.13e–4 1.98 5.98e–6 2.00 1.82e–6 3.97 9.05e–9 3.00 6.77e–11 6.00 9.31e–12 4.00
256 2.03e–4 2.00 1.50e–6 2.00 1.13e–7 4.00 1.13e–9 3.00 1.06e–12 6.00 5.82e–13 4.00

Figure 5 Convergence curve, improved graded
mesh, λ = 2, τN =min{0.5,ε(2p + 1) ln(N + 1)}, p = 1

Figure 6 Convergence curve, improved graded
mesh, λ = 2, τN =min{0.5,ε(2p + 1) ln(N + 1)}, p = 2

Figure 7 Convergence curve, improved graded
mesh, λ = 2, τε =min{0.5, –ε(p + 1) lnε}, p = 1
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Figure 8 Convergence curve, improved graded
mesh, λ = 2, τε =min{0.5, –ε(p + 1) lnε}, p = 2

5 Conclusions
In this paper, we focus on the coupled method for the singularly perturbed integro-
differential equation (1.1), whose solution exhibits a boundary layer at t = 0. The existence
and uniqueness of the coupled solution is provided. Based on the numerical experiment,
we observe the optimal convergence rate p + 1 in the L2 norm and the uniform supercon-
vergence rate 2p at nodes for the numerical solution ÛN with the one-sided flux inside the
boundary layer region under layer-adapted meshes. The uniform convergence analysis of
the coupled method is our future work.
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