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Abstract
Salinity refers to the amount of salt in rivers, where the salt can be in many different
forms. There are two main methods of defining the concentration of salt in water
such as the total dissolved solid measurement (TDS) and the electrical conductivity
measurement (EC). The salinity is measured by evaporating water to dryness and
weighing the solid residue. The electrical conductivity measurement is measured by
passing an electric current through the water and measuring how readily the current
flows. The total amount of salt in the water can affect the taste of water. The World
Health Organization’s guideline on water palatability is that water with a salinity level
of less than about 0.50–0.60 g/L is generally considered to be of a standard level. The
drinking-water becomes significantly and increasingly unpalatable at salinity levels
greater than about 1.0 g/L. In this research, a one-dimensional mathematical model
of salinity measurement in a river is proposed. A modified model of salinity control in
a river with a barrage dam is also introduced. An unconditionally stable explicit finite
difference technique is used to approximate the salinity level under several
conditions from the proposed model. The proposed computational technique gives
good agreement results in realistic scenarios for water supply processes.
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1 Introduction
Water production means the removal of surface water or raw water from natural water
sources such as rivers, canals, reservoirs, and the sea into the production process for the
quality and quantity as per requirement such as tap water and pure water for use in con-
sumption, agriculture, and industry. Each type of production water can use different pro-
duction technologies.

Water supply systems will use surface water or raw water to produce water, which will be
used for consumption, agriculture, and certain industries that do not require high quality
water. There are many factors that affect the quality of the water produced such as salinity
of the water. It is a very important factor in the production because it cannot be treated in
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Table 1 Water quality monitoring stations in river, Thailand where S7 is the main water supply
pumping station for Bangkok

Stations Distance from the estuary

S1 12
S2 27
S3 35
S4 50
S5 64
S6 91
S7 96
S8 108

the normal way. So, for bringing the water to the water treatment process, it is necessary
to have a salinity standard.

The Waterworks Authority of Thailand has eight water quality monitoring stations lo-
cated throughout the river. Each station has a distance from the estuary as shown in Ta-
ble 1. Currently, the station used to pump raw water for use in the water supply process for
consumption in Bangkok has a problem of salinity of water over the standard. That makes
an impact on the quality of water produced has a salinity up to standard.

In [1] and [2], the finite element method was used to solve the water pollution mod-
els. In [3], the finite difference method was used to solve the hydrodynamic model with
the constant coefficients in the closed uniform reservoir. In [4], an analytical solution to
the hydrodynamic model in a closed uniform reservoir was proposed. In [5], the Lax–
Wendroff finite difference method was also proposed to approximate the water elevation
and water flow velocity. In [6], the fourth-order method for a one-dimensional water qual-
ity model in a nonuniform flow stream was proposed. In [7], a nondimensional form of
a two-dimensional hydrodynamic model with generalized boundary condition and initial
conditions for describing the elevation of water wave in an open uniform reservoir was
proposed.

Today, there are research studies on the effects of drinking water with salinity over stan-
dards, such as [8, 9], and [10]. We will see that the water is too salty to the standards that
affect the body. Therefore, research has been presented on the increase of salt water, such
as [11] and [12]. The well-known mathematical model uses the conservative property for
defining the diffusion of salinity water in a one-dimensional equation [13]

A
∂S
∂t

+ Q
∂S
∂x

=
∂

∂x

[
ADx

∂S
∂x

]
, (1)

where A is a cross-sectional area of the river (m2), Q is flow rate (m3/s), Dx is diffusion
coefficient of water (m2/s), S is salinity value (ppt), x is distance (m), and t is time (s).

In this research, a one-dimensional mathematical model of salinity measurement in a
river is proposed. A modified model of salinity control in a river with a barrage dam is
also introduced. An unconditionally stable explicit finite difference technique is used to
approximate the salinity level under several conditions from the proposed model. The
proposed computational technique can be applied in realistic scenarios for water supply
processes.
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2 Governing equations
2.1 Salinity water pollution measurement model
In a stream water quality model, the governing equation is the dynamic one-dimensional
advection-dispersion equation. A simplified representation, averaging the equation over
the depths, is shown in [6]:

∂c
∂t

+ u
∂c
∂x

= D
∂2c
∂x2 (2)

for all (x, t) ∈ Ω = [0, L]× [0, T], u is the flow velocity and D is a given diffusion coefficient.
Assume that the salinity is diluted by the freshwater, then the salinity advection level is

reduced by the freshwater velocity. The percentage ability of freshwater to dilute salinity
is assumed to be 0 ≤ k ≤ 1. The one-dimensional salinity water pollution measurement
model in a river can be given as follows:

∂c
∂t

+ (us – kuw)
∂c
∂x

= Ds
∂2c
∂x2 , (3)

where c(x, t) is the salinity concentration (kg/m3), us is advective velocity of salinity water
(m/s), k is water salinity removal efficiency rate, uw is the fresh water flow velocity.

2.2 Initial conditions
The initial condition is defined by an interpolation function of measured raw salinity data.
It is aligned on the length of the river from the estuary to the end of the considered area.
The initial condition is assumed to be

c(x, 0) = f (x) (4)

for all x ∈ [0, L], where f (x) is an interpolation function of measured salinity data.

2.3 Boundary condition
2.3.1 Left boundary condition
The left boundary condition is an interpolation function of measured raw data. It is based
on the salinity of a river at the first station close to the estuary. The boundary condition is
assumed to be

c(0, t) = g(t) (5)

for all t ∈ [0, T], where g(t) is a given interpolation function by measured salinity data at
the first monitoring station.

2.3.2 Right boundary condition
The right boundary condition is defined by the rate of change of salinity area of the water.
The condition can be given as follows:

∂c
∂x

= CR (6)

for all t ∈ [0, T], where CR is an approximated rate of change of salinity around the last
monitoring station.
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3 Explicit finite difference method for a one-dimensional salinity water
pollution measurement model

We now discretize the domain by dividing the interval [0, L] into M subintervals such
that M�x = L and the time interval [0, T] into N subintervals such that N�t = T . The
grid points (xi, tn) are defined by xi = i�x for all i = 1, 2, 3, . . . , M and tn = n�t for all n =
1, 2, 3, . . . , N , in which M and N are positive integers. We can then approximate c(xi, tn)
by Cn

i , value of the difference approximation of c(x, t) at point x = i�x and t = n�t, where
0 ≤ i ≤ M and 0 ≤ n ≤ N . We will employ the forward time central space finite difference
scheme (FTCS) and the Saulyev method into Eq. (2).

3.1 Forward time central space finite difference scheme
Taking the forward time central space technique [4] into Eq. (2), we get the following dis-
cretization:

c(xi, tn) ∼= Cn
i , (7)

∂c
∂t

|(xi ,tn) ∼= Cn+1
i – Cn

i
�t

, (8)

∂c
∂x

|(xi ,tn) ∼= Cn
i+1 – Cn

i–1
2�x

, (9)

∂2c
∂x2 |(xi ,tn) ∼= Cn

i+1 + Cn
i–1 – 2Cn

i

(�x)2 , (10)

us(xi, tn) = un
si

, (11)

uw(xi, tn) = un
wi

. (12)

Substituting Eqs. (7–12) into Eq. (2), we get the finite difference equation:

Cn+1
i – Cn

i
�t

+
(
un

si
– kun

wi

)(Cn
i+1 – Cn

i–1
2�x

)
= Ds

(
Cn

i+1 + Cn
i–1 – 2Cn

i

(�x)2

)
. (13)

Then the explicit finite difference equation becomes

Cn+1
i+1 =

(
λ + 0.5rn

i
)
Cn

i–1 + (1 – 2λ)Cn
i +

(
λ – 0.5rn

i
)
Cn

i+1 (14)

for all i = 1, 2, 3, . . . , M – 1, where λ = Ds�t
(�x)2 and rn

i =
(un

si –kun
wi )�t

�x . The forward time cen-
tral space scheme is conditionally stable subject to constraints in Eq. (13). The stability
requirements for the scheme are [6], 0 < λ < 1

2 , and 0 < rn
i < 1.

3.1.1 Right boundary condition approximation
For the right boundary condition Eq. (6), the right boundary condition is defined by the
rate of change of salinity area of the water. The right boundary condition is assumed to be

∂c
∂x

≈ c(L2, t) – c(L1, t)
L2 – L1

(15)

for all t ∈ [0, T], where L1 and L2 are the distance from the upstream to the point before
and after the water supply source, respectively. If we substitute the approximate unknown
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value of the right boundary, we obtain

Cn
M+1 =

(Cn
M2

– Cn
M1

L2 – L1

)
�x + Cn

M–1. (16)

The forward time central space scheme is conditionally stable subject to constraints in
Eq. (13). The stability requirements for the scheme are [6]. It can be obtained that the strict
stability requirements are the main disadvantage of this scheme.

3.2 Saulyev explicit finite difference scheme
The Saulyev scheme is unconditionally stable [3]. It is clear that the non-strict stability
requirement of the Saulyev scheme is the main advantage and economical to use. Taking
Saulyev technique [3] into Eq. (2), the following discretization can be obtained:

c(xi, tn) ∼= Cn
i , (17)

∂c
∂t

|(xi ,tn) ∼= Cn+1
i – Cn

i
�t

, (18)

∂c
∂x

|(xi ,tn) ∼= Cn
i+1 – Cn+1

i–1
2�x

, (19)

∂2c
∂x2 |(xi ,tn) ∼= Cn

i+1 – Cn
i – Cn+1

i + Cn+1
i–1

(�x)2 . (20)

Substituting Eqs. (17–20) into Eq. (2), we get the finite difference equation

Cn+1
i – Cn

i
�t

+
(
un

si
– kun

wi

)(Cn
i+1 – Cn+1

i–1
2�x

)
= Ds

(
Cn

i+1 – Cn
i – Cn+1

i + Cn+1
i–1

(�x)2

)
. (21)

Then the explicit finite difference equation becomes

Cn+1
i+1 =

(
1

1 + λ

)[(
λ +

1
2

rn
i

)
Cn+1

i–1 + (1 – λ)Cn
i +

(
λ –

1
2

rn
i

)
Cn

i+1

]
(22)

for all i = 1, 2, 3, . . . , M – 1, where λ = Ds�t
(�x)2 and rn

i =
(un

si –kun
wi )�t

�x . For i = M, the right bound-
ary condition Eq. (5), if substituting the approximate unknown value of the right boundary,
we obtain Cn

M+1 = (
Cn

M2
–Cn

M1
L2–L1

)�x + Cn
M–1.

Using Taylor series expansions on the approximation, [14] has shown that the truncation
error is O{(�x)2 + (�t)2 + (�t/�x)2}.

The Saulyev method is an unconditionally stable method [15]. It follows that the appli-
cation of the explicit Saulyev finite difference technique is economical in terms of compu-
tation implementation.

4 Numerical simulations
4.1 Simulation 1: salinity control in an ideal case
We consider a segment of a river with 108 km of length as shown in Table 1. Assume
that the salinity diffusion coefficient is 0.1 m2/s, the salinity flow velocity is 0.065 m/s, the
ability percentage of fresh water dilution is 30%, and the given simulated station at any
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Table 2 Physical parameters of simulation 1

Ds (m2/s) us (m/s) uw (m/s) K L (km) T (s)

0.1 0.065 0.25 0.3 108 100

Figure 1 The exact solution of simulation 1 by
�x = 0.1 and �t = 0.05 for all 0 ≤ x ≤ 108 and
0≤ t ≤ 1000

Figure 2 The FTCS solution of simulation 1 by
�x = 0.1 and �t = 0.05 for all 0 ≤ x ≤ 108 and
0≤ t ≤ 1000

Table 3 The maximum absolute error defined by errmax = max |c̃(xi , T ) – c(xi , T )| for all i = 0, 1, . . . ,N,
where T = 10, 20, 30, and 40

T FTCS Saulyev

errmax errmax

10 5.9442× 10–4 5.1141× 10–4

20 0.0044 0.0042
30 0.0083 0.0082
40 0.0107 0.0107

time is 100. Their physical parameters and given spacing are shown in Table 2. In [11], the
theoretical solution is given by

c(x, t) =
1√

4t + 1
exp

[
–

(x – 1 – (us – kuw)t)2

D(4t + 1)

]
. (23)

Actually, when using the FTCS scheme Eq. (14) and the Saulyev technique Eq. (23), when
their physical parameters are as given in Table 2, we get the approximated solution c(x, t).
The theoretical solution is illustrated by a surface of solution in Fig. 1. The FTCS approxi-
mated solution is illustrated by Fig. 2. The Saulyev approximated solution is also illustrated
by Fig. 3. The maximum absolute error of both finite difference approximations is com-
pared in Table 3.
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Figure 3 The Saulyev solution of simulation 1 by
�x = 0.1 and �t = 0.05 for all 0 ≤ x ≤ 108 and
0≤ t ≤ 1000

Table 4 Physical parameters of simulation 2

Ds (m2/s) us (m/s) uw (m/s) K L (km) T (s)

0.1 0.065 0.3 0.3 108 100
0.1 0.065 0.25 0.3 108 100
0.1 0.065 0.2 0.3 108 100

Table 5 Convergence of FTCS method and Saulyev method for some grid spacing

T �x �t FTCS Saulyev

100 0.10 0.04 Stable Stable
0.05 Stable Stable
0.06 Untable Stable
0.07 Untable Stable

100 0.05 0.04 Untable Stable
0.05 Untable Stable
0.06 Untable Stable
0.07 Untable Stable

100 0.025 0.04 Untable Stable
0.05 Untable Stable
0.06 Untable Stable
0.07 Untable Stable

4.2 Simulation 2: the salinity is diluted by releasing the fresh water from a
barrage dam with different flow velocities.

We consider a segment of a river with 108 km of length as shown in Table 1. Assuming
that the salinity diffusion coefficient is 0.1 m2/s, the salinity flow velocity is 0.065 m/s,
the ability percentage of fresh water dilution is 30%, and the given simulated station at
any time is 1000. Their physical parameters and given spacing are shown in Table 4. In
this simulation, the Saulyev technique is used to approximate the solution since the tech-
nique will always give stable solutions as shown in Table 5. According to the good agree-
ment of approximated solutions of the Saulyev method, the method in Eq. (23) is cho-
sen to approximate the solution of the simulation. The several fresh water flow velocities
uw = 0.20, 0.25, 0.30 m/s from the barrage dam are simulated until the salinity level at the
controlled monitoring station S7 becomes standardized level as shown in Figs. 4–5.
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Figure 4 Approximated salinity along the river by
using the Saulyev technique, where �x = 0.1 and
�t = 0.05 for all 0≤ x ≤ 108 and 0 ≤ t ≤ 1000

Figure 5 Approximated salinity at c(96, t) by
�x = 0.1 and �t = 0.05 for all 0 ≤ t ≤ 1000 when
uw = 0.3, 0.25 and 0.2

Table 6 Physical parameters of simulation 3

c(x, t) at S7 D (m2/s) us (m/s) uw (m/s) K T L (km) c(0, t)

> CST 0.1 0.065 0.25 0.3 1000 108 g(t)
< CST 0.1 0.065 0.205 0.3 1000 108 g(t)

4.3 Simulation 3: the salinity is diluted by releasing the fresh water from a
barrage dam and changing flow velocities after the salinity comes to
standard

We consider a segment of a river with 108 km of length as shown in Table 1. Assuming
that the salinity diffusion coefficient is 0.1 m2/s, the salinity flow velocity is 0.065 m/s, the
ability percentage of fresh water dilution is 30%, and the given simulated station at any
time is 1000. Their physical parameters and given spacing are shown in Table 6. Assume
that there are eight monitoring stations along a considered river segment as shown in
Table 1. The controlled monitoring station is station S7. We need to control the salinity
level at station S7 to be under the salinity standard level CST = 0.3 kg/m3. The salinity is
controlled by a process as follows:

(1) If the salinity level at station S7 c(96, t) > CST , then the fresh water will be released at
a high speed from the barrage dam by controlled flow velocity.

(2) If the salinity level at station S7 c(96, t) < CST , then the fresh water will be released at
a low speed level from the barrage dam.

We can obtain the approximated salinity level along the considered river segment as
shown in Fig. 6 and Table 7. The salinity level at several monitoring stations S1, S5, and S7

is shown in Figs. 7, 8, and 9, respectively.
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Figure 6 The numerical solution of simulation 2 by
�x = 0.1 and �t = 0.05 for all 0≤ x ≤ 108 and
0≤ t ≤ 1000

Table 7 Approximated salinity c(x, t) of simulation 2 for all monitoring stations

t S1 S2 S3 S4 S5 S6 S7 S8

1 12.1040 4.0187 2.0224 1.0978 0.7955 0.5316 0.4995 0.1444
5000 11.3456 3.6020 1.9844 1.0058 0.7667 0.4807 0.3844 0.0027

10,000 11.3391 3.6002 2.0397 1.0128 0.7476 0.4098 0.2993 0.0023
15,000 13.7382 4.4013 2.4788 1.1159 0.7704 0.3996 0.2987 0.0032
20,000 15.5617 5.3633 3.0060 1.2576 0.8025 0.3961 0.2983 0.0034

Figure 7 Approximated salinity of simulation 2 at
station S1 by �x = 0.1 and �t = 0.05 for all
0≤ t ≤ 1000

Figure 8 Approximated salinity of simulation at
station S5 by �x = 0.1 and �t = 0.05 for all
0≤ t ≤ 1000

4.4 Simulation 4: diluting the salinity of water by releasing fresh water before
salinity water arrives at the pumping station

We consider a segment of a river with 108 km of length as shown in Table 1. Assume that
the salinity diffusion coefficient is 0.1 m2/s, the salinity flow velocity is 0.065 m/s, the ability
percentage of fresh water dilution is 30%, and the given simulated station at any time is
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Figure 9 Approximated salinity of simulation at
station S7 by �x = 0.1 and �t = 0.05 for all
0≤ t ≤ 1000

Table 8 Physical parameters of simulation 2

c(x, t) at S5 D (m2/s) us (m/s) uw (m/s) K T L (km) c(0, t)

< CST 0.1 0.065 0 0.3 1000 108 g(t)
> CST 0.1 0.065 0.25 0.3 1000 108 g(t)

Figure 10 The numerical solution of simulation 3 by
�x = 0.1 and �t = 0.05 for all 0≤ x ≤ 108 and
0≤ t ≤ 1000

1000. Their physical parameters and given spacing are shown in Table 8. Assume that there
are eight monitoring stations along the considered river segment as shown in Table 1. The
controlled monitoring station is station S7. We need to control the salinity level at station
S7 before salinity level at station S7 is over the salinity standard level CST = 0.05 kg/m3

for about three days. In this simulation, the Saulyev technique is used to approximate the
solution since the technique will always give stable solutions. The salinity is controlled by
a process as follows:

(1) If the salinity level at station S5 c(91, t) < CST , then the fresh water is released at a
normal speed level from the barrage dam.

(2) If the salinity level a station S5 c(91, t) > CST , then the fresh water will be released at
a high speed from the barrage dam which is used to control the salinity.

We can obtain the approximated salinity level along the considered river segment as
shown in Table 9 and Fig. 10. The salinity level at several monitoring stations S1, S5, and
S7 is shown in Figs. 11, 12, and 13, respectively.

5 Discussion
In simulation 1, we get good agreement between approximated solutions of the FTCS and
the Saulyev finite difference techniques. The maximum error is less than 1%. In simula-
tion 2, we can obtain that the Saulyev technique is better than the FTCS technique due to
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Table 9 Approximated salinity c(x, t) of simulation 3 for all monitoring stations

t S1 S2 S3 S4 S5 S6 S7 S8

1 12.1040 4.0187 2.0224 1.0978 0.7957 0.4010 0.2544 0.1395
5000 20.3804 7.4884 4.0812 1.4095 0.9276 0.4791 0.3919 0.0040

10,000 17.8501 7.0540 3.9099 1.4447 0.8945 0.4144 0.2993 0.0020
15,000 16.1112 6.5658 3.7400 1.4458 0.8669 0.3456 0.2327 0.0015
20,000 14.8449 6.1007 3.5647 1.4298 0.8380 0.2888 0.1868 0.0011

Figure 11 Approximated salinity of simulation 3 at
station S1 by �x = 0.1 and �t = 0.05 for all
0≤ t ≤ 1000

Figure 12 Approximated salinity of simulation 3 at
station S5 by �x = 0.1 and �t = 0.05 for all
0≤ t ≤ 1000

Figure 13 Approximated salinity of simulation 3 at
station S7 by �x = 0.1 and �t = 0.05 for all
0≤ t ≤ 1000

the limitation of stability conditions. The Saulyev technique gives a stable approximated
solution. Otherwise, the FTCS is limited by its stability conditions. Thus the Saulyev tech-
nique is preferred in other realistic simulations. We can see that the salinity level will be
reduced when the fresh water flow velocity is increasing as shown in Fig. 5. In simulation 3,
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a salinity control process is simulated. The salinity is reduced, the salinity level comes to
standard, after that we can decrease the fresh water flow velocity to maintain the salinity
level at the standard level as shown in Fig. 9. In simulation 4, a salinity control process
is simulated. The salinity is reduced before the salinity level touches the standard salinity
level. The proposed process can reduce the salinity level when the fresh water is released
from the barrage dam at least amount as shown in Figs. 11–13.

6 Conclusion
We have proposed a one-dimensional mathematical model of salinity measurement in a
river with a barrage dam. The proposed model deals with salinity advection to a river
and the fresh water flow from the barrage dam effects. The traditional forward time cen-
tral space finite difference method is compared with the proposed Saulyev technique. The
proposed Saulyev technique gives a stable solution in any grid spacing. The technique
also gives accurately approximated solutions. The realistic problem is also simulated. The
proposed simulation can be used in several realistic salinity measurements. In the salin-
ity control aspect, the proposed process can reduce the salinity level before the level is
over the standard. The proposed numerical simulation can be applied in practical salinity
control in a river with a barrage dam.
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