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1 Introduction
In this article, we study the existence of mild solutions for the semilinear damped elastic
systems in Banach spaces E:

⎧
⎨

⎩

u′′(t) + ρBu′(t) + Au(t) = f (t, u(t)), 0 < t < a,

u(0) = u0 ∈ D(A), u′(0) = u1 ∈ E,
(1.1)

where A : D(A) ⊂ E → E and B : D(B) ⊂ E → E are densely defined closed (possibly un-
bounded) linear operators on a complex Banach space E and f ∈ C([0, a] × E, E).

In 1982, Chen and Russell [1] investigated the following linear elastic system described
by the second order equation:

⎧
⎨

⎩

u′′(t) + Bu′(t) + Au(t) = 0, t > 0,

u(0) = x0, u′(0) = y0,
(1.2)

in a Hilbert space H with inner (·, ·), where A (the elastic operator) and B (the damping
operator) are positive definite self-adjoint operators in H . They reduced (1.2) to the first
order equation in H × H :

d
dt

(
A 1

2 u
u′

)

=

(
0 A 1

2

–A 1
2 –B

)(
A 1

2 u
u′

)

.
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Let V = D(A 1
2 ), H = V × H with the naturally induced inner products. Then (1.2) is

equivalent to the first order equation in H

d
dt

(
A 1

2 u
u′

)

= AB

(
A 1

2 u
u′

)

,

where

AB =

(
0 I

–A –B

)

,

D(AB) = D(A) × [
D

(
A

1
2
) ∩ D(B)

]
.

Chen and Russell [1] conjectured that AB is the infinitesimal generator of an analytic semi-
group on H if

D
(
A

1
2
) ⊂ D(B)

and either of the following two inequalities holds for some β1,β2 > 0:

β1
(
A

1
2 v, v

) ≤ (Bv, v) ≤ β2
(
A

1
2 v, v

)
, v ∈ D

(
A

1
2
)
;

β1(Av, v) ≤ (
B2v, v

) ≤ β2(Av, v), v ∈ D(A).

The complete proofs of the two conjectures were given by Huang [2, 3]. Then, other suf-
ficient conditions for AB or its closure AB to generate an analytic or differentiable semi-
group on H were discussed in [4–10], by choosing B to be an operator comparable with
Aα for 0 < α ≤ 1, based on an explicit matrix representation of the resolvent operator of
AB or AB.

In [11], Fan, Li, and Chen studied the existence of mild solutions for the elastic system
with structural damping in Banach spaces:

⎧
⎨

⎩

u′′(t) + ρAu′(t) + A2u(t) = f (t, u(t)), 0 < t < a,

u(0) = u0 ∈ D(A), u′(0) = u1 ∈ E,
(1.3)

where the damping constant ρ ≥ 2 and the nonlinearity term f is Lipschitzian in the sec-
ond variable. In [12], Fan and Li studied the asymptotic stability of solutions and the ana-
lyticity and exponential stability of associated semigroups for the following second order
semilinear evolution equations:

⎧
⎨

⎩

u′′(t) + ρAu′(t) + A2u(t) = 0, t > 0,

u(0) = u0 ∈ D(A), u′(0) = u1 ∈ E,
(1.4)

where A : D(A) ⊂ E → E is a sectorial linear operator on a complex Banach space E and
ρ > 2 cosα for a fixed value α ∈ (0, π

2 ).
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In [13], Fan and Gao discussed the asymptotic behavior of solutions for the linear elastic
system with structural damping:

⎧
⎨

⎩

u′′(t) + ρAu′(t) + A2u(t) = h(t), t > 0,

u(0) = u0 ∈ D(A), u′(0) = u1 ∈ E,
(1.5)

and the semilinear elastic system with structural damping (1.3) in Banach spaces, where
ρ > 2 cosα, for a fixed value α ∈ (0, π

2 ), A is a sectorial operator, –A generates an analytic
and exponentially stable semigroup on E, h : [0, +∞) → E is continuous, and f is Lipschitz
continuous in the second variable. The discussion is based on the operator semigroup
theory and some fixed point theorem.

In [14], Diagana studied the well-posedness and existence of bounded solutions to the
linear elastic systems with damping:

⎧
⎨

⎩

u′′(t) + ρBu′(t) + Au(t) = f (t), t > 0,

u(0) = u0 ∈ D(A), u′(0) = u1 ∈ E,

where A : D(A) ⊂ E → E and B : D(B) ⊂ E → E are densely defined closed (possibly un-
bounded) linear operators on a complex Banach space E and f : R+ → E is a continuous
function.

In [15], the authors considered nonlinear evolution equations of second order in Banach
spaces:

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) + ρAu′(t) + A2u(t) = f (t, u(t), ut), t ∈ I = [0, T],

u(s) = ϕ(s), s ≤ 0,

u′(0) + h(u) = ψ ,

where u is the unknown function defined on I and, taking values in E, ut is the history
state defined by ut : (–∞, 0] → E, ut(s) = u(t + s), t ∈ I . By means of the fixed point for
condensing maps, they proved the existence and exponential decay of mild solutions.

In [16], the authors studied a class of elastic systems with structural damping:

⎧
⎨

⎩

u′′(t) + ρAu′(t) + A2u(t) = f (t, u(t)), t > 0,

u(0) + g(u) = x0, u′(0) + h(u) = y0,

where A : D(A) ⊂ E → E is a closed linear operator, ρ ≥ 2 is a given constant, x0 ∈ D(A),
y0 ∈ E. By using the measure of noncompactness on the space of continuous functions
on the half line, they established the existence of mild solutions with explicit decay rate
of exponential type. Although the above discussions have been an interesting subject, the
theory still remains to be developed to nonlinear case.

However, motivated by the above works, ideas and methods based on paper [14], in this
paper, we investigate the existence of mild solutions for the elastic system (1.1) in complex
Banach spaces. We give the expression of the solution of Problem (1.1), which is different
from the expression given in article [14]. Our results presented in this paper improve and
generalize many classical results [11–14, 17–20].
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The paper is organized as follows. In Sect. 2, we introduce some notations and recall
some basic known results. In Sect. 3 we present the existence of mild solutions to Problem
(1.1) in a complex Banach space. In Sect. 4, we give an example to illustrate our results.

2 Preliminaries
Let E be a complex Banach space with the norm ‖ · ‖. For any constant a > 0, denote
J = [0, a]. Let C(J , E) be the Banach space of all continuous functions from J into E en-
dowed with the supremum norm ‖u‖C = supt∈J ‖u(t)‖ for every u ∈ C(J , E). Let L(E) be
the Banach space of all linear and bounded operators on E. The notations D(L) and ρ(L)
stand respectively for the domain and resolvent of L, set R(λ, L) = (λI – L)–1 for all λ ∈ ρ(L).

Definition 2.1 A C0-semigroup T(t) (t ≥ 0) in E is said to be equicontinuous if T(t) is
continuous by the operator norm for every t > 0.

Now we introduce some basic definitions and properties about Kuratowski measure of
noncompactness that will be used in sequel.

Definition 2.2 ([21, 22]) The Kuratowski measure of noncompactness α(·) defined on the
bounded set S of a Banach space E is

α(S) := inf

{

δ > 0 : S =
m⋃

i=1

Si with diam(Si) ≤ δ for i = 1, 2, . . . , m

}

.

In this paper, we denote by α(·), αC(·) and the Kuratowski measure of noncompact-
ness on the bounded set of E, C(J , E), respectively. For any D ⊂ C(J , E) and t ∈ J , set
D(t) = {u(t) | u ∈ D}, then D(t) ⊂ E. If D ⊂ C(J , E) is bounded, then D(t) is bounded in
E and α(D(t)) ≤ αC(D). For more details about the properties of the Kuratowski measure
of noncompactness, we refer to the monographs [21, 22].

Definition 2.3 ([22]) Let E be a Banach space, and let S be a nonempty subset of E. A con-
tinuous mapping Q : S → E is called k-set-contractive if there exists a constant k ∈ [0, 1)
such that, for every bounded set Ω ⊂ S,

α
(
Q(Ω)

) ≤ kα(Ω).

Lemma 2.1 ([22]) Let E be a Banach space. Assume that Ω ⊂ E is a bounded closed and
convex set on E, the operator Q : Ω → Ω is k-set-contractive. Then Q has at least one fixed
point in Ω .

Lemma 2.2 ([23]) Let E be a Banach space, and let D ⊂ E be bounded. Then there exists
a countable set D0 ⊂ D such that α(D) ≤ 2α(D0).

Lemma 2.3 ([24]) Let E be a Banach space, and let D = {un} ⊂ C([b1, b2], E) be a bounded
and countable set for constants –∞ < b1 < b2 < +∞. Then α(D(t)) is Lebesgue integral on
[b1, b2], and

α

({∫ b2

b1

un(t) dt : n ∈ N

})

≤ 2
∫ b2

b1

α
(
D(t)

)
dt.
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Lemma 2.4 ([21]) Let E be a Banach space, and let D ⊂ C([b1, b2], E) be bounded and
equicontinuous. Then α(D(t)) is continuous on [b1, b2], and

αC(D) = max
t∈[b1,b2]

α
(
D(t)

)
.

Lemma 2.5 ([25]) Assume f ∈ C(J , E) and that A is the infinitesimal generator of C0-
semigroup (T(t))t≥0. Then the inhomogeneous Cauchy problem

⎧
⎨

⎩

u′(t) = Au(t) + f (t), t ∈ J ,

u(0) = u0 ∈ D(A)
(2.1)

has a mild solution u given by

u(t) = T(t)u0 +
∫ t

0
T(t – s)f (s) ds, t ∈ J .

Thoughts and methods based on paper [13]. We consider the following linear damped
elastic system:

⎧
⎨

⎩

u′′(t) + ρBu′(t) + Au(t) = h(t), t ∈ J ,

u(0) = u0 ∈ D(A), u′(0) = u1 ∈ E,
(2.2)

where A : D(A) ⊂ E → E and B : D(B) ⊂ E → E are densely defined closed (possibly un-
bounded) linear operators on a complex Banach space E and h : J → E.

For the second order evolution equation

u′′(t) + ρBu′(t) + Au(t) = h(t), (2.3)

it has the following decomposition:

(
d
dt

+ E1(ρ)
)(

d
dt

+ E2(ρ)
)

u = h(t), t > 0. (2.4)

That is,

d2u
dt2 +

(
E1(ρ) + E2(ρ)

)du
dt

+ E1(ρ)E2(ρ)u = h(t). (2.5)

It follows from (2.3) and (2.5) that

E1(ρ) + E2(ρ) = ρB, E1(ρ)E2(ρ) = A. (2.6)

By (2.6), we have
(i) if C(ρ) = ρ2B2 – 4A = L2(ρ) > 0, then

E1(ρ) =
ρB –

√
ρ2B2 – 4A
2

=
ρB – L(ρ)

2
,

E2(ρ) =
ρB +

√
ρ2B2 – 4A
2

=
ρB + L(ρ)

2
;

(2.7)
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(ii) if C(ρ) = ρ2B2 – 4A = L2(ρ) = 0, then

E1(ρ) = E2(ρ) =
ρB
2

;

(iii) if C(ρ) = ρ2B2 – 4A = –L2(ρ) < 0, then

E1(ρ) =
ρB –

√
ρ2B2 – 4A
2

=
ρB – iL(ρ)

2
,

E2(ρ) =
ρB +

√
ρ2B2 – 4A
2

=
ρB + iL(ρ)

2
.

(2.8)

Remark 2.1 In order to study the existence to Eq. (1.1), we will make use of the above linear
operator which links both A and B: C(ρ) = ρ2B2 – 4A = L2(ρ) with D(C(ρ)) = D(B2)∩D(A).
In the following discussion, we will focus on the following cases: C(ρ) = L2(ρ) > 0 and
C(ρ) = L2(ρ) = 0 for densely closed linear operator L(ρ) : D(L(ρ)) ⊂ E → E. Obviously,
C(ρ) = 0 corresponds to the case studied in papers [11, 12]. For more details, see [14].

Lemma 2.6 Assume that there exists a densely defined closed linear operator L(ρ) :
D(L(ρ)) ⊂ E → E such that u0 ∈ D(L(ρ)) ∩ D(B) and C(ρ) = ρ2B2 – 4A = L2(ρ) and
BL(ρ) = L(ρ)B. Let h ∈ C(J , E), –E1(ρ) and –E2(ρ) be respectively the infinitesimal gen-
erators of C0-semigroups T1(t) (t ≥ 0) and T2(t) (t ≥ 0). Then Problem (2.2) has a unique
solution given by

u(t) = T2(t)u0 +
∫ t

0
T2(t – s)T1(s)

(
u1 + E2(ρ)u0

)
ds

+
∫ t

0

∫ s

0
T2(t – s)T1(s – τ )h(τ ) dτ ds,

where E1(ρ), E2(ρ) were defined in (2.7).

Proof Let

du
dt

+ E2(ρ)u = v(t), t ∈ J ,

which means

v0 := v(0) = u1 + E2(ρ)u0.

So we reduce the linear elastic system (2.2) to the following two abstract Cauchy problems
in a Banach space E:

⎧
⎨

⎩

dv
dt + E1(ρ)v = h(t), t ∈ J ,

v(0) = v0,
(2.9)

and
⎧
⎨

⎩

du
dt + E2(ρ)u = v(t), t ∈ J ,

u(0) = u0.
(2.10)
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It is clear that (2.9) and (2.10) are linear inhomogeneous initial value problems for –E1(ρ)
and –E2(ρ), respectively. Thus, by operator semigroups theory [11], –E1(ρ) and –E2(ρ)
are infinitesimal generators of C0-semigroups, which implies that initial value problems
(2.9) and (2.10) are well posed.

Thus using Lemma 2.6, if h ∈ C(J , E), Problem (2.9) has a mild solution v given by

v(t) = T1(t)v0 +
∫ t

0
T1(t – s)h(s) ds. (2.11)

Similarly, if v ∈ C(J , E), then the mild solution of Problem (2.10) is expressed by

u(t) = T2(t)u0 +
∫ t

0
T2(t – s)v(s) ds. (2.12)

Substituting (2.11) into (2.12), we get

u(t) = T2(t)u0 +
∫ t

0
T2(t – s)T1(s)

(
u1 + E2(ρ)u0

)
ds

+
∫ t

0

∫ s

0
T2(t – s)T1(s – τ )h(τ ) dτ ds. �

Throughout this paper, we assume that –E1(ρ) and –E2(ρ) generate C0-semigroups T1(t)
(t ≥ 0) and T2(t) (t ≥ 0) on E, respectively.

Based on the above discussion, motivated by the definition of mild solutions in [13], we
give the definition of a mild solution of Problem (1.1) as follows.

Definition 2.4 Let f ∈ C(J × E, E), –E1(ρ) and –E2(ρ) be respectively the infinitesimal
generators of C0-semigroups T1(t) (t ≥ 0) and T2(t) (t ≥ 0). A function u : J → E is said to
be a mild solution of Problem (1.1) if u(0) = u0 and

u(t) = T2(t)u0 +
∫ t

0
T2(t – s)T1(s)

(
u1 + E2(ρ)u0

)
ds

+
∫ t

0

∫ s

0
T2(t – s)T1(s – τ )f

(
τ , u(τ )

)
dτ ds,

where E1(ρ), E2(ρ) were defined in (2.7).

3 Main results
To obtain the existence of a mild solution for Problem (1.1), we introduce the following
hypotheses:

(H1) Assume that there exists a densely defined closed linear operator
L(ρ) : D(L(ρ)) ⊂ E → E such that u0 ∈ D(L(ρ)) ∩ D(B) and

C(ρ) = ρ2B2 – 4A = L2(ρ), BL(ρ) = L(ρ)B.

(H2) The nonlinear function f : J × E → E is continuous, there exist a Lebesgue
integrable function ϕ ∈ L∞(J ,R+) and a nondecreasing continuous function
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Ψ : [0, +∞) → (0, +∞) such that

∥
∥f (t, u)

∥
∥ ≤ ϕ(t)Ψ

(‖u‖)

for all u ∈ C(J , E).
(H3) There exists a positive constant L such that L < 1

4a2M1M2
for any countable set

D ⊂ E,

α
(
f (t, D)

) ≤ Lα(D), t ∈ J .

(H4) The C0-semigroups T2(t) (t ≥ 0) and T1(t) (t ≥ 0) are equicontinuous for t > 0.

Theorem 3.1 Assume that –E1(ρ) and –E2(ρ) are respectively the infinitesimal generators
of C0-semigroups T1(t) (t ≥ 0) and T2(t) (t ≥ 0). If conditions (H1)–(H4) hold and

a2M1M2‖ϕ‖L∞(J ,R+) lim inf
n→+∞

Ψ (n)
n

< 1, (3.1)

then, for every u0 ∈ D(L(ρ)) ∩ D(B), u1 ∈ E, Problem (1.1) has at least one mild solution
u ∈ C(J , E).

Proof Define the operator F : C(J , E) → C(J , E) by

Fu(t) = T2(t)u0 +
∫ t

0
T2(t – s)T1(s)

(
u1 + E2(ρ)u0

)
ds

+
∫ t

0

∫ s

0
T2(t – s)T1(s – τ )f

(
τ , u(τ )

)
dτ ds. (3.2)

It is easy to see that the operator F is well defined on C(J , E). From Definition 2.4, one
can easily see that the mild solution of Problem (1.1) is equivalent to a fixed point of the
operator F defined by (3.2). Next, we will prove that the operator F has at least one fixed
point.

Let ΩR = {u ∈ C(J , E) : ‖u‖C ≤ R}, then ΩR is a bounded closed and convex set in C(J , E).
Note that T1(t) (t ≥ 0) and T2(t) (t ≥ 0) are C0-semigroups on E, then there exist M1 ≥ 1
and M2 ≥ 1 such that

M1 = sup
t∈J

∥
∥T1(t)

∥
∥
L(E), M2 = sup

t∈J

∥
∥T2(t)

∥
∥
L(E).

Firstly, we prove that there exists a constant R > 0 such that F (ΩR) ⊂ ΩR. Assume to
the contrary that, for each n ∈N, there exists a sequence {un}∞n=1 ⊂ Ωn with ‖un‖C ≤ n but
‖F (un)‖C > n. Then, by (3.2) and assumptions (H1), (H2), we have

∥
∥(Fun)(t)

∥
∥ ≤ M2‖u0‖ + M1M2a

∥
∥u1 + E2(ρ)u0

∥
∥ + M1M2

∫ t

0

∫ s

0

∥
∥f

(
τ , un(τ )

)∥
∥dτ ds

≤ M2‖u0‖ + M1M2a
∥
∥u1 + E2(ρ)u0

∥
∥ + M1M2a2Ψ

(‖un‖
)‖ϕ‖L∞(J ,R+). (3.3)
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Hence,

1 <
1
n

∥
∥(Fun)(t)

∥
∥

≤ 1
n

(
M2‖u0‖ + M1M2a

∥
∥u1 + E2(ρ)u0

∥
∥
)

+ M1M2a2‖ϕ‖L∞(J ,R+)
Ψ (n)

n
. (3.4)

Passing to the limit in (3.4), we get a contradiction. Hence, for some positive number
R,F (ΩR) ⊂ ΩR.

Next, we prove that F is continuous in ΩR. To this end, let un ∈ ΩR be a sequence such
that un → u in ΩR. By the continuity of nonlinear term f with respect to the second vari-
able, for each s ∈ J , we have

f
(
s, un(s)

) → f
(
s, u(s)

)
, n → ∞, (3.5)

that is, for all ε > 0, there exists N , when n > N , we have

∥
∥f

(
s, un(s)

)
– f

(
s, u(s)

)∥
∥ ≤ ε. (3.6)

Now, we have

∥
∥(Fun)(t) – (Fu)(t)

∥
∥ ≤ M1M2

∫ t

0

∫ s

0

∥
∥f

(
τ , un(τ )

)
– f

(
τ , u(τ )

)∥
∥dτ ds

≤ M1M2a2∥∥f
(
τ , un(τ )

)
– f

(
τ , u(τ )

)∥
∥.

So, when n > N , we have

‖Fun – Fu‖C ≤ M1M2a2ε,

which means that F defined by (3.2) is continuous in ΩR.
In the following, we demonstrate that the operator F : ΩR → ΩR is equicontinuous. For

any u ∈ ΩR and 0 < t′ < t′′ ≤ a, we obtain that

∥
∥(F2u)

(
t′′) – (F2u)

(
t′)∥∥

≤ ∥
∥T2

(
t′′)u0 – T2

(
t′)u0

∥
∥

+
∥
∥
∥
∥

∫ t′

0

[
T2

(
t′′ – s

)
– T2

(
t′ – s

)]
T1(s)

(
u1 + E2(ρ)u0

)
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t′′

t′
T2

(
t′′ – s

)
T1(s)

(
u1 + E2(ρ)u0

)
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t′

0

∫ s

0

[
T2

(
t′′ – s

)
– T2

(
t′ – s

)] × T1(s – τ )f
(
τ , u(τ )

)
dτ ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t′′

t′

∫ s

0
T2

(
t′′ – s

) × T1(s – τ )f
(
τ , u(τ )

)
dτ ds

∥
∥
∥
∥

:= I1 + I2 + I3 + I4 + I5,
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where

I1 =
∥
∥T2

(
t′′)u0 – T2

(
t′)u0

∥
∥,

I2 =
∥
∥
∥
∥

∫ t′

0

[
T2

(
t′′ – s

)
– T2

(
t′ – s

)]
T1(s)

(
u1 + E2(ρ)u0

)
ds

∥
∥
∥
∥,

I3 =
∥
∥
∥
∥

∫ t′′

t′
T2

(
t′′ – s

)
T1(s)

(
u1 + E2(ρ)u0

)
ds

∥
∥
∥
∥,

I4 =
∥
∥
∥
∥

∫ t′

0

∫ s

0

[
T2

(
t′′ – s

)
– T2

(
t′ – s

)] × T1(s – τ )f
(
τ , u(τ )

)
dτ ds

∥
∥
∥
∥

I5 =
∥
∥
∥
∥

∫ t′′

t′

∫ s

0
T2

(
t′′ – s

) × T1(s – τ )f
(
τ , u(τ )

)
dτ ds

∥
∥
∥
∥.

In fact, we only need to check whether I1, I2, I3, I4, and I5 tend to 0 independently of u ∈ ΩR

when t′′ – t′ → 0.
Note that the function T2(t)u0 is continuous for t ≥ 0. Thus, T2(t)u0 is uniformly con-

tinuous on J and thus limt′′→t′ I1 = 0.
For I2, we have

I2 ≤
∫ t′

0

∥
∥T2

(
t′′ – s

)
– T2

(
t′ – s

)∥
∥
L(E) × ∥

∥T1(s)
∥
∥
L(E)

∥
∥u1 + E2(ρ)u0

∥
∥ds

≤ M1
∥
∥u1 + E2(ρ)u0

∥
∥

∫ t′

0

∥
∥T2

(
t′′ – s

)
– T2

(
t′ – s

)∥
∥
L(E) ds.

Therefore the continuity of the functions t �→ ‖T1(t)‖ and t �→ ‖T2(t)‖ for t ∈ J allows us
to conclude that limt′′→t′ I2 = 0.

For I4, we have

I4 ≤
∫ t′

0

∫ s

0

∥
∥T2

(
t′′ – s

)
– T2

(
t′ – s

)∥
∥
L(E) × ∥

∥T1(s – τ )
∥
∥
L(E)

∥
∥f

(
τ , u(τ )

)∥
∥dτ ds

≤ M1aΨ (R)‖u‖L∞(J ,E) ×
∫ t′

0

∥
∥T2

(
t′′ – s

)
– T2

(
t′ – s

)∥
∥
L(E) ds.

Consequently, limt′′→t′ I4 = 0.
For I3, I5, we ha

I3 ≤ M1M2
∥
∥u1 + E2(ρ)u0

∥
∥ · ∣∣t′′ – t′∣∣,

I5 ≤ M1M2Ψ (R)‖u‖L∞(J ,E)
∣
∣t′′ – t′∣∣.

Hence, limt′′→t′ I3 = limt′′→t′ I5 = 0.
As a result, ‖(Fu)(t′′) – (Fu)(t′)‖ tends to 0 independently of u ∈ ΩR as t′′ – t′ → 0,

which means that F : ΩR → ΩR is equicontinuous.
Now, we show that the operator F is k-set-contractive. For any bounded D ⊂ ΩR, by

Lemma 2.2, we know that there exists a countable set D0 = {un} ⊂ D such that

α
(
F (D)

)

C ≤ 2α
(
F (D0)

)

C . (3.7)
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Since F (D0) ⊂F (ΩR) is bounded and equicontinuous, we know from Lemma 2.4 that

α
(
F (D0)

)

C = max
t∈J

α
(
F (D0)(t)

)
. (3.8)

For every t ∈ J , by Lemma 2.3, assumption (H3), and (3.2), we have

α
(
F (D0)(t)

)
= α

({

T2(t)u0 +
∫ t

0
T2(t – s)T1(s)

(
u1 + E2(ρ)u0

)
ds

+
∫ t

0

∫ s

0
T2(t – s)T1(s – τ )f

(
τ , un(τ )

)
dτ ds

})

≤ 2M1M2a
∫ t

0
α
({

f
(
τ , un(τ )

)})
dτ

≤ 2M1M2a
∫ t

0
Lα

(
D0(s)

)
ds

≤ 2M1M2La2α(D)C . (3.9)

Therefore, from (3.7) and (3.9) we know that

α
(
F (D)

)

C ≤ 4M1M2La2α(D)C .

And from Definition 2.3 we know that the operator F : ΩR → ΩR is k-set-contractive.
It follows from Lemma 2.1 that F has at least one fixed point u ∈ ΩR, which is just a mild
solution of Problem (1.1). This completes the proof. �

Remark 3.1 The analytic semigroup and differentiable semigroup are equicontinuous
semigroups [25]. In the application of partial differential equations, such as parabolic and
strongly damped wave equations, the corresponding solution semigroup is analytic semi-
group. Therefore, Theorem 3.1 has a broad applicability.

Remark 3.2 In the case C(ρ) = –L2(ρ), the expression of a mild solution for Problem (1.1)
and the conclusion of Theorem 3.1 are correct and meaningful in complex Banach spaces.

4 Examples
Let Ω ⊂ R

N be an open bounded set with sufficiently smooth boundary ∂Ω , and let E =
Lp(Ω). Then E is a Banach space equipped with the Lp-norm ‖ · ‖p.

Example 4.1 Let p = 2. We consider the following damping elastic system:

⎧
⎪⎪⎨

⎪⎪⎩

∂2u(t,x)
∂t2 – 2γ�

∂u(t,x)
∂t + �2u(t, x) = 1

5 sin u(t, x), (t, x) ∈ J × Ω ,

�u(t, x) = u(t, x) = 0, (t, x) ∈ J × ∂Ω ,

u(0, x) = u0(x), ∂
∂t u(0, x) = u1(x), x ∈ Ω ,

(4.1)

where γ = ρ ≥ 1 is constant, � stands for the Laplace operator in the space variable x,
J = [0, 1]. We define the linear operators A and B in E by

Au = �2u, u ∈ D(A) = D
(
�2) =

{
u ∈ H4(Ω) : �u = u = 0 on ∂Ω

}
,
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Bu = –2�u, u ∈ D(B) = H1
0 (Ω) ∩ H2

0 (Ω).

Clearly, C(ρ) = ρ2B2 – 4A = 4�2(ρ2 – 1) = L2, where L = 2�(ρ2 – 1) 1
2 . It is clear that BL =

LB. Further,

E1(ρ) = –
(
ρ +

(
ρ2 – 1

) 1
2
)
� = –σ1�, E2(ρ) = –

(
ρ –

(
ρ2 – 1

) 1
2
)
� = –σ2�, (4.2)

where σ1 = (ρ + (ρ2 – 1) 1
2 ), σ2 = (ρ – (ρ2 – 1) 1

2 ), E1(ρ) and E2(ρ) are invertible bounded
linear operators on L2(Ω) for all ρ > 0.

Since � is the infinitesimal generator of C0-semigroup T(t)t≥0, furthermore, for any ρ ≥
1, (4.2) yields σ1 > 0, σ2 > 0. Thus, by operator semigroup theory [25], –E1(ρ) = σ1� and
–E2(ρ) = σ2� are the infinitesimal generators of equicontinuous C0-semigroups T1(t)t≥0

and T2(t)t≥0 on L2(Ω), respectively. It follows that

T1(t) = T(σ1t), T2(t) = T(σ2t), t ≥ 0,

which is exponentially stable, i.e.,

∥
∥T1(t)

∥
∥ ≤ e–λ1σ1t ,

∥
∥T2(t)

∥
∥ ≤ e–λ1σ2t

with λ1 being the first eigenvalue of �.
Let u(t) = u(t, ·), f (t, u(t)) = 1

5 sin u(t, x), then Problem (4.1) can be reformulated as the
following abstract second order evolution equation in E:

⎧
⎨

⎩

u′′(t) + ρBu′(t) + Au(t) = f (t, u(t)), t ∈ J ,

u(0) = u0, u′(0) = u1.
(4.3)

In order to solve Problem (4.1), we also need the following assumptions:
(1) u0 ∈ D(L) ∩ D(B), u1 ∈ L2(Ω).
(2) The partial derivative f ′

u(t, x, u) is continuous.

Theorem 4.1 If assumptions (1) and (2) are satisfied, then Problem (4.1) has a mild solu-
tion u ∈ C(J , L2(Ω)).

Proof Since f (t, x, u(t, x)) = 1
5 sin u(t, x) is continuous on [0, 1] × [0, +∞) × E and satisfying

∣
∣f ′

u(t, x, u)
∣
∣ =

1
5
∣
∣cos u(t, x)

∣
∣ ≤ 1

5
, (t, x, u) ∈ [0, 1] × [0, +∞) × E;

f (t, x, 0) = sin 0 = 0, (t, x) ∈ [0, 1] × [0, +∞).
(4.4)

From (4.4), for u ∈ E, we have

∥
∥f (t, x, u)

∥
∥ ≤ 1

5
‖u‖, (t, x) ∈ [0, 1] × [0, +∞),

α
(
f (t, D)

) ≤ 1
5
α(D), t ∈ J .
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Now take M1 = M2 = 1, we calculate

a2M1M2‖ϕ‖L∞(J ,R+) lim inf
n→+∞

Ψ (n)
n

=
1
5

< 1,

L <
1

4a2M1M2
=

1
4

.

From all the assumptions, it is easily seen that the conditions in Theorem 3.1 are satisfied.
Hence, by Theorem 3.1, Problem (4.3) has a mild solution u ∈ C(J , E), which means u is a
mild solution for Problem (4.1). �

Example 4.2 Let p ∈ [2,∞). Consider the following damping elastic system:

⎧
⎪⎪⎨

⎪⎪⎩

∂2u(t,x)
∂t2 + 2ρ�∂u(t,x)

∂t + �u(t, x) = 1
5 sin u(t, x), (t, x) ∈ J × Ω ,

u(t, x) = 0, (t, x) ∈ J × ∂Ω ,

u(0, x) = u0(x), ∂
∂t u(0, x) = u1(x), x ∈ Ω ,

(4.5)

where ρ > 0 is constant, the function f : J × Ω × E → E is continuous, and � stands for
the Laplace operator in the space variable x, J = [0, 1]. We define the linear operators A
and B in E by

Au = �u, u ∈ D(A) = W 2,p(Ω) ∩ W 1,p
0 (Ω),

Bu = 2�u, u ∈ D(B) = W 2,p(Ω) ∩ W 1,p
0 (Ω).

Clearly, C(ρ) = ρ2B2 – 4A = 4(ρ2�2 – �) = L2, where L = 2(ρ2�2 – �) 1
2 . It is clear that

BL = LB. Further,

E1(ρ) = R1(ρ)�, E2(ρ) = R2(ρ)�,

where R1(ρ) = [ρI – (ρ2I + (–�)–1) 1
2 ] and R2(ρ) = [ρI + (ρ2I + (–�)–1) 1

2 ] are invertible
bounded linear operators on Lp(Ω) for all ρ > 0.

Moreover,

–R–1
1 (ρ)

(
–E1(ρ)

)
= –R–1

2 (ρ)
(
–E2(ρ)

)
= �

is the infinitesimal generator of a C0-semigroup as T(t) (t ≥ 0) on Lp(Ω) and –R–1
1 (ρ),

–R–1
2 (ρ) are invertible. Thus, by operator semigroup theory [25], –E1(ρ) = –R1(ρ)� and

–E2(ρ) = –R2(ρ)� generate positive C0-semigroups T1(t) (t ≥ 0) and T2(t) (t ≥ 0) on
Lp(Ω).

Let u(t) = u(t, ·), f (t, u(t)) = 1
5 sin u(t, x), then Problem (4.5) can be reformulated as

Eqs. (4.3). In order to solve Problem (4.5), we also need the following assumptions:
(3) u0 ∈ D(L) ∩ D(B), u1 ∈ Lp(Ω).
(4) The partial derivative f ′

t (t, x, u) is continuous.

Theorem 4.2 If assumptions (3) and (4) are satisfied, then Problem (4.5) has a mild solu-
tion u ∈ C(J , Lp(Ω)).

Proof The proof is similar to that of Theorem 4.1. Here, we omit it. �
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5 Conclusions
This paper investigates the existence of mild solutions for damped elastic systems in Ba-
nach spaces by the fixed point theorem and operator semigroup theory. Our results pre-
sented in this paper improve and generalize many classical results [11–14]. For future work
we will focus on investigating the asymptotic stability of solutions and the analyticity and
exponential stability of the associated semigroup for a damping elastic system in Banach
spaces.
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