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1 Introduction

Consider the following singularly perturbed Volterra integro-differential equation:

eu'(t) + a(t)u(t) fo (t,5)uls)ds=f(t), tel0,T],
u(0) = uo,

(1.1)

where 0 < € < 1 is the perturbation parameter. Here a(t) > « > 0 for some constant «, f(£)
and k(¢, s) are sufficiently smooth functions, and « is the unknown function. When putting

€ =0in (1.1), we obtain the reduced equation

a(t)u(t) + /tk(t, s)u(s)ds = f(¢), (1.2)
0

which is a Volterra integral equation of the second kind. Singularly perturbed Volterra
integro-differential equations arise in many physical and biological problems (see, e.g., [1—
7]). A survey of singularly perturbed Volterra integral and integro-differential equations is
provided in [8]. For singularly perturbed problems, when the perturbed parameter ¢ ap-
proaches to zero, the width of the boundary layer becomes thinner. The behavior of  in
the boundary layer is hard to simulate numerically, i.e., the solution of (1.1) for the singu-
lar perturbation parameter € varies very rapidly in a thin layer near £ = 0 compared to the
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solution of (1.2) (see, e.g., [9, 10]). Traditional methods, such as finite difference or finite
element method, do not work well for these problems because they often produce oscil-
latory solutions which are inaccurate when the perturbed parameter € is small. The goal
of this paper is to construct a robust numerical method for singularly perturbed Volterra
integro-differential equations.

Numerical methods for the solution of the singularly perturbed Volterra integral and
integro-differential equations include exponential finite difference method, finite dif-
ference method, implicit Runge—Kutta method, tension spline collocation method, the
Petrov—Galerkin method, the spectral method, and so on. From the numerical experi-
ments in [9], uniform convergence of the exponential finite difference method under a
Shishkin mesh at nodes was almost second order. In [10], Amiraliyev and Sevgin con-
structed an exponentially fitted difference scheme and analyzed the first order uniform
convergence property under uniform mesh in the discrete maximum norm. Cen and Li
[11] studied a finite difference scheme based on trapezoidal integration under the Shishkin
mesh, which is almost second-order uniformly convergent at nodes theoretically and nu-
merically. In [12], Kauthen proved the convergence of the implicit Runge Kutta methods
out of the boundary layer. Moreover, Horvat and Rogina [13] gave an analysis of the global
convergence properties of a new tension spline collocation solution at nodes, i.e., O(h"1)
for singularly perturbed Volterra integro-differential equations and O(#™) for singularly
perturbed Volterra integral equations.

The local discontinuous Galerkin (LDG) method proposed by Cockburn and Shu [14]
has been shown to be highly stable and effective for convection-diffusion problems. Lars-
son, Thomée, and Wahlbin [15] applied the DG method in time to solve parabolic integro-
differential equations with a weakly singular kernel and provided the error estimate. In
[16], an p-DG method was implemented to solve the Volterra integro-differential equa-
tion with a weakly singular kernel, and the exponential convergence property was inves-
tigated.

Though the DG method allows discontinuity between adjacent elements, it produces
more degrees of freedom than the continuous finite element method (CFEM) and hence
requires a large amount of computation. On the other hand, the standard Galerkin FEM
even on layer-adapted meshes lacks stability in spite of its good convergence proper-
ties.

A coupled (LDG-CFEM) approach was introduced by Alotto [17] in the framework
of rotating electrical machines. Perugia and Schétzau [18] studied the coupled method
for the modeling of elliptic problems arising in electromagnetics. Roos and Zarin [19],
Zarin [20] analyzed the NIPG-CFEM coupled method on the Shishkin mesh for two-
dimensional convection-diffusion problems with exponentially layers or characteristic
layers. Zhu and Xie [21, 22] applied a coupling of continuous finite element method
and discontinuous Galerkin method to solve convection-diffusion problems. Inspired by
the great success of the coupled (LDG-CFEM) method in solving elliptic equations and
convection-diffusion equation, in our work we aim to derive a coupled approach of LDG
and CFEM to solve the singularly perturbed Volterra integro-differential equations. The
basic idea is to decompose the region into two parts. In the boundary layer, CFEM is
adopted where the mesh size is comparable with €, and the LDG method is used out of
the boundary layer for its stabilization. The coupled method is robust with respect to the
singularly perturbed parameter € under layer-adapted meshes. Moreover, the 2p-order
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uniform superconvergence at nodes for the numerical solution Iy in the L™ norm on the
layer-adapted mesh is observed.

The paper is organized as follows. In Sect. 2, the coupled (LDG-CFEM) method for
singularly perturbed Volterra integro-differential equations is introduced. In Sect. 3, the
existence and uniqueness of the coupled solution are given. The implementation of the
coupled method on the Shishkin mesh and the improved graded mesh is presented in
Sect. 4. In Sect. 5, some concluding remarks are given.

2 The coupled (LDG-CFEM) method

To describe the coupled method, we first introduce the partition of the interval I := [0, T]
given by the nodal points 0 = £y < #; < --- <ty = T. Denote the cell I, = [¢,-1,t,] and the
step-size b, =t, —t,_1 forn=1,...,N. Let

T =1y =min{7/2,€(2p + 1) InN}
or
T=1T = min{T/2,—e(p+ l)lne},

and divide both intervals (0,7) and (zr,7T) into N/2 subintervals. The mesh is quasi-
uniform on (0,7) and on (z, 7). Denote T = {I,}\'2, T% = {1}V, ., Define the piecewise
polynomial space V), and V}% as the space of polynomials of degree p > 1 and g > 1 in each
cell I, respectively, i.e.,

Vi = {v1 € H'([0,7]) : v1(0) = uo, 111, € PP(1,),¥1, € T'},

Vi ={v2 € L*([t, T1) : valy, € P1(L,), VI, € T2}

Multiplying (1.1) by v; € V, v, € V% and integrating the resultant equations in each cell
I, in T! and 772, respectively, we obtain

t
e/ U{YNvldt+/uU1,Nv1dt+/ / k(t,s)Uy n(s) dsvi () dt
In Iy I, JO

= fV1 dt, Vv, € V]i[’ (21)
In

and

t
6/ Uiszdt+/ aUz,szdt+/ / k(t,s) U n(s) dsvo(t) dt
Iy Iy I, JO

= | findt, Vv, eV2Z, (2.2)
In

respectively. Based on (2.1), the finite element method is implemented in the interval [0, 7],

that is, find Uy y € Vy, s.t.

t
e/ Uiyt dt+/ all; yvr dt+/ k(t,s)Uy n(s) dsvi(¢) dt
In

In Iy Jty1

tn-1
= [ fnn dt—/ / k(t,s)Uyn(s)dsvi(£)dt, Vvp € V]%,. (2.3)
I I, Jo
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Similarly, the discontinuous Galerkin(DG) method is adopted by (2.2) in the interval [z, T1].
The DG scheme is to find Us v € V3, s.t,,

UQ,NV/Zdt+/ dUQYNVth
I I
t A
[ K9t dsat) e+ el ),
Iy tp-1
ZE(I:IZ,N)n—l(VZ);_l + | fr dt—/ / k(t,s)Uyn(s) dsvo(2) dt
I 1, Jo

/ / k(t,s)Uan(s) dsvy(t) dt, Nvy € V3, (2.4)
IyJt

where I:[z,N is the numerical flux, which plays an important role for the DG method.

In this article, the numerical flux (I:IZ,N)I' is the one-sided form, i.e.,

- (Un)j» j=N/2,
(Usn)j = ) , (2.5)
{Uhn); - 5[Uan]j = (UaN),, j=N/2+1,...,N,

where the average {-} and the jump [-] are defined as follows:

u?
{u}; = L1, (4] =u —u;.
The combination of (2.4) and (2.5) leads to the LDG method: for n = N/2 + 1,...,N,

Uz,NV,Zdt+/ aUzvazdt
Iy In
t
. / / k() U (5) dsva(6) dit + €(Un ) (v2);
In tn 1
= (U (va)y + f Fadt - / / K(t,$) Uy (s) dsva6) dt
I, JO

/ / k(t,s)Uyn(s)dsva(E)dt, Vv, € Vz%z' (2.6)
Iy Jt
From the viewpoint of computation, when # = 1, (2.3) can be written as

—6/ LILNv'ldt+/ aLIl,Nvldt

I I

+/11/0 k(t,s)Uy n(s) dsvi(t) dt + e(Uyn)1(vi)1

= 6M0(V1)1 + fV1 dt, VV1 € V]i[, (27)
Iy
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where (U1 n)1 = tp is used. For n =2,...,N/2, (2.3) becomes

—e/ U{,Nvldt+/ ally nvi dt
I, I
t
" / Kty ) U () dsva (6) it + €(Uin) (1)
Iy Jty1

=e(UN)n-1(V1)uor + | fradt
Iy

tp-1
- f f k(t,s)Uyn(s)dsvi(£)dt, Vv, € Vg[. (2.8)
I Jo
For n=N/2 + 1, (2.6) could be written as

—6/ UZ,NV/Z dt + / ally NV dt

INj2+1 INj2+1

t
. / / k() U (5) dsvae) it + €(Un )iy (Vo)ron
Inp VT

= e(th NN (Vo) Ny + frodt
Inj2+1
—/ / k(t, s)Uyn(s)dsvy () dE, Vv, € V]%,, (2.9)
Inj2+1 Y0

where (Uyn)y, = (Uyn)ny2 is used. For n = N/2 + 2, (2.6) becomes

—6/ UZ,NV/zdt+/ ﬂUQ'NIth
Inj2+2 Inj2+2
t
[ K6 dva©dt + Ui,
Inp2+2 YINT241

T
= €(Upn) 201 (V2)Nj2e1 + fvodt — / f k(, s)Uy n(s) dsvy(2) dt
INj2+2 INj2+2 /0

IN/2+1
—/ / k(t,s)Uyn(s)dsvy(E)dt, Vv, € Vf[. (2.10)
INj242 VT
Forn=N/2+3,...,N, (2.6) becomes

—€ Uz,NV/zdIf+/ aUZNVth
I I
t
. / / k() Uy () dsva(6) dit + €(Un ) (v2);
Iy Jty
T
(U)o )y + [ St / / k(t, ) Uy (s) dsvi () di
I I Jo

tn-1
- / / k(t,s) Uy n(s) dsvo(t) dt, Vvy € V3. (2.11)
Iy Jt
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3 The existence and uniqueness of the coupled method
The discrete Gronwall inequality plays a very important role in the existence and unique-

ness analysis. According to [23], the discrete Gronwall inequality is described as follows.

Lemma 3.1 Suppose w, >0, f,, > 0, and y, > 0 for n =0,1,.... Further, they satisfy, for
n=12,...,N,

n-1
Y <fu + ijy,».
j=0

Then, for any N > 1, we have

N-1

YN < exp E w; | max f,.
Y 0<n<
i=

Summing up (2.3) over the first [ elements with / = 1,2,..., N/2, we obtain, for any v; €
Vi,

1 17 t t
Bl(Ul,vl)ée/ U dt+/ allivy dt+/ / k(t,s)U;(s) dsvy(¢) dt
0 0 o Jo

- /0 ! for dt. (3.1)

Equivalently, we have

174 174
Bl(Ul,vl)é—e/ L[lv/ldt+/ alliv, dt
0 0
t t
. f [ k(t, S)ULL(s) dsva () dt + €U (v () — ettovi(to)
0 0

= /tlfl/l dt, (32)
0

where U (%) = ug is used.
Similarly, summing up (2.6) over the first / elements on the interval [r, 7] with [ =

1,2,...,N/2, we obtain, for any v, € V3,

t t
Bi(Uy,vy) 2 —e/ Uyv, dt+/ allyv, dt
T T
t T t t
+f f k(t,s)L[l(s)dsvz(t)dt+/ / k(t, s)Uy(s) dsvo(t) dt
T 0 T T
-1

+e(Uh); ()] —elh(Ti(t) —€ Y () [n);

j=N/2+1

- / ", (3.3)
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with [v]; = V; -V, where U; (t) = U;(7) is used. Equivalently, we have

t 17 t T
Bi(Uy,vy) 2 € / Uyvy dt + / allyv, dt + / / k(t, s)U1(s) dsv,(t) dt
T T T 0

t t -1
+ f / k(t, s)Up(s) dsvy(t)dt +€ Y [Lh]i(n)]
ToUr j=N/2+1
= / ! St (3.4)

where U (t) = U; (t) is used.
Lemma 3.2 For any v € Vyy, we have the identity

€

t t t
Bi(v,v) = =v2(t) — Sué + / av’dt + / / k(t, s)v(s) dsv(t) dt.
2 2 0 o Jo
Proof By (3.1) and direct integration, we reach the conclusion. O

Lemma 3.3 For any v € Vi, and v, € Vi, we have the identity

7] T t pt
Bl(Vz,Vz)zf av%dt+/ / k(t,s)vl(s)dsvz(t)dt+/ / k(t, s)vo(s) dsvy(t) dt
T T 0 T T
i s i ]2 + S(n2)7)* - Sv2(r)
9 2l T S\\W2)p ) — SVttt
2j=N/2+1 ’2 2

Proof By (3.3) and (3.4), we have, for U, € V3,
i t
Bi(vy,v) = —e/ VoV, dt + / avi dt
T T

+ /T l /0 k(t, s)vy(s) dsvo(t) dt + /T l /T k(t, $)va(s) dsvo(2) dt

-1
+€(v)] (v2)] —evi(T)vy(T) — € Z (v2); [val), (3.5)

j=N/2+1

t 174 b re
Bi(vy,v)) = € / Vyvo dt + / av% dt + / / k(t, s)v1(s) dsvo(t) dt
T T T 0

-1

+ / l / k(t, s)va(s)dswy(t)dt +e Y [vali(va)], (3.6)

j=N/2+1

respectively. The summation of (3.5) and (3.6) leads to the conclusion, where vj (1) = v,(7)
is used. O

We now address the existence and uniqueness of discrete solutions.

Theorem 3.1 Suppose that f(t), a(t) are continuous in I, and the kernel function k(t,s) is
continuous in I x I with a(t) > « > 0. Uy x is the CFEM solution of (2.3) and U, is the
LDG solution of (2.6). Then Uy n and U, are existent and unique.
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Proof As the dimensions of V}, and V3 are finite, we only need to prove that the solution
of (2.3) is Uy n = 0 and the solution of (2.6) is Uy n = 0 when f = 0 and u#p = 0. By Lemma 3.2
and ug = 0, we obtain, for any U; € V},

17 17 t
B, L) = guf(tm / all? dt + f / k(t, $)UL, (s) dsUL () dt = 0. (3.7)
0 0 0

Therefore,

ty ty t
guf(tm / all? dt = - / / k(t, $)U (s) dsULy () dit.
0 0 0

When k(t, s) is bounded, i.e., |k(t,5)||cc < M, we have

7]

t k(t,s)U1(s) dsU, (¢) dt‘
0

< /0 fo Ik(t,9)||U2(s)) s| 1 (1) di

b % 174 t 2 %
5(/0 “Ulzdt> (/0 2(/(; |k(t,s)||L[1(s)|ds> dt)
1 [ 1 (a1/ (¢ 2
55/0 aufdnifo ;(/0 |k(t,s)||L[1(s)|ds) dt. (3.8)

The combination of (3.7) and (3.8) implies

t t 1 t 2
[(auar< [ _(/ \k(t,s)uul(s)\ds) dt
0 o a4\Jo
M2t [ [t M2 ! t
< / / W) dsdt < —- / f U(s) dsdt. (3.9)
o o Jo a TJnJo

Consequently, we get

7 t
a/ ufdtgf au2dt<—Zh/ ui(t)d (3.10)
0 0

Lety; = Oti U? dt. Then (3.10) is written as

M*th Mt
_ < hy;. 3.11
<04 ” ))’z E Vi (3.11)

2
Seth = max, .y h;. When i is small enough s.t. 1 < 2}‘\"4—21, we have

2M?7
Z i (3.12)

Y =

for [ =1,2,...,N/2. By the discrete Gronwall inequality in Lemma 3.1, we have yy/; = 0.
Thus Ul =0.
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Similarly, by Lemma 3.3, we obtain, for any U € V,
t t t
By(Uy, Uy) = / ally dt + / / k(t,s)Us(s) dsU,(t) dt
T

+— Z [Uz U2)1)2

] =N/2+1

:O,

where f =0 and U; = 0 are used. Therefore,

-1

/r auzdt+§ Z [L[z 2((U2)[)2=—/Tl/; k(t, s)U,(s) dslU(t) dt.

j=N/2+1

When k(t, s) is bounded, we have

! /tk(t, s)Uy(s) dsUs () dt‘

< / ’ / Ik(t,9)]| L) | | L1x(0)| i

([ ) (L[ e lnola) @)

2

1 i 5 1 17 1 t
SE/{ (luzdt%-i/r‘ ;(/(; |k(t:S)||u2(S)|ds) dt

The combination of (3.13) and (3.14) implies

t t 1 t 2
[ asa< [ _</ |k(t,s)||L12(s)|ds) dt
T T a T
M2t ty t
5_’/ /lez(s)dsdt
o

. MT Z /f U3 (s) dsdt.

i=N/2+1

Consequently, we get

l

M3T
/L[zdt</ all; dt < - Z h/ Uz (t) dt.

i=N/2+1 T

Letz; = frt‘ U3 dt. Then (3.16) is written as

M*Th\ _ MPT -
(a— - ) Z hiz;.

i=N/2+1

Page9of 16

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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a2

Set i = Maxy oy h;. When /' is small enough s.t. /' < T We have
T L
as=—— ) ha (3.18)

i=N/2+1

for/=N/2+1,2,...,N. By the discrete Gronwall inequality in Lemma 3.1, we have zy = 0.
Thus U, = 0. O

4 Numerical experiments
Example Consider the singularly perturbed Volterra integro-differential equation (1.1)

with a = 1, k(t,s) = exp(s). The corresponding exact solution is given by

1+e¢)

u(t) = exp(t — 1) + exp (— t), te€[0,1],

which exhibits a boundary layer at ¢ = 0 of thickness O(e), with the initial condition #y =

1 + exp(—1) and the right-hand side of equation (1.1) given by

26-1
e 1
f(t) = (e + l)et’l _eeHltle _ ptle 7o

2 2e’
We implement the numerical schemes (2.3) and (2.6) in the intervals [0, 7] and [7,1],
respectively, to solve this example. Denote Uy = (Ui n, U n), Uy = (Ui I:[z,N). Herein
we denote

|l — I:[NIILoO([o,l]) = max |M(ti) - Uy(t)
0<i<N

N 1/2
lee — Un Nl 220,17 = (Z/ (u— UN)2> ,
n=1 YIn

e — Ui nllzooqoey = max |u(t) — Usn (L)
0<i<N/2

’

’

N/2 1/2
lee — Uy Nl 2o = (Z/ (u~ UI,N)2> ,
n=1"1In
= Usnlloogeay = max  |u(t) — Upn(t:)|s
N/2+1<i<N

N 1/2
lu = Upn |l 2(e,0)) = ( Z / (u- U2,N)2> .
Iy

n=N/2+1

Now we observe the numerical results of the coupled approach under a Shishkin mesh,
in which the intervals [0, t] and [7, 1] are each divided into N/2 equal subintervals. We first
take t = 7y = min{0.5,€(2p + 1) In N}. For this case, Table 1 and Table 2 show the errors of
the coupled solution Uy in the L? norm and the numerical solution I:[N in the L* norm
for € = 107° and € = 1078, respectively. Taking € as 107, 107, and 107%, Fig. 1 and Fig. 2
demonstrate the convergence curve of the numerical solution Uy in the L([0,1]) norm

for p = 1 and p = 2, respectively. From Table 1, Table 2, Fig. 1, and Fig. 2, we observe that
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Table 1 Shishkin mesh, Ty =min{0.5,e2p + 1) In(N+ 1)}, € = 1070

N p=1 p=2 p=3
l-llc order |-ll2 order |l-llc order |-l order |-l order |-l order
32 132e-2 158 980e-5 198 777e-4 266 493e-6 195 218e-6 440 154e-7 284
64 471e-3 149 251e-5 197 912e-5 309 1.10e-6 217 831e-8 471 1.84e-8 3.07
128 1.59%-3 156 650e-6 195 106e-5 3.10 221le-7 232 285e-9 487 198e-9 322
256 519%-4 162 1.71e-6 193 1.13e-6 323 413e-8 242 902e-11 498 199e-10 332
Table 2 Shishkin mesh, Ty = min{0.5,e2p+ 1) In(N+ 1)}, € = 1078
N p=1 p=2 p=3
l-llo order |I-1l,2 order |l-llo order | -lI;2 order |- lleo order |- I,2 order
32 1.32e-2 158 957e-5 200 777e-4 266 7.05e-7 266 218e-6 440 154e-8 284
64 471e-3 149 239%-5 200 912e-5 309 127e-7 248 831e-8 471 1.84e-9  3.07
128 159%-3 156 599%-6 200 1.06e-5 310 234e-8 243 285e-9 487 198e-10 322
256 5.19%-4 162 150e-6 200 1.13e-6 323 424e-9 246 9.02e-11 498 199%-11 332
Figure 1 Convergence curve, Shishkin mesh, ) ‘ ‘
T =min{0.5€Rp+1)ININ+ 1)}, p=1 —k—e=10"*

—A— e=1 076
—+—=10"%
107" (log(NYN)@P ]

Figure 2 Convergence curve, Shishkin mesh,
v =min{0.5,€2p+1)In(N+ 1)}, p=2

—*—e=10"*
—&— =10
—+—e=10"
(log(NyN)*®P)

under this kind of Shishkin mesh, the following error estimate holds:

. InN\?%
lle — Unllzooqoin < Cl — ) >

N
where the constant C is independent of .
Then we take 7 = 7. = min{0.5, —¢(p + 1) In€}. For this case, Table 3 and Table 4 show the
errors of the coupled solution Uy in the L2 norm and the numerical solution U v in the L™
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Table 3 Shishkin mesh, Te = min{0.5,-€(p + 1)In€}, e =107°

(2019) 2019:217

N p=1 p=2 p=3
l-llc order |-ll2 order |l-llc order |-l order |-l order |-l order
32 1.05e-1 151 1.66e-4 183 1.75e-2 259 494e-5 217 9.06e-5 498 173e-6 342
64 248e-2 208 432e-5 194 153e-3 352 794e-6 264 154e-6 588 124e-7 380
128 578e-3 210 1.09e-5 198 888e-5 410 1.07e-6 289 236e-8 603 805e-9 395
256 143e-3 201 274e-6 200 565e-6 397 137e-7 297 369%-10 600 508e-10 3.99
Table 4 Shishkin mesh, Te = min{0.5,—€(p + 1)In€}, e =1078
N p=1 p=2 p=3
ll-looc order Jl-l,2 order |-llc order |l-[l,2 order |-l order -], order
32 1.70e-1 125 984e-5 198 402e-2 216 965e-6 195 416e-4 448 485e-7 3.16
64 469e-2 186 247e-5 199 449-3 3116 1.75e-6 246 852e-6 555 3.78e-8 368
128 1.04e-2 217 620e-6 200 294e-4 393 249%-7 281 1.33e-7 606 252e-9 391
256 254e-3 204 155e-6 200 1.78e-5 405 323e-8 295 206e-9 601 1.60e-10 3.98
Figure 3 Convergence curve, Shishkin mesh, o ‘
Te =min{0.5,-€(p+ 1)In€}, p=1 —k—e=10""
, N —A—e=107®
10' b SO —F—e=10"
NN (log(10*)/N)©P)
o b — = — (log(10%)/N)®?{]
— — (log(10%yN)®®
107 E
107 E
10°F E
107 : .
10° 10' 10° 10°
Figure 4 Convergence curve, Shishkin mesh, 10 ‘
Te =min{0.5,-€(p+ 1)In€}, p=2 —%— 107
, N —A— =107
10 S ——e=10"®
N (log(10*)N)P)
i = = — (log(10%/N)®| |
~ —(log(10®)/N)®®®)
107°F
107
107°F
10° ! !
10° 10' 10° 10°

norm for € = 107 and € = 1078, respectively. Taking € as 107, 107°, and 107%, Fig. 3 and

Fig. 4 demonstrate the convergence curve of the numerical solution Uy in the L([0,1])

norm for p = 1 and p = 2, respectively. From Table 3, Table 4, Fig. 3, and Fig. 4, we observe

that under this kind of Shishkin mesh, the following error estimate holds:

llu = U |l < c(

Ine1\¥
N ) ’

where the constant C is independent of .
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In the following part, we focus on the numerical results on the improved graded mesh.

The first part [0, 7] is divided into N/2 non-uniform subintervals with nodes as follows:
x=tx((-D/N), j=12..,N/2+1.

On the other hand, the interval [7,1] is partitioned into N/2 equal subintervals. Appar-
ently the Shishkin mesh is a special case of the improved graded mesh with A = 1. By
increasing the value of A, more and more mesh points would concentrate in the neighbor-
hood of £ = 0, i.e., the region of boundary layer. By taking A = 2, we will observe that the
solution approximated better than the case of the Shishkin mesh.

In the case of 7 = 7y and A = 2, Table 5 and Table 6 show the errors of the coupled so-
lution Uy in the L? norm and the numerical solution {y in the L® norm for € = 1075
and € = 1078, respectively. Taking € as 1074, 107%, and 1073, Fig. 5 and Fig. 6 demonstrate
the convergence curve of the numerical solution Uy in the L®([0,1]) norm for p=1and
p =2, respectively. For t = 7. and A = 2, Table 7 and Table 8 show the errors of the coupled
solution Uy in the L? norm and the numerical solution I:[N in the L*® norm for € = 10°°
and € = 1078, respectively. Taking € as 107, 107, and 1078, Fig. 7 and Fig. 8 demonstrate
the convergence curve of the numerical solution {Iy in the L>=([0, 1]) norm for p=1and
p = 2, respectively. Compared with the existing numerical methods, our coupled approach
is robust and has a higher order of accuracy than these older methods, i.e., the numerical
solution Iy in the L* norm on the layer-adapted mesh has 2p-order uniform supercon-
vergence.

Table 5 Improved graded mesh, A =2, Ty = min{0.5,€(2p + 1) IN(N+ 1)}, € = 107°

N p=1 p=2 p=3
lllo order [-l2 order [[-llos order JI-ll2 order |-l order || -l order
32 373e-3 173 958e-5 200 4.62e-5 341 7.12e-7 280 172e-8 517 374e-9 348

1

64 1.11e-3 175 240e-5 200 4.14e-6 348 1.03e-7 278 426e-10 534 3.17e-10 356
128 321e-4 178 600e-6 200 350e-7 357 151e-8 278 992e-12 543  259%-11 362
256 9.17e-5 181 150e-6 200 286e-8 361 220e-9 278 220e-13 549 204e-12 366

Table 6 Improved graded mesh, A =2, Ty = min{0.5,e2p + 1) In(N+ 1)}, e = 1078

N p=1 p=2 p=3
l-llc order |-ll2 order |l-ll order |-|l2 order | -lloo order |-l order
32 373e-3 173 957e-5 200 4.62e-5 341 508e-7 300 1.72e-8 517 394e-10 355
64 111e-3 175 23%-5 200 4.14e-6 348 637e-8 299 426e-10 534 326e-11 359
128 321e-4 178 598e-6 200 350e-7 357 800e-9 299 992e-12 543 263e-12 363
256 9.17e-5 181 150e-6 200 286e-8 361 101e-9 299 220e-13 550 207e-13 367
Table 7 Improved graded mesh, A =2, T = min{0.5,—€(p + 1)In€}, € =107°
N p=1 p=2 p=3
l-llooc order |l-|2 order |-]lc order |-l order |-l order |- I,2 order

32 969%-3 204 965e-5 200 250e-4 384 18%-6 298 1.15e-7 555 1.33e-8 397

64 243e-3 200 241e-5 200 162e-5 395 237e-7 299 1.82e-9 598 836e-10 3.99
128 6.0%-4 200 6.03e-6 200 1.02e-6 399 297e-8 300 285e-11 6.00 523e-11 400
256 152e-4 200 151e-6 200 637e-8 400 3.72e-9 300 446e-13 600 327e-12 400
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Table 8 Improved graded mesh, A = 2, T¢ = min{0.5,-€(p + 1)In€}, € = 1078

N p=1 p=2 p=3
l-llc order |-ll2 order |l-llc order |-l order |-l order |-l order
32 132e-2 217 957e-5 200 469e-4 398 577e-7 300 267e-7 599 237e-9 397
64 322e-3 204 239%-5 200 285e-5 404 723e-8 3.00 433e-9 595 149e-10 399
128 8.13e-4 198 598e-6 200 182e-6 397 905e-9 300 6.77e-11 600 937e-12 4.00
256 2.03e-4 200 1.50e-6 200 1.13e-7 400 1.13e-9 300 1.06e-12 600 582e-13 4.00
Figure 5 Convergence curve, improved graded 1 ‘ ‘
mesh, A =2, ty =min{0.5,e2p+ 1) InN+ 1)}, p=1 ——e=104
—A—e=10°
1ok —+—e=10"° i
(log(NyN)®®)
107
10°F
107 F
107 : .
10° 10' 10° 10°
Figure 6 Convergence curve, improved graded o
mesh, A =2, ty =min{0.5,e2p+ 1) In(N+ 1)}, p=2 ——e=107*
107 —a—e=107°
——e=10"°
10°F (log(N)Y/N)@P |
107
10°F
10°k
107
10°F
107° :
10° 10" 10° 10°

Figure 7 Convergence curve, improved graded
mesh, A =2, T =min{0.5,-€(p+ 1)In€}, p=1

—*—e=10"*
—A— =107
—+—¢=10"8

= =~ (log(10°yN)®) 3
— = (log(10®)N)P)

(log(10*/N)(2P)
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Figure 8 Convergence curve, improved graded . ‘ ‘
mesh, A =2, e =min{0.5,-€(p+ 1) In€}, p=2 —*— =107

> | > —A— =100
o —t+—e=10"8
(log(10%)/N)@P)
~ = (log(10°)/N)®P 1
== (log(10%y/N)

5 Conclusions

In this paper, we focus on the coupled method for the singularly perturbed integro-
differential equation (1.1), whose solution exhibits a boundary layer at ¢ = 0. The existence
and uniqueness of the coupled solution is provided. Based on the numerical experiment,
we observe the optimal convergence rate p + 1 in the L? norm and the uniform supercon-
vergence rate 2p at nodes for the numerical solution Iy with the one-sided flux inside the
boundary layer region under layer-adapted meshes. The uniform convergence analysis of
the coupled method is our future work.
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