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Abstract
A stochastic HIV infection model of virus-to-cell transmission is proposed,
incorporating the antiretroviral drug therapy by introducing efficacy parameters of
RTI and PI drugs, considering the Lévy noise for the inherent stochastic biochemical
processes. First, we discuss the model existence of a global positive solution and, by
applying Itô’s formula, establish a sufficient condition for the extinction of infected
CD4+ T-cells and virus particles. Then, for proving the persistence in mean, a special
method is investigated to handle the model. It is obtained that if R̃1 > 1 the infected
CD4+ T-cells and virus particles will be persistent in mean. Finally, some numerical
simulations are carried out to show the effects of inherent stochastic fluctuation.
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1 Introduction
Human immunodeficiency virus (HIV) began to spread world-wide decades ago. The
CD4+ T-cells are the primary targets of HIV infection, when virus particles invade the
human immune system [1]. The progress of HIV infection has several different stages, in-
cluding the early stage of infection, the clinical latency stage, the stage of immune system
becoming damaged, and the final stage when HIV progresses to acquired immunodefi-
ciency syndrome (AIDS)—a fatal disease, so far, there is no cure [2].

At the early stage of infection, virus-to-cell transmission is the main route of HIV vi-
ral infection in within-host dynamics. When virus invades the human immune system,
the immune system can produce antibodies and destroy most of the virus, just the virus
concentration declines. But in this stage, patients always show flu-like symptoms, which
generally are diagnosed. If medication starts in this stage, the virus concentration is low,
random fluctuations may have a significant effect on the dynamics of the disease, there
is a probability to prevent the disease development, it can prolong the life expectancy of
patients; therefore, therapy in the early stage is of vital importance [3].

Over the last two decades, there has been extensive research on the early stage of HIV in-
fection. Mathematical models describing the interaction between virus and CD4+ T-cells
have been a major area of the research, which plays an important role in analyzing the
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behavior of the system on a cellular level to explain different phenomena. Various models
have been researched from the perspective of virus-to-cell transmission [4–11].

The general pattern of viral load decay in the early stage of HIV patients is to treat them
with antiretroviral therapy and to suppress HIV replication inside the host cell [12]. Math-
ematical models including antiretroviral therapy have been proposed to study the effects
of drug therapy, and they provided theoretical principles to facilitate the development of
treatment strategies for HIV infected patients. In Ref. [13], the authors considered the
therapy of reverse transcriptase inhibitors (RTIs) drugs which have different drug efficacy
on CD4+ T cells, to block conversion of uninfected cells to infected cells. In Refs [14, 15],
protease inhibitor (PI) drugs therapy was designed to intervene replication of the virus,
make the newly produced virus noninfectious. Currently, evidence showed that highly ac-
tive antiretroviral therapy (HAART) is one of the most effective ways to suppress virus
replication and progression, which is a combination prevention interventions strategy.
HAART comprises the effect of reverse transcriptase inhibitor (RTI) drugs and protease
inhibitor (PI) drugs. In Refs [16, 17], by establishing mathematical models to describe the
effects of combined RTIs and PIs treatments on HIV infection, the result confirmed that
PIs drugs are more effective than RTIs drugs, and the combined therapy of RTIs and PIs
is more effective than monotherapy of RTIs or PIs.

Mathematical models of HIV infection process traditionally take the form of determin-
istic differential equations. Various deterministic models have been established in the lit-
erature to describe the dynamics of healthy and infected CD4+ T-cells and virus particles.
Especially, in Ref. [18], Mao et al. proposed a deterministic model to describe the viral
dynamics of HIV-1 infection in the presence of HAART:

⎧
⎪⎪⎨

⎪⎪⎩

dx1
dt = λ – δx1 – (1 – γRTI)βx1x3,

dx2
dt = (1 – γRTI)βx1x3 – ax2,

dx3
dt = (1 – ηPI)Nax2 – μx3 – (1 – γRTI)βx1x3.

(1.1)

The parameters in the model are as follows:
x1(t) is the concentration of healthy CD4+ T-cells;
x2(t) is the concentration of infected CD4+ T-cells;
x3(t) is the concentration of free virus particles;

λ is the rate at which new target cells are generated per unit time;
δ is the death rate of healthy cells;
β is the transmission coefficient between uninfected cells and infective virus particles;
a is the death rate of infected cells and viral lysis;

N is the number of new particles released by each infected cell when it lyses;
μ is the rate of virus particles cleared from the system;

γRTI is the efficacy of reverse transcriptase inhibitor drug effect;
ηPI is the efficacy of protease inhibitor drug.

In the presence of antiretroviral drugs therapy, not all cells are able to react to the drugs, so
the healthy CD4+ T-cells diminish by infection through contact with the virus at a reduced
rate β(1–γRTI), and 0 < γRTI < 1. Due to the effects of PIs drugs, viral burst size N is reduced
to N(1 – ηPI), and 0 < ηPI < 1. When a single infective virus particle infects a single healthy
CD4+ T-cell, the virus particle is absorbed into the healthy CD4+ T-cell and effectively
dies, hence the term β(1 – γRTI)x1x3 appears in all the three equations.
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The basic reproduction number is obtained in Ref. [18]:

R0 =
(1 – γRTI)βλN(1 – ηPI)

δμ + βλ(1 – γRTI)
,

which means the expected number of secondary infected cells caused by a single infected
cell entering the disease-free population at equilibrium. If R0 < 1, the model has a disease-
free equilibrium ( λ

δ1
, 0, 0); when R0 > 1, there is a unique endemic equilibrium given by

(x∗
1, x∗

2, x∗
3), where

x∗
1 =

μ

β(1 – γRTI)[N(1 – ηPI) – 1]
,

x∗
2 =

βλ(1 – γRTI)N(1 – ηPI) – βλ(1 – γRTI) – δμ

βα(1 – γRTI)[N(1 – ηPI) – 1]
,

x∗
3 =

βλ(1 – γRTI)N(1 – ηPI) – βλ(1 – γRTI) – δμ

β(1 – γRTI)[(1 – γRTI)βμ]
,

and the infected cells and infective virus particles will persist to exist (see Ref. [18]).
However, for the process of HIV infection in the early stage, the successful infection may

be affected by many factors after a virus particle attaches to a healthy CD4+ T-cell, such as
reverse transcription, nuclear import, and the patient immune system strength. The effect
of these factors on the dynamics of early infection is important. Deterministic models are
not applicable to describe this random behavior.

It is well recognized that HIV infection is an inherently random process in viral gene
production, different CD4+ T-cells and infective virus particles reacting in the same envi-
ronment can often give different results [19]. Singh et al. showed that stochastic expres-
sion of human immunodeficiency virus HIV proteins can affect the viral fate-decision be-
tween active replication and post integration latency in single cells by experimental data
[20]. Deterministic models are not applicable to describe the random variations in many
biological factors; therefore, it is feasible to consider the random variable in an HIV dy-
namical model, see Refs [21–25]. In [18] Mao et al. considered the effect of environmental
stochasticity on some of the model parameters (1.1), then the stochastic differential equa-
tions become:

⎧
⎪⎪⎨

⎪⎪⎩

dx1 = [λ – δx1 – (1 – γRTI)βx1x3] dt + σ1x1 dB1(t),

dx2 = [(1 – γRTI)βx1x3 – ax2] dt + σ2x2 dB2(t),

dx3 = [(1 – ηPI)Nax2 – μx3 – (1 – γRTI)βx1x3] dt + σ3x3 dB3(t).

(1.2)

Here, B1(t) and B2(t) are independent standard Brownian motions.
However, due to the inherent stochastic nature of biochemical processes, the dynamic

process of HIV viral infection may suffer the strong fluctuation such that the classical
stochastic model (1.2) cannot explain the strong, occasional fluctuations of the biologi-
cal environment. In this work, we propose an extracellular stochastic model to describe
the phenomena in the initial stages of HIV infection. The jump diffusion model can de-
scribe the phenomena causing a big jump to occur occasionally [26–28]. The stochastic
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differential equations derived by considering the Poisson process are as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) = [λ – δx1 – (1 – γRTI)βx1x3] dt + σ1x1 dB1(t)

+
∫

Y γ1(u)x1(t–)Ñ(dt, du),

dx2(t) = [(1 – γRTI)βx1x3 – ax2] dt + σ2x2 dB2(t) +
∫

Y γ2(u)x2(t–)Ñ(dt, du),

dx3(t) = [(1 – ηPI)Nax2 – μx3 – (1 – γRTI)βx1x3] dt + σ3x3 dB3(t)

+
∫

Y γ3(u)x3(t–)Ñ(dt, du).

(1.3)

Here, x1(t–), x2(t–), and x3(t–) are the left limit of x1(t), x2(t), and x3(t), Ñ(dt, du) =
N(dt, du) – ν(du) dt, N is a Poisson counting measure with characteristic measure ν on
a measurable subset Y of (0, +∞) with ν(Y ) < ∞. γi(u) : Y × Ω → R is bounded and con-
tinuous (i = 1, 2, 3). We assume that Bi(t) (i = 1, 2, 3) and N are independent throughout
the paper.

By considering the results in the above references, the main contributions of this paper
are as follows:

• Describe the strong fluctuation of HIV viral infection by introducing a Lévy jump
process into the HIV viral dynamical model, it can be seen as an extension of [18];

• By using the Hasminskii–Mao theorem and stochastic Lyapunov function, we show
that the model has a unique global positive solution;

• In order to investigate the sufficient conditions of infected CD4+ T-cells and virus
particles persistence in mean, we applied a new method to establish a stochastic
Lyapunov function.

2 Preliminaries
First, we introduce the following notations. Throughout this paper, let (Ω ,F , {Ft}t≥0, P)
denote a complete probability space with a filtration {Ft} satisfying the usual conditions
(i.e., it is increasing and right continuous whileF0 contains all P-null sets), Bi(t) are defined
on this probability space.

We also introduce the following notations:

R
d
+ = {x ∈R+ : xi > 0, i = 1, 2, . . . , d}.

〈f 〉t =
1
t

∫ t

0
f (s)ds, 〈f 〉∗ = lim

t→∞ inf
1
t

∫ t

0
f (s)ds, 〈f 〉∗ = lim

t→∞ sup
1
t

∫ t

0
f (s)ds.

Assume that X(t) ∈ R+ is an Itô–Lévy process of the form

dX(t) = F
(
X

(
t–)

, t–)
dt + G

(
X

(
t–)

, t–)
dB(t) +

∫

Y

H
(
X

(
t–)

, t–, u
)
Ñ(dt, du),

where F : Rn × R+ × S → Rn, G : Rn × R+ × S → Rn, and H : Rn × R+ × S × Y → Rn are
measurable functions.

Given V ∈ C2,1(Rn × R+ × S; R+), the operator LV is defined by

LV (X, t) = Vt(X, t) + VX(X, t)F(X, t) +
1
2

trace
[
GT (X, t)VXX(X, t)G(X, t)

]

+
∫

Y

{
V

(
X + H(X, t)

)
– V (X, t) – VX(X, t)H(X, t, u)

}
ν(du),
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where

Vt(X, t) =
∂VX(X, t)

∂t
, VX(X, t) =

(
∂VX(X, t)

∂X1
, . . . ,

∂VX(X, t)
∂Xn

)

,

VXX(X, t) =
(

∂2VX(X, t)
∂Xi∂Xj

)

n×n
.

Then the generalized Itô’s formula with Lévy jumps is given by

dV (X, t) = LV (X, t) dt + VX(X, t)G(X, t) dB(t) +
∫

Y

{
V

(
X + H(X, t)

)
– V (X, t)

}
Ñ(dt, du).

For convenience, we introduce the following lemmas and assumption which will be used
later.

Assumption 1 We assume that 1 + γi(u) > 0, u ∈ Y (i = 1, 2, 3), and there is a positive
constant c such that

∫

Y

[
ln

(
1 + γi(u)

)]2
ν(du) < c.

Lemma 2.1 We assume that, for some p > 2, μ∗ – p–1
2 σ 2 – 1

pλ∗ > 0 holds. For any ini-
tial value (x1(0), x2(0), x3(0)) ∈ R

3
+, model (1.3) has a unique positive solution (x1(t), x2(t),

x3(t)) ∈R
3
+ for any t ≥ 0 almost surely. Furthermore, the solution (x1(t), x2(t), x3(t)) of model

(1.3) has the following properties:

lim
t→∞

(x1(t) + 2x2(t) + x3(t))
t

= 0.

Moreover,

lim
t→∞

x1(t)
t

= 0, lim
t→∞

x2(t)
t

= 0, lim
t→∞

x3(t)
t

= 0,

where σ 2 = σ 2
1 ∨ σ 2

2 ∨ σ 2
3 , μ∗ = min{δ, a,μ} – (1 – ηPI)Na, and λ∗ =

∫

Y [(1 + γ1(u) ∨ γ2(u) ∨
γ3(u))p – 1 – γ1(u) ∧ γ2(u) ∧ γ3(u)]ν(du).

Proof Define X = x1 + 2x2 + x3, V = Xp, applying Itô’s formula, we get

dV (X) = LV (X) dt + pXp–1[σ1 dB1(t) + σ2 dB2(t) + σ3 dB3(t)
]

+
∫

Y

[
(x1 + γ1x1 + 2x2 + 2γ2x2 + x3 + γ3x3)p – Xp]Ñ(dt, du),

where

LV (X) = pXp–1[λ – δx1 – 2ax2 – μx3 + (1 – ηPI)Nax2
]

+
p(p – 1)

2
Xp–2[σ 2

1 x2
1 + 4σ 2

2 x2
2 + σ 2

3 x2
3
]

+
∫

Y

[
(x1 + γ1x1 + 2x2 + 2γ2x2 + x3 + γ3x3)p – Xp
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– pXp–1(γ1x1 + 2γ2x2 + γ3x3)
]
v(du)

≤ pXp–1[λ – δx1 – 2ax2 – μx3 + (1 – ηPI)Nax2
]

+
p(p – 1)

2
Xp(σ 2

1 + σ 2
2 + σ 2

3
)

+
∫

Y
Xp[(1 + γ1 ∨ γ2 ∨ γ3)p – 1 – (γ1 ∧ γ2 ∧ γ3)

]
v(du)

≤ pXp–2
[

λX –
(

μ∗ – (1 – ηPI)Na –
p – 1

2
σ 2 –

1
p
λ∗

)

X2
]

,

where μ∗ = min{δ, a,μ}, p > 2, b = μ∗ – (1 – ηPI)Na – p–1
2 σ 2 – 1

pλ∗ > 0, σ 2 = σ 2
1 ∨ σ 2

2 ∨ σ 2
3 ,

λ∗ =
∫

Y [(1 + γ1 ∨ γ2 ∨ γ3)p – 1 – (γ1 ∧ γ2 ∧ γ3)]v(du).
Thus, we have

dV (X) ≤ pXp–2(λX – bX2)dt + pXp–1[σ1 dB1(t) + σ2 dB2(t)

+ σ3 dB3(t)
]

+
∫

Y
Xp[(1 + γ1 ∨ γ2 ∨ γ3)p – 1

]
Ñ(dt, du).

The following proof is similar to [29]. �

Lemma 2.2 We assume that, for some p > 2, μ∗ – p–1
2 σ 2 – 1

pλ∗ > 0 holds. For any ini-
tial value (x1(0), x2(0), x3(0)) ∈ R

3
+, model (1.3) has a unique positive solution (x1(t), x2(t),

x3(t)) ∈R
3
+ for any t ≥ 0 almost surely. Furthermore, the solution (x1(t), x2(t), x3(t)) of model

(1.3) has the following properties:

lim
t→∞ sup

ln x1(t)
t

≤ 0, lim
t→∞ sup

ln x2(t)
t

≤ 0, lim
t→∞ sup

ln x3(t)
t

≤ 0, a.s.

lim
t→∞

∫ t
0 x1(s) dB1(s)

t
= 0, lim

t→∞

∫ t
0 x2(s) dB2(s)

t
= 0,

lim
t→∞

∫ t
0 x3(s) dB3(s)

t
= 0, a.s.

lim
t→∞

∫ t
0
∫

Y γ1(u)x1(s)Ñ(ds, du)
t

= 0, lim
t→∞

∫ t
0
∫

Y γ2(u)x2(s)Ñ(ds, du)
t

= 0,

lim
t→∞

∫ t
0
∫

Y γ3(u)x3(s)Ñ(ds, du)
t

= 0, a.s.,

where σ 2 = σ 2
1 ∨ σ 2

2 ∨ σ 2
3 , μ∗ = min{δ, a,μ} – (1 – ηPI)Na, and λ∗ =

∫

Y [(1 + γ1(u) ∨ γ2(u) ∨
γ3(u))p – 1 – γ1(u) ∧ γ2(u) ∧ γ3(u)]ν(du).

The proof of Lemma 2.2 is obtained based on ref [30], the Burkholder–Davis–Gundy
inequality, and Hölder inequality.

Lemma 2.3 ([31]) Suppose that Z(t) ∈ C(Ω × [0,∞),R+). Under Assumption 1,
(I) if there are two positive constants T and δ0 such that

ln Z(t) ≤ δt – δ0

∫ t

0
Z(s) ds +

n∑

i=1

αiB(t) +
n∑

i=1

ki

∫ t

0

∫

Y
ln

(
1 + γi(u)

)
Ñ(dt, du), a.s.
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for all t > T , where αi, δ, and ki are constants, then

⎧
⎨

⎩

〈Z〉∗ ≤ δ
δ0

a.s., if δ ≥ 0;

limt→∞ Z(t) = 0 a.s., if δ < 0.

(II) if there exist three positive constants T , δ, and δ0 such that

ln Z(t) ≥ δt – δ0

∫ t

0
Z(s) ds +

n∑

i=1

αiB(t) +
n∑

i=1

ki

∫ t

0

∫

Y
ln

(
1 + γi(u)

)
Ñ(dt, du), a.s.

for all t > T , then 〈Z〉∗ ≥ δ
δ0

.

3 Existence and global positive solution
Theorem 3.1 For any given initial value (x1(0), x2(0), x3(0)) ∈R

3
+, there is a unique positive

solution (x1(t), x2(t), x3(t)) of model (1.3) on t ≥ 0 and the solution will remain in R
3
+ with

probability 1, namely (x1(t), x2(t), x3(t)) ∈R
3
+ for all t ≥ 0 almost surely.

Proof Since the coefficients of the equations are locally Lipschitz continuous, for any given
initial value (x1(0), x2(0), x3(0)) ∈ R

3
+, there is a unique local solution (x1(t), x2(t), x3(t)) on

t ∈ [0, τe), where τe is the explosion time. To show this solution is global, we need to show
that τe = ∞ a.s. At first, we prove x1(t), x2(t), and x3(t) do not explode to infinity in a finite
time. Set m0 > 0 to be sufficiently large so that all x1(0), x2(0), and x3(0) lie within the
interval [ 1

m0
, m0]. For each integer m ≥ m0, define the stopping time

τm = inf

{

t ∈ [0, τe) : x1(t) /∈
(

1
m

, m
)

or x2(t) /∈
(

1
m

, m
)

x3(t) /∈
(

1
m

, m
)}

.

Clearly, τm is increasing as m → ∞ a.s. Set τ∞ = limm→∞ τm, where τ∞ ≤ τe a.s. If we can
show that τ∞ = ∞ is true, then τe = ∞ and (x1(t), x2(t), x3(t)) ∈ R

3
+ a.s. If this statement is

false, then there exist a pair of constants T > 0 and 0 < ε < 1 such that

P(τ∞ ≤ T) ≥ ε.

Hence, there is an integer m1 ≥ m0 such that

P(τm ≤ T) ≥ ε for all m1 ≥ m0.

Define a C3-function by

V (x1, x2, x3) =
(

x1 + a1 – ln
x1

a1

)

+ (x2 + 1 – ln x2) + a2(x3 + 1 – ln x3),

where a1, a2 are positive constants to be defined later. The nonnegativity of this function
can be seen from

(u – 1 – ln u) ≥ 0 for u ≥ 0.
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Let m ≥ m0 and T > 0 be arbitrary. Using Itô’s formula [32], we get

dV (x1, x2, x3) = LV (x1, x2) dt + σ1(x1 – a1) dB1(t) + σ2(x2 – 1) dB2(t)

+ a2σ3(x3 – 1) dB3(t) +
∫

Y

[
γ1(u)x1 – a1 ln

(
1 + γ1(u)

)

+ γ2(u)x2 – ln
(
1 + γ2(u)

)
+ a2γ3(u)x3 – a2 ln

(
1 + γ3(u)

)]
Ñ(dt, du),

where

LV (x1, x2, x3) =
(
(1 – γRTI)βa2 – δ

)
x1 +

(
(1 – ηPI)Naa2 – a

)
x2

+
(
(1 – γRTI)βa1 – a2μ

)
x3 + λ + a1δ + a + a2μ

+
1
2

a1σ
2
1 +

1
2
σ 2

2 +
1
2

a2σ
2
3 – (1 – γRTI)βa2x1x3

–
a1λ

x1
–

(1 – γRTI)βx1x3

x2
–

(1 – ηPI)a2Nax2

x3

+
∫

Y

[
a1γ1(u) – a1 ln

(
1 + γ1(u)

)
+ γ2(u)

– ln
(
1 + γ2(u)

)
+ a2γ3(u) – a2 ln

(
1 + γ3(u)

)]
ν(du)

≤ (1 – γRTI)β
(

a2 –
δ

(1 – γRTI)β

)

x1 + (1 – ηPI)Na
(

a2 –
1

(1 – ηPI)N

)

x2

+ (1 – γRTI)β
(

a1 –
a2u

(1 – γRTI)β

)

x3

+ λ + a1δ + a + a2μ +
1
2

a1σ
2
1 +

1
2
σ 2

2 +
1
2

a2σ
2
3 + 3K1

≤ λ + a1δ + a + a2μ +
1
2

a1σ
2
1 +

1
2
σ 2

2 +
1
2

a2σ
2
3 + 3K1

=: M,

where a1 = a2u
(1–γRTI)β , a2 = min{ δ

(1–γRTI)β , 1
(1–ηPI)N }, so we have a1 – a2u

(1–γRTI)β = 0, a2 –
δ

(1–γRTI)β ≤ 0, and a2 – 1
(1–ηPI)N ≤ 0, and K1 = max{a1

∫

Y [γ1(u) – ln(1 + γ1(u))]ν(du),
∫

Y [γ2(u) – ln(1 + γ2(u))]ν(du), a2
∫

Y [γ3(u) – ln(1 + γ3(u))]ν(du)}.
The proof of the remaining part follows the proof in Ref. [26]. �

4 Extinction of the disease
For HIV infection, the main concern is the conditions which make the infected CD4+

T-cells and free virus particles eradicate in a long term. In this section, we will give a result
of extinction of infected CD4+ T-cells and free virus particles in stochastic model with
Lévy noise.

Denote

R̃0 =
[((1 – ηPI)Na – a) – μ]2

(σ 2
2 + 2μ)(σ 2

1 – 2[(1 – ηPI)Na – a])
.
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Theorem 4.1 Assume that σ 2
1 – 2[(1 – ηPI)Na – a] > 0, then for any given initial value

(x1(0), x2(0), x3(0)) ∈R
3
+, the solution (x1(t), x2(t), x3(t)) ∈ R

3
+ of model (1.3) has the property

lim
t→∞ sup

ln(x2 + x3)
t

≤ –
1
4
|λmax| < 0

if R̃0 < 1 holds.

Proof Applying Itô’s formula, we can conclude that

d ln (x2 + x3)

=
1

2(x2 + x3)2

{
2(x2 + x3)

[
(1 – ηPI)Nax2 – ax2 – μx3

]

– σ 2x2
2 – σ 3x2

3 + β3
}

dt +
1

x2 + x3

[
σ2x2 dB2(t) + σ3x3 dB3(t)

]

+
∫

Y
ln

(

1 +
x2γ2(u) + x3γ3(u)

x2 + x3

)

Ñ(dt, du)

=
1

2(x2 + x3)2

{
[

x2 x3

]

×
[

2a((1 – ηPI)N – 1) – σ 2
1 a(N(1 – ηPI) – 1) – μ

a(N(1 – ηPI) – 1) – μ –2μ – σ 2
2

][
x2

x3

]}

dt

+
β3

2(x2 + x3)2 dt +
1

x2 + x3

[
σ2x2 dB2(t) + σ3x3 dB3(t)

]

+
∫

Y
ln

(

1 +
x2γ2(u) + x3γ3(u)

x2 + x3

)

Ñ(dt, du),

where β3 =
∫

Y ln[(1 + x2γ2(u)+x3γ3(u)
x2+x3

) – x2γ2(u)+x3γ3(u)
x2+x3

]ν(du) < 0.
Let

A =

[
2a((1 – ηPI)N – 1) – σ 2

1 a(N(1 – ηPI) – 1) – μ

a(N(1 – ηPI) – 1) – μ –2μ – σ 2
2

]

,

if conditions

σ 2
1 – 2a

(
(1 – ηPI)N – 1

)
> 0

and

|A| = –
(
2μ + σ 2

2
)(

σ 2
1 – 2

[
(1 – ηPI)Na – a

])
(R̃0 – 1) > 0

are satisfied, then we can conclude that the matrix A is negative-definite, with the largest
(negative) eigenvalue λmax. Then we have

d ln (x2 + x3) ≤ –
1
4
|λmax|dt +

1
x2 + x3

[
σ2x2 dB2(t) + σ3x3 dB3(t)

]

+
∫

Y
ln

(

1 +
x2γ2(u) + x3γ3(u)

x2 + x3

)

Ñ(dt, du). (4.1)
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Integrating from 0 to t on both sides of (4.1) yields

ln(x2(t) + x3(t))
t

≤ –
1
4
|λmax| +

σ2

t

∫ t

0

x2

x2 + x3
dB2(s) +

σ3

t

∫ t

0

x3

x2 + x3
dB3(s)

+
1
t

∫ t

0

∫

Y
ln

(
1 + γ (u)

)
Ñ(ds, du) +

ln(x2(0) + x3(0))
t

,

where γ (u) = γ2(u) ∨ γ3(u).
Combined with Lemma 2.1, Lemma 2.2, and Lemma 2.3, clearly,

lim sup
t→∞

ln(x2 + x3)
t

≤ –
1
4
|λmax| < 0.

The proof is completed. �

Remark 4.1 The sufficient criteria of extinction are established for the infected CD4+

T-cells and free virus particles in the stochastic model with Lévy noise. From Theorem
4.1, we can obtain that strong fluctuation in internal HIV viral dynamics accelerates the
extinction of the infected CD4+ T-cells and free virus particles.

5 Persistence in mean
For simplicity, we introduce the following notation:

〈
xi(t)

〉
=

1
t

∫ t

0
xi(s) ds, i = 1, 2, 3.

Definition 5.1 Model (1.3) is said to be persistent in the mean if

lim
t→∞ inf

1
t

∫ t

0
x2(s) ds > 0,

lim
t→∞ inf

1
t

∫ t

0
x3(s) ds > 0 a.s.

Denote

R̃1 =
λ(1 – γRTI)β(1 – ηPI)Na

(δ + σ̄1)(a + σ̄2)(μ + (1–γRTI)β
δ

+ σ̄3)
.

Theorem 5.1 Assume that (1 – ηPI)N – 1 > 0, then for any solution (x1(t), x2(t), x3(t)) ∈R
3
+

of model (1.3) with initial value (x1(0), x2(0), x3(0)) ∈R
3
+, if R̃1 > 1, then

lim
t→∞ inf

〈
x3(t)

〉 ≥ ρ

β(1 – γRTI)
,

lim
t→∞ inf

〈
x2(t)

〉 ≥ μρ

aβ(1 – γRTI)[(1 – ηPI)N – 1]
.
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Proof Define V (x1, x2, x3) = – ln x1 – c1 ln x2 – c2(ln x3 – (1–γRTI)β
δ

x1). Applying Itô’s formula,
we obtain

dV (x1, x2, x3) = LV dt – σ1

(

1 –
c2(1 – γRTI)β

δ

)

dB1(t) – c1σ2 dB2(t)

– c2σ3 dB3(t) –
∫

Y

[

ln
(
1 + γ1(u)

)
+ c1 ln

(
1 + γ2(u)

)

+ c2 ln
(
1 + γ3(u)

)
–

c2(1 – γRTI)β
δ

lnγ1(u)x1(t)
]

Ñ(dt, du),

where

LV =
[

–
λ

x1
– c1(1 – γRTI)β

x1x3

x2
–

c2(1 – ηPI)Nax2

x3
+ δ

+ (1 – γRTI)βx3 +
1
2
σ 2

1 + ac1 +
c1

2
σ 2

2 + c2μ +
c2

2
σ 2

3

+
c2λ(1 – γRTI)β

δ
–

c2(1 – γRTI)2β2x1x3

δ

]

+
∫

Y

[
γ1(u) – ln

(
1 + γ1(u)

)
+ c1

(
γ2(u) – ln

(
1 + γ2(u)

))

+ c2
(
γ3(u) – ln

(
1 + γ3(u)

))]
ν(du)

≤ – 3 3
√

λc1(1 – γRTI)β(1 – ηPI)Nac2

+ c1

(

a +
σ 2

2
2

+
∫

Y

[
γ2(u) – ln

(
1 + γ2(u)

)]
ν(du)

)

+ c2

(

μ +
σ 2

3
2

+
(1 – γRTI)β

δ
+

∫

Y

[
γ3(u) – ln

(
1 + γ3(u)

)]
ν(du)

)

+ δ + (1 – γRTI)βx3 +
1
2
σ 2

1 +
∫

Y

[
γ1(u) – ln

(
1 + γ1(u)

)]
ν(du).

Note σ̄1 = 1
2σ 2

1 +
∫

Y [γ1(u) – ln(1 + γ1(u))]ν(du), σ̄2 = 1
2σ 2

2 +
∫

Y [γ2(u) – ln(1 + γ2(u))]ν(du),
and σ̄3 = 1

2σ 2
3 +

∫

Y [γ3(u) – ln(1 + γ3(u))]ν(du), then let

c1(a + σ̄2) = c2

(

μ +
(1 – γRTI)β

δ
+ σ̄3

)

=
λ(1 – γRTI)β(1 – ηPI)Na

(a + σ̄2)(μ + (1–γRTI)β
δ

+ σ̄2)
,

we have

c1 =
λ(1 – γRTI)β(1 – ηPI)Na

(a + σ̄2)2(μ + (1–γRTI)β
δ

+ σ̄2)
, c2 =

λ(1 – γRTI)β(1 – ηPI)Na
(a + σ̄2)(μ + (1–γRTI)β

δ
+ σ̄2)2

.

So,

LV ≤ –
λ(1 – γRTI)β(1 – ηPI)Na

(a + σ̄2)(μ + (1–γRTI)β
δ

+ σ̄2)
+ δ + σ̄1 + (1 – γRTI)βx3

= –ρ + (1 – γRTI)βx3,
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where

ρ = (δ + σ̄1)
[

λ(1 – γRTI)β(1 – ηPI)Na
(a + σ̄2)(μ + (1–γRTI)β

δ
+ σ̄2)(δ + σ̄1)

– 1
]

= (δ + σ̄1)(R̃1 – 1).

We obtain that

dV (x1, x2, x3) < –ρ dt + (1 – γRTI)βx3 dt + σ1

(

1 –
c2(1 – γRTI)β

δ

)

dB1(t)

– c1σ2 dB2(t) – c2σ3 dB3(t) –
∫

Y

[

ln
(
1 + γ1(u)

)
+ c1 ln

(
1 + γ2(u)

)

+ c2 ln
(
1 + γ3(u)

)
–

c2(1 – γRTI)β
δ

γ1(u)x1(t)
]

Ñ( dt, du). (5.1)

Let c3 = c2(1–γRTI)β
δ

, when ρ ≥ 0, that is, R̃1 > 1. Integrating from 0 to t on both sides of (5.1),
we obtain

ln V (x1(t), x2(t), x3(t)) – ln V (x1(0), x2(0), x3(0))
t

≤ –ρ + (1 – γRTI)β
〈
x3(t)

〉
–

(1 – c3)σ1

t

∫ t

0
B1(s) ds –

c1σ2

t

∫ t

0
B2(s) ds

–
c2σ3

t

∫ t

0
B3(s) ds –

1
t

∫ t

0

∫

Y

[
ln

(
1 + γ1(u)

)
+ c1 ln

(
1 + γ2(u)

)

+ c2 ln
(
1 + γ3(u)

)
+ c3γ1(u)x1(s)

]
Ñ( ds, du). (5.2)

Take the limit on both sides of (5.2), considering Lemma 2.1, Lemma 2.2, and Lemma 2.3,
we have

lim
t→∞

∫ t
0 Bi(s) ds

t
= 0, i = 1, 2, 3, (5.3)

and

lim
t→∞

〈
x3(t)

〉 ≥ ρ

β(1 – γRTI)
. (5.4)

The same as

lim
t→∞ inf

〈
x3(t)

〉 ≥ ρ

β(1 – γRTI)
.

On the other hand, applying Itô’s formula, we can conclude that

d(x2 + x3) = LV dt +
∫

Y

[
γ2(u)x2(t) + γ3(u)x3(t)

]
Ñ(dt, du), (5.5)

where

LV =
[(

(1 – ηPI)Na – a
)
x2 – μx3

]
dt + σ2x2 dB2(t) + σ3x3 dB3(t).
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Integrating both sides of (5.5) from 0 to t yields

x2(t)
t

+
x3(t)

t
=

(
(1 – ηPI)Na – a

)〈
x2(t)

〉
– μ

〈
x3(t)

〉

+
1
t

∫ t

0

∫

Y

(
γ2(u)x2(s) + γ3(u)x3(s)

)
Ñ(ds, du)

+
σ2x2B2(t)

t
+

σ3x3B3(t)
t

+
x2(0)

t
+

x3(0)
t

.

Clearly, we can derive that

〈
x2(t)

〉
=

μ

(1 – ηPI)Na – a
〈
x3(t)

〉
+ φ(t), (5.6)

where

φ(t) = –
[

x2(t) – x2(0)
t

+
x3(t) – x3(0)

t
–

∫ t
0 σ2x2(s) dB2(s)

t

–
∫ t

0

σ3x3(s) dB3(s)
t

–
1
t

∫ t

0

∫

Y

(
γ2(u)x2(s) + γ3(u)x3(s)

)
Ñ(ds, du)

]

.

According to Lemma 2.1 and Lemma 2.2, we have

lim
t→∞φ(t) = 0.

Together with (5.4) and (5.6), we obtain

lim
t→∞

〈
x2(t)

〉 ≥ μρ

aβ(1 – γRTI)[(1 – ηPI)N – 1]
.

The same as

lim
t→∞ inf

〈
x2(t)

〉 ≥ μρ

aβ(1 – γRTI)[(1 – ηPI)N – 1]
.

Therefore, if R̃1 > 1, we get the conclusion of Theorem 5.1. So, the proof is completed. �

Remark 5.1 From the expression of R̃1, we can realize that the persistence of the infected
CD4+ cells and virus particles depend not only on the highly active antiretroviral treat-
ment (HAART), but also on the stochastic fluctuation intensity of the biochemical circum-
stance. Obviously, R̃1 ≤ R0, if and only if σ̄1 = 0, σ̄2 = 0, σ̄3 = 0, then R̃1 = R0. This means
that strong stochastic fluctuation can suppress the replication of virus particles and the
release of new particles.

6 Numerical results
In this section, the results of various simulations of HIV infection dynamics are presented.
By an order 1

2 Euler scheme approximation [33, 34], we discuss the effect of white noises
and Lévy noise on the viral dynamics.

Firstly, we verify the extinction of system (1.3), choose parameters as in Table 1, the in-
tensity of noise (σ1,σ2,σ3) = (4.2, 4, 1.8), (γ1,γ2,γ3) = (1.2, 0.9, 1.4) N = 20. For stochastic



Cheng et al. Advances in Difference Equations        (2019) 2019:321 Page 14 of 17

Table 1 List of parameters

Parameter Description Value Source

λ Production rate of new target cells 2× 105/day [35]
δ Death rate of uninfected cells 0.1/uninfected cell/day [35]
β Infection rate of uninfected cells 2.4× 10–7/virus/uninfected cell/day [35]
a Death rate of infected cells and viral lysis 0.5/infected cell/day [5, 35]
μ Virion clearance rate 5/virion/day [35]
γRTI The efficacy of reverse transcriptase inhibitor

drug effect
0.5 [12]

ηPI The efficacy of protease inhibitor drug 0.12 [12]

Figure 1 Numerical simulation of the path x2(t) and x3(t) for the deterministic model, the stochastic model
with white noise, and the stochastic model with Lévy jump; The density functions of x2(t) and x3(t) are driven
by Lévy noise and white noise, respectively. We apply an order 1

2 Euler scheme approximation with initial
value (x1(0), x2(0), x3(0)) = (1000, 1, 1),(σ1,σ2,σ3) = (4.2, 4, 1.8), (γ1,γ2,γ3) = (1.2, 0.9, 1.4)

model with Lévy jump, we obtain R̃0 = 0.42 < 1. Figure 1(a1) and Fig. 1(b1) show that the
solutions of infected CD4+ cells and virus particles will tend to zero with probability 1,
respectively. The probability density of the values of x2 and x3 are shown in Fig. 1(a2) and
Fig. 1(b2) driven by Lévy noise and Fig. 1(a3) and (b3) affected by white noise. By compar-
ing the results, we found that strong fluctuation will result in faster extinction of infected
CD4+ cells and virus particles than white noise. While we set (σ1,σ2,σ3) = (0.55, 0.4, 0.7),
(γ1,γ2,γ3) = (0.2, 0.3, 0.4), N = 80, then R̃1 > 1, from Fig. 2 we can see that the infected
CD4+ cells and virus particles are both persistent in mean.

Next, we assume that the intensity of noise is (σ1,σ2,σ3) = (10, 5, 1.8) and (γ1,γ2,γ3) =
(1.6, 1.3, 1.4), N = 80, there are some interesting results found in the numerical simula-
tions, see Fig. 3. For the stochastic model with Lévy jump, we obtain R̃0 = 0.84 < 1, the
infected CD4+ cells and virus particles are both extinct, while for the deterministic model
R0 = 2.9 > 1, the infected CD4+ cells and virus particles are both persistent.
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Figure 2 Numerical simulation of the path x2(t) and x3(t) for the deterministic model, the stochastic model
with white noise, and the stochastic model with Lévy jump; The density functions of x2(t) and x3(t) are driven
by Lévy noise and white noise, respectively. We apply an order 1

2 Euler scheme approximation with initial
value (x1(0), x2(0), x3(0)) = (1000, 1, 1), (σ1,σ2,σ3) = (0.55, 0.4, 0.7), (γ1,γ2,γ3) = (0.2, 0.3, 0.4)

Figure 3 Numerical simulation of the path x2(t) and x3(t) for the deterministic model, the stochastic model
with white noise, and the stochastic model with Lévy jump; The density functions of x2(t) and x3(t) are driven
by Lévy noise and white noise, respectively. We apply an order 1

2 Euler scheme approximation with initial
value (x1(0), x2(0), x3(0)) = (1000, 1, 1), (σ1,σ2,σ3) = (10, 5, 1.8), (γ1,γ2,γ3) = (1.6, 1.3, 1.4)

7 Conclusion
This paper investigated the dynamics of a stochastic HIV infection model with combined
therapy of highly active antiretroviral treatment (HAART) and Lévy jumps. To our knowl-
edge, this part of work has not been done so far. Through theoretical analysis and nu-
merical simulations, we obtained some results about the HIV infection on a cellular level
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driven by Lévy noise. First, we investigated the global existence and unique positive solu-
tions; then, by constructing a suitable stochastic Lyapunov function, we gave the sufficient
conditions that R̃0 < 1, the infected CD4+ cells and virus particles extinct in probability.
Then, we adopted a special method to deal with the model, and obtained if R̃1 > 1 the
infected CD4+ cells and virus particles are persistent in mean. By numerical simulations,
the theoretical results were verified. We also observed some phenomena that strong per-
turbation of the environment is beneficial to the extinction of the infected CD4+ cells and
virus particles.

Due to the inherent stochastic nature of HIV infection, some interesting topics deserve
further discussion, such as considering another common random perturbation regime-
switching that was studied by several authors recently [36, 37]. We will go about these
cases subsequently.
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