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Abstract
The (2s – 1)-point non-stationary binary subdivision schemes (SSs) for curve design
are introduced for any integer s ≥ 2. The Lagrange polynomials are used to construct
a new family of schemes that can reproduce polynomials of degree (2s – 2). The
usefulness of the schemes is illustrated in the examples. Moreover, the new schemes
are the non-stationary counterparts of the stationary schemes of (Daniel and
Shunmugaraj in 3rd International Conference on Geometric Modeling and Imaging,
pp. 3–8, 2008; Hassan and Dodgson in Curve and Surface Fitting: Sant-Malo 2002,
pp. 199–208, 2003; Hormann and Sabin in Comput. Aided Geom. Des. 25:41–52, 2008;
Mustafa et al. in Lobachevskii J. Math. 30(2):138–145, 2009; Siddiqi and Ahmad in
Appl. Math. Lett. 20:707–711, 2007; Siddiqi and Rehan in Appl. Math. Comput.
216:970–982, 2010; Siddiqi and Rehan in Eur. J. Sci. Res. 32(4):553–561, 2009).
Furthermore, it is concluded that the basic shapes in terms of limiting curves
produced by the proposed schemes with fewer initial control points have less
tendency to depart from their tangent as well as their osculating plane compared to
the limiting curves produced by existing non-stationary subdivision schemes.
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1 Introduction
The importance of SSs cannot be denied because they play a vital role in computer-aided
geometric designing (CAGD), geometric modeling, computer graphics, medical image
processing, scientific visualization, reverse engineering, robotics, etc. Nowadays, SSs can
be distinguished in various types: they can range from uniform to non-uniform; from bi-
nary to an arbitrary arity; from interpolatory to approximating; from stationary to non-
stationary. It seems that stationary SSs have interesting features, but reconstruction of
special types of limit curves of various shapes, including polynomial functions, conic sec-
tions such as circles, ellipses, and spiral curves, could not be accomplished without the
non-stationary SSs.

In literature, several articles have been published during the last couple of decades. In
2003, Jena et al. [13] constructed a 4-point interpolating non-stationary SS generating
limit curves of C1-continuity. In 2007, Beccari et al. [2] derived a non-stationary binary
4-point uniform tension controlled interpolating SS reproducing conics, and they also
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proposed another ternary 4-point C2-continuous interpolating non-stationary SS with
tension control [3] in the same year. In 2009, Daniel and Shunmugaraj [6] introduced a
6-point binary interpolating non-stationary SS that is C2 limit curve. Conti and Romani
[4] presented and investigated a 6-point interpolatory non-stationary subdivision SS capa-
ble of reproducing important curves in 2010. In 2007, Daniel and Shunmugaraj [7] intro-
duced some 4-point ternary interpolating non-stationary schemes. In 2013, Li et al. [16]
developed a new technique to establish a non-stationary SS that can generate functions in
a finite-dimensional subspace of exponential polynomials. Mustafa et al. [19] introduced
a subdivision-regularization framework for preventing over-fitting of data by a model in
2013. In 2016, Salam et al. [23] presented two non-stationary forms of Chaikin perturba-
tion SS, and Tan et al. [27] derived a 3-point approximating non-stationary SS. For more
recent work on SSs, one may be referred to [1, 15, 17, 18, 21].

Another aim of this research is to discuss and compare the limit curves of our proposed
SSs. Also, we have measured curvature and torsion to find the rate at which limiting curves
approach to deviate from their tangents. It is observed that the limit curves of our ap-
proximating schemes are near to the initial control polygons and for a certain range of
parameter limit curves pass through the initial polygons. Moreover, the proposed SSs are
non-stationary counterparts of the stationary SSs of [5, 11, 12, 22, 24–26].

The plan of this article is as follows: Sect. 2 is devoted to the introduction of some basic
identities and definitions. We also derived some lemmas that are applied for construction
of (2s – 1)-point non-stationary. Construction and smoothness of the proposed SSs are
discussed in Sect. 3. Section 4 deals with various properties such as the shape of the limit
curve, curvature, and torsion, while Sect. 5 is concerned with the conclusion.

2 Preliminaries and definition
A general form of univariate binary subdivision scheme S which maps a polygon αj =
{αj

i}i∈Z to a refined polygon αj+1 = {αj+1
i }i∈Z is defined by

qj+1
2i+γ =

s∑

k=0

α
j
i+γ qj

i+k , γ = 0, 1, (1)

where s > 0, Z is the set of integers. The set of coefficients {αj
i,γ ,γ = 0, 1}s

k=0 is called sub-
division mask. This scheme is formally denoted by qj+1 = Sqj.

A necessary condition for uniform convergence of the subdivision scheme (1) is

s∑

k=0

α
j
i,γ

∼= 1, γ = 0, 1. (2)

For the given s, we define Lagrange fundamental polynomials of degree 2s – 2 and 2s – 3
corresponding to nodes {t}s–1

–(s–1) and {t}s–2
–(s–1), respectively, and they are

L2s–2
t (x) =

s–1∏

j=–(s–1),t �=j

(x – j)
(t – j)

, (3)
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where t = –(s – 1), –(s – 2), . . . , (s – 1), and

L2s–3
t (x) =

s–1∏

j=–(s–2),t �=j

(x – j)
(t – j)

, (4)

where t = –(s – 2), –(s – 3), . . . , (s – 1).

Lemma 1 ([20]) If t = –(s – 1), . . . , (s – 1), then the following implication holds:

s–1∏

j=–(s–1),j �=t

(t – j) = (–1)s–t–1(s + t – 1)!(s – t – 1)!. (5)

Lemma 2 ([20]) If t = –(s – 2), . . . , (s – 1), then following implication holds:

s–1∏

j=–(s–2),j �=t

(t – j) = (–1)s–t–1(s + t – 2)!(s – t – 1)!. (6)

Lemma 3 ([20]) If L2s–2
t (x) is a Lagrange fundamental polynomial of degree (2s – 2) corre-

sponding to nodes {t}s–1
–(s–1) defined by (3), then

L2s–2
t

(
1
4

)
=

(–1)t(4s – 3)!
26s–6(2s – 2)!(1 – 4t)(s – t – 1)!(s + t – 1)!

, (7)

where t = –(s – 1), . . . , (s – 1).

Lemma 4 ([20]) If L2s–3
t (x) is a Lagrange fundamental polynomial of degree (2s–3) defined

by (4) corresponding to the nodes {t}s–1
–(s–2), then we get

L2s–3
t

(
1
4

)
=

(–1)t(4s – 5)(4s – 7)!
26s–10(1 – 4t)(2s – 4)!(s + t – 2)!(s – t – 1)!

, (8)

where t = –(s – 2), . . . , (s – 1).

Lemma 5 If t = –(s – 2), . . . , (s – 1), then the following implication holds:

βk
t =

sin( θ

2k+1 (
∏s–1

j=–(s–2),j �=t(
1
4 – j)))

sin( θ

2k+1 (
∏s–1

j=–(s–2),j �=t(t – j)))

=
sin( θ

2k+1 ( (–1)s–1(4s–5)(4s–7)!
26s–10(2s–4)!(1–4t) ))

sin( θ

2k+1 (–1)s–t–1((s – t – 1)!(s + t – 2)!))
. (9)

Proof Since

s–1∏

j=–(s–2)

(
1
4

– j
)

=
(

1
4

)2s–2{
(4s – 7)(4s – 11) · · · (5)(1)(–3) · · · (–4s + 13)

× (–4s + 9)(–4s + 5)
}

,
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then

s–1∏

j=–(s–2),j �=t

(
1
4

– j
)

=
1

42s–3(1 – 4t)

s–1∏

t=–s+2

(1 – 4t).

This implies

s–1∏

j=–(s–2),j �=t

(
1
4

– j
)

=
(–1)s–1

42s–3(1 – 4t)

{
(4s – 7)

× (4s – 8)
(4s – 8)

(4s – 9)
(4s – 9)

(4s – 10)
(4s – 10)

(4n – 11)

× (4s – 12)
(4s – 12)

· · ·
(

8
8

)(
7
7

)(
6
6

)
(5)

(
4
4

)(
3
3

)

×
(

2
2

)
(1)

(
2
2

)
(3)

(
4
4

)(
5
5

)(
6
6

)
(7) · · · (4s – 13)

× (4s – 12)
(4s – 12)

(4s – 11)
(4s – 11)

(4s – 10)
(4s – 10)

(4s – 9)

× (4s – 8)
(4s – 8)

(4s – 7)
(4s – 7)

(4s – 6)
(4s – 6)

(4s – 5)
(4s – 4)
(4s – 4)

}
.

This leads to

s–1∏

j=–(s–2),j �=t

(
1
4

– j
)

=
(–1)s–1(4s – 5)(4s – 7)!
26s–10(1 – 4t)(2s – 4)!

. (10)

Using (6) and (10), we get (9). This completes the proof. �

Theorem 6 If L2s–2
t (x) and L2s–3

t (x) are Lagrange fundamental polynomials of degree
(2s – 2) and (2s – 3) corresponding to the nodes {t}s–1

–(s–1) and {t}s–1
–(s–2), respectively, then the

following implication holds:

λk
t =

sin( θ

2k+1 (L2s–2
t ( 1

4 ) – L2s–3
t ( 1

4 )))
sin( θ

2k+1 (L2s–2
–s+1( 1

4 )))

=
sin( θ

2k+1 ( (–1)t (4s–4)!
26s–6(2s–2)!(s–t–1)!(s+t–1)! ))

sin( θ

2k+1 ( (–1)–s+1(4s–3)!
26s–6(4s–3)(2s–2)!(2s–2)! ))

, (11)

where t = –(s – 2), . . . , (s – 1).

Proof Since

L2s–2
t

(
1
4

)
– L2s–3

t

(
1
4

)
=

(–1)t(4s – 4)!
26s–6(2s – 2)!(s – t – 1)!(s + n – 1)!

(12)

and substituting t = –(s – 1) in (7), we have

L2s–2
–(s–1)

(
1
4

)
=

(–1)–s+1(4s – 3)!
26s–6(4s – 3)(2s – 2)!(2s – 2)!

. (13)

Using (12) and (13), we get (11), which completes the proof. �
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3 The (2s – 1)-point non-stationary SS
In this section, we present general explicit formulae to construct the mask of a (2s – 1)-
point non-stationary binary approximating subdivision scheme.

Now, for s ≥ 2, the mask of (2s – 1)-point binary approximating schemes SS can be gen-
erated by

⎧
⎨

⎩
pk+1

2i =
∑s–1

t=–(s–1) η
k
–tpk

i+t ,

pk+1
2i+1 =

∑s–1
t=–(s–1) η

k
t pk

i+t ,
(14)

can be generated by

⎧
⎪⎨

⎪⎩

ηk
–s+1 =

sin( θμ

2k+1 )

sin( θ

2k+1 )
, μ < 1,

ηk
t = βk

t + λk
t μ, t = –s + 2, . . . , s – 1,

(15)

where

βk
t =

sin( θ

2k+1
(–1)s–1(4s–5)(4s–7)!
26s–10(1–4t)(2s–4)! )

sin( θ

2k+1 (–1)s–t–1(s – t – 1)!(s + t – 2)!)
,

λk
m =

sin( θ

2k+1
(–1)t (4s–4)!

26s–6(2s–2)!(s–t–1)!(s+t–1)! )

sin( θ

2k+1
(–1)–s+1(4s–4)!
26s–4((2s–2)!)2 )

,

and μ and θ are free parameters.
Here we see that some of the schemes are special cases of the scheme proposed above.

Some of new non-stationary schemes are also given below.
• Substituting s = 2 in (14) and (15), we get a new 3-point symmetric binary

approximating SS with free parameters μ and θ :

pk+1
2i = ηk

1pk
i–1 + ηk

0pk
i + ηk

–1pk
i+1,

pk+1
2i+1 = ηk

–1pk
i–1 + ηk

0pk
i + ηk

1pk
i+1,

(16)

where

ηk
–1 =

sin( θμ

2k+1 )
sin( θ

2k+1 )
,

ηk
0 =

sin( 1
4

3θ

2k+1 )
sin( θ

2k+1 )
–

sin( 1
16

3θ

2k+1 )
sin( 1

32
3θ

2k+1 )
μ,

ηk
1 =

sin( 1
4

θ

2k+1 )
sin( θ

2k+1 )
+ μ.

• Substituting s = 3 in (14) and (15), we get a new 5-point symmetric binary
approximating SS with free parameters μ and θ :

pk+1
2i = ηk

2pk
i–2 + ηk

1pk
i–1 + ηk

0pk
i + ηk

–1pk
i+1 + ηk

–2pk
i+2,

pk+1
2i+1 = ηk

–2pk
i–2 + ηk

–1pk
i–1 + ηk

0pk
i + ηk

1pk
i+1 + ηk

2pk
i+2,

(17)
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where

ηk
–2 =

sin( θμ

2k+1 )
sin( θ

2k+1 )
,

ηk
–1 = –

sin( 1
64

21θ

2k+1 )
sin( 6θ

2k+1 )
–

sin( 1
512

35θ

2k+1 )
sin( 1

2048
35θ

2k+1 )
μ,

ηk
0 =

sin( 1
64

105θ

2k+1 )
sin( 2θ

2k+1 )
+

sin( 1
1024

105θ

2k+1 )
sin( 1

2048
35θ

2k+1 )
μ,

ηk
1 =

sin( 1
64

35θ

2k+1 )
sin( 2θ

2k+1 )
–

sin( 1
512

35θ

2k+1 )
sin( 1

2048
35θ

2k+1 )
μ,

ηk
2 = –

sin( 1
64

15θ

2k+1 )
sin( 6θ

2k+1 )
+ μ.

3.1 Convergence and smoothness of the proposed SS
In this section, we use asymptotic equivalence method to find the smoothness of the nor-
malized SSs (16) and (17).

Definition 1 Two binary SSs {Sαj} and {Sβj} are asymptotically equivalent if

∞∑

j=1

‖Sαj – Sβj‖ < ∞,

where ‖Sαj‖∞ = max{∑i∈Z |α(j)
2i |, |α(j)

2i+1|}.

Theorem 7 ([9]) Consider {Sαj} is a non-stationary SS and {Sβj} is a stationary SS. Let
{Sαj} and {Sβj} be the two asymptotically equivalent SSs having finite masks of the same
support. If {Sβj} is Cm and

∑∞
j=0 2mj‖Sαj – Sβj‖ < ∞, then the non-stationary SS {Saj} is Cm.

Some estimates of stencils η
j
i, i = 0, 1, and λ

j
i, i = –1, 0, 1, 2, are required to find smooth-

ness of the proposed schemes which are given in the following lemmas.

Lemma 8 For some k ≥ 0 and 0 < θ < π
2 ,

(a) μ ≤ ηk
–1 ≤ μ

cos( θ

2k+1 )
;

(b)
(

3
4

– 2μ

)
≤ ηk

0 ≤
(

3
4 cos( θ

2k+1 )
– 2 cos

(
1

32
3θ

2k+1

)
μ

)
;

(c)
(

1
4

+ μ

)
≤ ηk

1 ≤
(

1
4 cos( θ

2k+1 )
+ μ

)
.

Proof We give the proof of (a). Note that

ηk
–1 =

sin( θμ

2k+1 )
sin( θ

2k+1 )
≥

θμ

2k+1
θ

2k+1

= μ
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and

ηk
–1 ≤ sin( θμ

2k+1 )
sin( θ

2k+1 )
≤

θμ

2k+1
θ

2k+1 cos( θ

2k+1 )
≤ μ

cos( θ

2k+1 )
.

This completes the proof of (a) the proofs of (b) and (c) are obtained in a similar way. �

By Lemma 8, we get the following lemma.

Lemma 9

(a)
∣∣ηk

–1 – μ
∣∣ ≤ C0

1
23k ,

(b)
∣∣∣∣η

k
0 –

(
3
4

– 2μ

)∣∣∣∣ ≤ C1
1

23k ,

(c)
∣∣∣∣η

k
1 –

(
1
4

+ μ

)∣∣∣∣ ≤ C2
1

23k ,

where C0, C1, and C2 are some constants independent of k.

Proof We give the proof of (a). By (a) of Lemma 8, we have

∣∣ηk
–1 – μ

∣∣ ≤ μ

(1 – cos( θ

2k+1 )
cos( θ

2k+1 )

)

≤ 2μ

cos( θ

2k+1 )
sin2

(
θ

2k+2

)

≤ 2μθ2

16 cos(θ )
1

23k ≤ C0
1

23k .

This proves (a). The proofs of (b) and (c) are similar. �

Remark 1 The proposed 3-point SS (16) is a non-stationary counterpart of the following
stationary SS:

⎧
⎨

⎩
pk+1

2i = ( 1
4 + μ)pk

i–1 + ( 3
4 – 2μ)pk

i + μpk
i+1,

pk+1
2i+1 = μpk

i–1 + ( 3
4 – 2μ)pk

i + ( 1
4 + μ)pk

i+1,
(18)

as the stencils of the normalized SS (16) converge to the stencils of (18): ηk
–1 → μ, ηk

0 →
( 3

4 – 2μ), and ηk
1 → ( 1

4 + μ) as k → ∞. The proofs of these convergences follow from
Lemma 9.

Remark 2 Similarly, for n = 2 and μ = –3ω, μ = 1
16 , μ = –3

32 , μ = 1
24 + 1

4 w, μ = 1
32 , and

μ = –3
32 + w, in (14) and (15), we get non-stationary counterparts of the stationary 3-point

schemes of [5, 11, 12, 22, 24, 26] respectively.



Ghaffar et al. Advances in Difference Equations        (2019) 2019:171 Page 8 of 20

Lemma 10 The Laurent polynomial α(z) of scheme (18) can be written as

α(z) =
{
μ +

(
1
4

+ μ

)
z +

(
3
4

– 2μ

)
z2 +

(
3
4

– 2μ

)
z3

+
(

1
4

+ μ

)
z4 + μz5

}
,

and a subdivision scheme Sα corresponding to the symbol α(z)is C2 for μ ∈ (0, 1
8 ) and C3

for μ = 1
16 .

Proof Consider

c(z) =
8α(z)

(1 + z)3 =
(
8μ + (2 – 16μ)z + 8μz2).

Note that, for μ ∈ (0, 1
8 ),

∥∥∥∥
1
2

Sc

∥∥∥∥ =
1
2

max

{∑

j∈Z
|c2j|,

∑

j∈Z
|c2j+1|

}

=
1
2

max
{

2|8μ|, |2 – 16μ|} < 1.

So the scheme is C2-continuous for μ ∈ (0, 1
8 ). In order to prove C3 smoothness, we put

μ = 1
16 in c(z), that is,

c(z) =
1
2
(
1 + 2z + z2).

If

d(z) =
2c(z)

(1 + z)
= (1 + z),

then ‖ 1
2 Sd‖ = 1

2 max{∑j∈Z |d2j|,∑j∈Z |d2j+1|} = max{ 1
2 , 1

2 } < 1. Hence by ([10], Corol-
lary 4.11) the stationary SS Sα is C3. �

Theorem 11 The stationary SSs (16) and (18) are asymptotically equivalent, that is,

∞∑

k=0

‖Sαk – Sα‖∞ < ∞.

Proof From (16) and (18), we have

∞∑

k=0

‖Sαk – Sα‖∞ =
∞∑

k=0

{∣∣ηk
–1 – μ

∣∣ +
∣∣∣∣η

k
0 –

(
3
4

– 2μ

)∣∣∣∣

+
∣∣∣∣η

k
1 –

(
1
4

+ μ

)∣∣∣∣

}
.
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From (a) of Lemma 9, it follows that

∞∑

k=0

∣∣ηk
–1 – μ

∣∣ ≤
∞∑

k=0

C0
1

23k < ∞.

Similarly, from (a) and (b) of Lemma 9, we have

∞∑

k=0

∣∣∣∣η
k
0 –

(
3
4

– 2μ

)∣∣∣∣ < ∞,
∞∑

k=0

∣∣∣∣η
k
1 –

(
1
4

+ μ

)∣∣∣∣ < ∞.

Hence

∞∑

k=0

‖Sαk – Sα‖∞ < ∞. �

Theorem 12 The non-stationary SS (16) is C2 for μ ∈ (0, 1
8 ) and C3 for μ = 1

16 .

Proof Since Sα is C3 by Lemma 10 and also SSs (17) and (18) are asymptotically equivalent
by Theorem 11, now by ([10], Theorem 8(a)), it is sufficient to prove that

∞∑

k=0

23k‖Sαk – Sα‖∞ < ∞,

where

‖Sαk – Sα‖∞ = max

{∑

j∈Z

∣∣αk
2j – α2j

∣∣,
∑

j∈Z

∣∣αk
2j+1 – α2j+1

∣∣
}

=
∣∣ηk

–1 – μ
∣∣ +

∣∣∣∣η
k
0 –

(
3
4

– 2μ

)∣∣∣∣ +
∣∣∣∣η

k
1 –

(
1
4

+ μ

)∣∣∣∣.

This implies

∞∑

k=0

23k‖Sαk – Sα‖∞ =
∞∑

k=0

23k∣∣ηk
–1 – μ

∣∣

+
∞∑

k=0

23k
∣∣∣∣η

k
0 –

(
3
4

– 2μ

)∣∣∣∣

+
∞∑

k=0

23k
∣∣∣∣η

k
1 –

(
1
4

+ μ

)∣∣∣∣.

Since by (a), (b), and (c) of Lemma 9, we have

∞∑

k=0

23k∣∣ηk
–1 – μ

∣∣ < ∞,
∞∑

k=0

23k
∣∣∣∣η

k
0 –

(
3
4

– 2μ

)∣∣∣∣ < ∞

and

∞∑

k=0

23k
∣∣∣∣η

k
1 –

(
1
4

+ μ

)∣∣∣∣ < ∞,
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it follows that

∞∑

k=0

23k‖Sαk – Sα‖∞ < ∞. �

Here we will discuss the convergence and smoothness of 5-point SS (17). The proofs of
lemmas given below are similar to the proofs of Lemmas 8 and 9.

Lemma 13 For some k ≥ 0 and 0 < θ < π
2 ,

(a) μ ≤ ηk
–2 ≤ μ

cos( θ

2k+1 )
;

(b) –
7

128 cos( 6θ

2k+1 )
–

4μ

cos( 1
2048

35θ

2k+1 )
≤ ηk

–1 ≤ –
7

128
– 4μ;

(c)
105
128

+ 6μ ≤ ηk
0 ≤ 105

128 cos( 2θ

2k+1 )
+

6μ

cos( 1
2048

35θ

2k+1 )
;

(d)
35

128
– 4μ ≤ ηk

1 ≤ 105
128

– 4μ cos

(
1

512
35θ

2k+1

)
;

(e) –
5

128 cos( 6θ

2k+1 )
+ μ ≤ ηk

2 ≤ –
5

128
+ μ.

By Lemma 13, we get the following lemma.

Lemma 14

(a)
∣∣ηk

–2 – μ
∣∣ ≤ D0

1
24k ,

(b)
∣∣∣∣η

k
–1 –

(
–

7
128

– 4μ

)∣∣∣∣ ≤ D1
1

24k ,

(c)
∣∣∣∣η

k
0 –

(
105
128

+ 6μ

)∣∣∣∣ ≤ D2
1

24k ,

(d)
∣∣∣∣η

k
1 –

(
35

128
– 4μ

)∣∣∣∣ ≤ D3
1

24k ,

(e)
∣∣∣∣η

k
2 –

(
–

5
128

+ μ

)∣∣∣∣ ≤ D4
1

24k ,

where D0, D1, D2, D3, and D4 are some constants independent of k.

Remark 3 For μ = u, the proposed 5-point SS (17) is a non-stationary counterpart of the
following stationary SS:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pk+1
2i = (– 5

128 + μ)pk
i–2 + ( 35

128 – 4μ)pk
i–1, +( 105

128 + 6μ)pk
i

+ (– 7
128 – 4μ)pk

i+1 + μpk
i+2,

pk+1
2i+1 = μpk

i–2 + (– 7
128 – 4μ)pk

i–1 + ( 105
128 + 6μ)pk

i

+ ( 35
128 – 4μ)pk

i+1 + (– 5
128 + μ)pk

i+2,

(19)
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because the stencils of SS (17) converge to the stencils of SS (19): ηk
–2 → μ, ηk

–1 → (– 7
128 –

4μ), ηk
o → ( 105

128 + 6μ), ηk
1 → ( 35

128 – 4μ), and ηk
2 → (– 5

128 +μ) as k → ∞. The proofs of these
convergences follow from Lemma 14.

Remark 4 Similarly, for μ = 35
2048 , in (17), we get a non-stationary counterpart of the sta-

tionary SS of [24].

Lemma 15 The Laurent polynomial α(z) of SS (19) can be written as

α(z) = μ +
(

–
5

128
+ μ

)
z +

(
–

7
128

– 4μ

)
z2

+
(

35
128

– 4μ

)
z3 +

(
105
128

+ 6μ

)
z4

+
(

105
128

+ 6μ

)
z5 +

(
35

128
– 4μ

)
z6

+
(

–
7

128
– 4μ

)
z7 +

(
–

5
128

+ μ

)
z8 + μz9,

and subdivision scheme Sα corresponding to the symbol α(z) is C4 for μ ∈ (– 9
512 , – 5

512 ).

Proof Consider

e(z) =
32α(z)
(1 + z)5

= 32
{
μ –

(
5

128
+ 4μ

)
z +

(
18

128
+ 6μ

)
z2

–
(

5
128

+ 4μ

)
z3 + μz4

}
.

Note that, for μ ∈ (– 9
512 , – 5

512 ),

∥∥∥∥
1
2

Se

∥∥∥∥ =
1
2

max

{∑

j∈Z
|e2j|,

∑

j∈Z
|e2j+1|

}

=
1
2

max

{
|32μ| + 64

∣∣∣∣
18

128
+ 6μ

∣∣∣∣,

64
∣∣∣∣–

5
128

– 4μ

∣∣∣∣

}
< 1.

So by ([10], Corollary 4.11) the SS Sα is C4. �

In the following result, we show that SSs (17) and (19) are asymptotically equivalent.

Theorem 16 SSs (17) and (19) are asymptotically equivalent, that is,

∞∑

k=0

‖Sαk – Sα‖∞ < ∞.
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Figure 1 In (a)–(c), the initial polygon is showed by dotted lines and continuous curves show the circles and
ellipses produced by SS (17) by using 3, 4, and 5 control points. (d)–(e) indicate conics generated by SS (16)
and (17), respectively

Proof From (17) and (19), we have

∞∑

k=0

‖Sαk – Sα‖∞ =
∞∑

k=0

{∣∣ηk
–2 – μ

∣∣

+
∣∣∣∣η

k
–1 –

(
–

7
128

– 4μ

)∣∣∣∣ +
∣∣∣∣η

k
0 –

(
105
128

+ 6μ

)∣∣∣∣

+
∣∣∣∣η

k
1 –

(
35

128
– 4μ

)∣∣∣∣ +
∣∣∣∣η

k
2 –

(
–

5
128

+ μ

)∣∣∣∣

}
.

From (a) of Lemma 14, it follows that

∞∑

k=0

∣∣ηk
–1 – μ

∣∣ ≤
∞∑

k=0

D0
1

24k < ∞.

Similarly, from (b), (c), (d), and (e) of Lemma 14, we have

∞∑

k=0

∣∣∣∣η
k
–1 –

(
–

7
128

– 4μ

)∣∣∣∣ < ∞,

∞∑

k=0

∣∣∣∣η
k
0 –

(
105
128

+ 6μ

)∣∣∣∣ < ∞,

∞∑

k=0

∣∣∣∣η
k
1 –

(
35

128
– 4μ

)∣∣∣∣ < ∞,
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Figure 2 Four subdivision levels of SS (16) have been used to the control polygon. The results after different
values of μ are shown on the left together with their corresponding curvature on the right

and

∞∑

k=0

∣∣∣∣η
k
2 –

(
–

5
128

+ μ

)∣∣∣∣ < ∞.

Hence

∞∑

k=0

‖Sαk – Sα‖∞ < ∞. �

Theorem 17 The non-stationary SS (17) is C4 for μ ∈ (– 9
512 , – 5

512 ).

The proof of the above theorem is similar to the proof of Theorem 12.
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Figure 3 Four subdivision levels of SS (17) have been used to the control polygon. The results after different
values of μ are shown on the left together with their corresponding curvature on the right

4 Results and comparisons
Here we discuss visual quality of limit curves obtained by the proposed SSs. Then we
have measured the curvature and torsion which compare the accuracy of various shapes
achieved by non-stationary SSs.

In Fig. 1, basic shapes (circle, ellipse, parabola, and hyperbola) are obtained from the
proposed SSs (16) and (17) as limiting curves by taking 3, 4, and 6 equidistance control
points.

As SSs (16) and (17) are parametric, therefore it is natural to see the result of values of
such variables on the deviation of a limiting curve from its tangent. In Fig. 2 and Fig. 3,
we show the rate at which limiting curves tend to depart from their tangents. In Figs. 2(g)
and 3(o), it is noticed that the limiting curves, obtained by SSs (16) and (17) at parametric
values μ = 1/16 and –8.6/512 respectively, have very little tendency to depart from their
tangents compared to the other parametric values.
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Figure 4 Comparison of existing and proposed SS when three control points are sampled from circle. Left:
Limit curves obtained after the 5th iteration, the corresponding curvature is shown in the right column,
respectively

Comparison of curvature/torsion of schemes (16) and (17) with the well-known schemes
of [2, 3, 5–8, 13, 14] is given in Figs. 4–8. The following general characteristics of the SSs
are observed from these figures:

• Proposed SSs (16) and (17) need at least three control points to produce a circle.
• The SS of [6] needs at least five control points to create a closed curve.
• Figure 4 is achieved by applying three control points. It is showed that the limiting

circle obtained by SS (16) has less tendency to depart from its tangent compared to
the limiting circle obtained by the existing SS [2, 3, 5, 7, 8, 13, 14].
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Figure 5 Comparison of existing and proposed SS when four control points are sampled from circle. Left:
Limit curves obtained after the 5th iteration, the corresponding curvature is shown in the right column,
respectively

• In Fig. 5, four control points are sampled to achieve a limiting circle. It is showed that
the limiting circle obtained by SSs (16), (17), and [13] has less tendency to depart from
its tangent compared to the limiting curves produced by [2, 3, 5, 7, 8, 14].

• In Fig. 6, five control points are applied to generate a limiting circle. It is observed that
the limiting curves obtained by SSs (16), (17), [7], and [13] have less tendency to
depart from their tangents compared to the limiting curves produced by [2, 3, 5, 8, 14].

• Figures 7 and 8 indicate that curvature and torsion behavior of limiting curves are
closely related.
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Figure 6 Comparison of existing and proposed SS when five control points are sampled from circle. Left:
Limit curves obtained after the 5th iteration, the corresponding curvature is shown in the right column,
respectively

From the above discussion it is observed that the basic shapes generated by proposed SSs
with fewer initial data have less tendency to depart from their tangents as compared to
the limiting curves produced by the existing non-stationary subdivision schemes.

5 Conclusions
We offered and analyzed families of (2s – 1)-point non-stationary subdivision schemes. It
is observed that the basic shapes generated by the proposed SSs with fewer initial data in
the initial control polygon have less tendency to depart from their tangents as compared



Ghaffar et al. Advances in Difference Equations        (2019) 2019:171 Page 18 of 20

Figure 7 Results after the 5th iteration of 3-point schemes of [5, 6, 13] and (16) are shown on the left when
the initial control points are sampled from Helix. The corresponding curvature and torsion are shown in the
center and right columns, respectively

to the limiting curves obtained by the existing non-stationary SSs of [2, 3, 5–8, 13, 14]. It is
noticed that SS (17) performed interpolatory role (see Fig. 1(c)). In addition, the proposed
SSs are the non-stationary counterparts of the stationary SSs of [5, 11, 12, 22, 24–26].



Ghaffar et al. Advances in Difference Equations        (2019) 2019:171 Page 19 of 20

Figure 8 Results after the 5th iteration of 4-point and 5-point schemes of [8, 14], (17) are shown on the left
when the initial control points are sampled from Helix. The corresponding curvature and torsion are shown in
the center and right columns, respectively
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