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Abstract
In this paper, we mainly consider the existence and finite-time stability of solutions for
a kind of ψ -Hilfer fractional differential equations involving time-varying delays and
non-instantaneous impulses. By Schauder’s fixed point theorem, the contraction
mapping principle and the Lagrange mean-value theorem, we present new
constructive results as regards existence and uniqueness of solutions. In addition,
under some new criteria and by applying the generalized Gronwall inequality, we
deduce that the solutions of the addressed equation have finite-time stability. Some
results in the literature can be generalized and improved. As an application, three
typical examples are delineated to demonstrate the effectiveness of our theoretical
results.
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1 Introduction
Fractional differential equations play an important role in many fields, especially in bi-
ological medicine, dynamics mechanic, population dynamics and communication engi-
neering. There is a growing tendency nowadays for many experts to show their great en-
thusiasm for this aspect, and a lot of achievements have been made; see the monographs
[1–4]. Recently, we found that many researchers have set out to study a new type of im-
pulsive (called non-instantaneous impulsive) fractional differential equations, where the
impulsive action starts at an arbitrary fixed point and remains active on a finite time inter-
val, which is very different from the classical instantaneous impulsive case that changes are
relatively short compared to the overall duration of the process. For an extensive collec-
tion of non-instantaneous impulsive results, we refer the reader to the related literature,
such as the monograph [5] and the papers [6–17].

The study of the existence of solutions for fractional differential equations is one of the
most interesting and valuable topics [8, 11, 18–22]. In recent contributions [18, 19] one
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studied equations of the following form:

⎧
⎪⎪⎨

⎪⎪⎩

cDα
0,tx(t) = f (t, x(t)), t ∈ [0, T] \ {τ1, τ2, . . . , τm},

�x(τk) = Ik(x(τ–
k )), k = 1, 2, . . . , m,

x(0) = x0,

(1.1)

where cDα
0,t is the Caputo fractional derivative of the order α ∈ (n – 1, n), n ∈ N, f :

J × R → R, J = [0, T] and Ik : R → R and 0 = τ0 < τ1 < · · · < τm < τm+1 = T , and we let
x(τ+

k ) = limε→0+ x(τk + ε) and x(τ–
k ) = limε→0– x(τk + ε) represent the right and left limits

of x(t) at t = τk , respectively. Here, Ik is a sequence of instantaneous impulse operators,
k = 1, 2, . . . , m. The authors got the existence results by applying fixed point methods. In
general, the classical instantaneous impulses cannot describe some certain dynamics of
evolution processes. For example, when we consider the hemodynamic equilibrium of a
person, the introduction of drugs in the bloodstream and the consequent absorption for
the body are gradual and continuous processes. In fact, the above situation can be char-
acterized by the new non-instantaneous impulsive model.

We can see that Yang and Wang studied the following integral boundary value problems
for fractional order nonlinear differential equations with non-instantaneous impulses in
[11]:

⎧
⎪⎪⎨

⎪⎪⎩

cDq
0,tu(t) = f (t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . , m, q ∈ (0, 1),

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . , m,

u(0) =
∫ 1

0 u(s) ds,

(1.2)

where cDq
0,t denotes the Caputo fractional derivative of the order q with the lower limit

zero, 0 = s0 < t1 ≤ s1 ≤ t2 < · · · < tm ≤ sm < tm+1 = 1 are pre-fixed numbers, f : [0, 1] ×R →
R is continuous and gi : [ti, si] × R → R are continuous for all i = 1, 2, . . . , m. By using
standard fixed point approach, a series of existence results were presented under some
conditions.

Yu [8] investigated the following new non-instantaneous impulsive differential equa-
tions:

⎧
⎨

⎩

cDα
si ,tx(t) = –λx(t) + f (t, x(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . , m,

x(t) = q + Iγ
ti ,tgi(t, x(t)) – Iα

0,si
f (si, x(si)), t ∈ (ti, si], i = 1, 2, . . . , m,

(1.3)

where γ , α ∈ (0, 1), γ �= α, λ ≥ 0, cDα
si ,t is the Caputo fractional derivative of the order

α with the lower limit si, 0 = s0 < t1 ≤ s1 ≤ t2 < · · · < tm ≤ sm ≤ tm+1 = T are pre-fixed
numbers, f : [0, T] × R → R is continuous and gi : [ti, si] × R → R are continuous for all
i = 1, 2, . . . , m and q ∈R. Iγ

ti ,tgi and Iα
0,si

f are given by

Iγ
ti ,tgi

(
t, x(t)

)
=

1
Γ (γ )

∫ t

ti

(t – s)γ –1gi
(
s, x(s)

)
ds,

Iα
0,si

f
(
si, x(si)

)
=

1
Γ (α)

∫ si

0
(si – s)α–1f

(
s, x(s)

)
ds.
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The authors gave a suitable formula of piecewise continuous solutions, and they presented
existence results on a compact interval by the contraction mapping principle.

What will happen if the nonlinear equations (1.2) and (1.3) extend into fractional differ-
ential equation with delay? We are particularly interested in fractional differential equation
involving time-varying delays.

On the other hand, finite-time stability analysis is also one of the most crucial themes for
fractional systems, such as [23–27]. In detail, in [23, 24], the authors investigated finite-
time stability of Caputo delta fractional difference equations, and a finite-time stability cri-
terion was proposed for the addressed equations. In [25], the authors presented finite-time
stability results of nonlinear fractional delay differential equations under mild conditions
on the nonlinear term. Li and Wang introduced the concept of a delayed Mittag-Leffler
type matrix function, and then they presented the finite-time stability results by virtue
of a delayed Mittag-Leffler type matrix in [26]. In [27], the authors firstly established an
interesting impulsive Gronwall inequality with maxima involving a Hadamard type sin-
gular kernel, which could be applied to making a prior estimation. Secondly, they applied
the above inequality and fixed point approach to show two existence results. Finally, they
showed the finite-time stability results. In [21, 22], the authors investigated existence and
uniqueness theorems for Caputo fractional differential equations. In [20], Ameen et al.
studied the Ulam stability and existence theorems for Caputo generalized fractional dif-
ferential equations where the kernel of the fractional derivative was function dependent
so that the result generalized many existing results in history. Further, for more details
about some other properties of the solutions, we can see [28–43].

However, when we add non-instantaneous impulsive effects into the fractional sys-
tems [24–27], what can we get? Heavily inspired by the papers mentioned, in this pa-
per, we mainly plan to research the existence and finite-time stability results under non-
instantaneous impulsive conditions. We first assume two increasing finite sequences of
points {ti}p+1

i=1 and {si}p
i=0 are given such that s0 = 0 < ti ≤ si < ti+1, i = 1, 2, . . . , p, and points

t0, T ∈ R+ are given such that 0 < t0 < t1, tp < T ≤ tp+1, p being a natural number. We are
concerned with the following ψ-Hilfer fractional differential equation with time-varying
delays and non-instantaneous impulses:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

HDα,β ;ψ
t x(t) = A(t)x(t) + B(t)x(t – h(t)) + f (t, x(t), x(t – h(t))),

t ∈ J1 = (sk , tk+1] ∩ [t0, T], k = 0, 1, . . . , p,

x(t) = φk (t,x(t))
Γ (γ )Γ (2–γ ) , t ∈ J2 = (tk , sk] ∩ [t0, T], k = 1, 2, . . . , p,

x(sk) = x(s+
k ) = x(s–

k ), k = 1, 2, . . . , p,

x(t) = φ(t)
Γ (γ )Γ (2–γ ) , t ∈ J3 = [–h, t0],

(1.4)

where J = J1 ∪ J2 ∪ J3, HDα,β ;ψ
t (·) is the ψ-Hilfer fractional derivative of order α ∈ (0, 1]

and type 0 ≤ β ≤ 1, with respect to function ψ (see [44]), γ = α + β(1 – α). x(t) is the
quantity of state mapping the interval J to R, A(t), B(t) : R → R are bounded operators,
f : J ×R×R → R is continuous and φk : (tk , sk] ∩ [t0, T] ×R → R, k = 1, 2, . . . , p, and h(t)
is a continuous delay function satisfying 0 ≤ h(t) ≤ h, t ∈ J , and φ(t) denotes an element
of the state space C([–h, t0],R) that is a Banach space of all continuous functions with the
norm defined in the following manner as ‖φ‖ := sup–h≤t≤t0 |φ(t)|.
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Remark 1.1 ([6]) If tk = sk , k = 1, 2, . . . , p, then system (1.4) reduces to an impulsive differ-
ential equation. In this case at any point of instantaneous impulse tk the amount of jump
of the solution x(t) is given by Ik = φk (t,x(t))

Γ (γ )Γ (2–γ ) .

Compared with some recent results in the literature, such as [6, 8–13] and some others,
the chief contributions of our study contain at least the following four issues:

(1) In [6, 8–10], authors discussed several types of stability except the finite-time
stability, and we first introduce the definition of finite-time stability into the
ψ-Hilfer fractional differential equation with non-instantaneous impulses.

(2) Compare with [6, 8–13], in system (1.4), we study the equation with time-varying
delays, which is a significant breakthrough in dealing with a non-instantaneous
impulsive ψ-Hilfer fractional differential system.

(3) The model we are concerned with is more generalized, and some ones in the
references are the special cases of it. Thus, the generalized models are originally
discussed in the present paper. Furthermore, our conclusions can also be applied to
the addressed equation with disturbance term, and we can see it by Remark 3.3.

(4) An innovative method based on the Lagrange mean-value theorem and the
generalized Gronwall inequality is exploited to discuss the existence and finite-time
stable of the solutions for the ψ-Hilfer fractional order differential equation with
time-varying delays and non-instantaneous impulses, and the results established are
essentially new.

This article is organized as follows: In Sect. 2, we will recall some well-known results
for our consideration. Some lemmas and definitions are useful to our work. Section 3 is
devoted to researching the existence and uniqueness of solutions for Eq. (1.4). In Sect. 4,
we will investigate the finite-time stability of this ψ-Hilfer fractional order differential
equation, and then we will come up with the main theorems. To explain the results clearly,
we finally provide three examples in Sect. 5.

2 Preliminaries
In this section, we plan to introduce some basic definitions and lemmas which are used
throughout this paper.

Definition 2.1 ([45], One parameter Mittag-Leffler function) The Mittag-Leffler function
is given by the series

Eμ(z) =
∞∑

k=0

zk

Γ (μk + 1)
,

where μ ∈C, �(μ) > 0 and Γ (z) is the gamma function given by

Γ (z) =
∫ ∞

0
e–ttz–1 dt,

�(z) > 0. In particular, if μ = 1, we have E1(z) =
∑∞

j=0
zj

Γ (j+1) =
∑∞

j=0
zj

j! = ez .

Lemma 2.2 ([45], Generalized Gronwall inequality) Let u, v be two integrable functions
and g a continuous function, with domain [a, b]. Let ψ ∈ C1[a, b] an increasing function
such that ψ ′(t) �= 0, ∀t ∈ [a, b]. Assume that:
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(1) u and v are nonnegative;
(2) g is nonnegative and nondecreasing.

If

u(t) ≤ v(t) + g(t)
∫ t

a
ψ ′(s)

(
ψ(t) – ψ(s)

)α–1u(s) ds,

then, for all t ∈ [a, b], we have

u(t) ≤ v(t) +
∫ t

a

[ ∞∑

k=1

(g(t)Γ (α))k

Γ (αk)
ψ ′(s)

(
ψ(t) – ψ(s)

)αk–1v(s)

]

ds.

Moreover, if v(t) is a nondecreasing function on [a, b], then

u(t) ≤ v(t)Eα

(
g(t)Γ (α)

[
ψ(t) – ψ(s)

]α)
,

where Eα(·) is the Mittag-Leffler function defined by Definition 2.1.

Now we introduce a few spaces: let C(J ,R) = {x : J → R is continuous }, and con-
sider the piecewise continuous function space PC(J ,R) = {x : J → R : x ∈ C((tk , tk+1],R),
and there exist x(t–

k ) and x(t+
k ) with x(t–

k ) = x(tk), k = 0, 1, 2, . . . , p} endowed with the norm
‖x‖PC := sup{|x(t)| : t ∈ J}. The weighted space PCγ ;ψ ([a, b],R) of the functions x on (a, b]
is defined by PCγ ;ψ ([a, b],R) = {x : (a, b] → R, (ψ(t) – ψ(a))γ x(t) ∈ PC([a, b],R)}, where
0 ≤ γ ≤ 1, with the norm ‖x‖PCγ ;ψ := sup{|(ψ(t) – ψ(a))γ x(t)|, t ∈ [a, b]}.

Definition 2.3 ([44, 46]) The ψ-Riemann–Liouville fractional integral and fractional
derivative of order α (n – 1 < α < n) for an integrable function Φ : [a, b] → R with re-
spect to another function ψ : [a, b] → R that is an increasing differentiable function such
that ψ ′(t) �= 0, for all t ∈ [a, b] (–∞ ≤ a < b ≤ +∞) are defined as follows:

Iα;ψ
t Φ(t) :=

1
Γ (α)

∫ t

a
ψ ′(ξ )

(
ψ(t) – ψ(ξ )

)α–1
Φ(ξ ) dξ

for each t ∈ I .

Definition 2.4 ([44, 46]) Let n – 1 < α < n with n ∈ N
+, I = [a, b] be the interval such

that –∞ ≤ a < b ≤ +∞ and ψ ∈ Cn([a, b],R) be a function such that ψ is increasing and
ψ ′(t) �= 0, for all t ∈ I . The ψ-Hilfer functional derivative of the function Φ ∈ Cn([a, b],R)
of order α and the type 0 ≤ β ≤ 1 is defined by

HDα,β ;ψ
t Φ(t) = Iβ(n–α);ψ

t

(
1

ψ ′(t)
d
dt

)n

I(1–β)(n–α);ψ
t Φ(t).

The right-sided ψ-Hilfer functional derivative is defined in an analogous form [44].

Lemma 2.5 ([44]) If f ∈ PCγ ;ψ [a, b], 0 < α < 1, 0 ≤ β ≤ 1, γ = α + β(1 – α), then

Iα;ψ
t

HDα,β ;ψ
t f (t) = f (t) –

(ψ(t) – ψ(a))γ –1

Γ (γ )
I(1–β)(1–α);ψ

t f (a).
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Lemma 2.6 PC(J ,R) is a Banach space in the field R.

Lemma 2.7 PCγ ;ψ ([a, b],R) is a Banach space in the field R.

Definition 2.8 A function x ∈ PCγ ;ψ (J ,R) is called a mild solution of system (1.4) if
x(t) = φ(t)

Γ (γ )Γ (2–γ ) for all t ∈ [–h, t0], and x(sk) = x(s+
k ) = x(s–

k ), and x(t) = φk (t,x(t))
Γ (γ )Γ (2–γ ) for all

t ∈ (tk , sk] ∩ [t0, T], each k = 1, 2, . . . , p, and

x(t) =
φ(t0)

Γ (γ )Γ (2 – γ )
+

1
Γ (α)

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1

× [
A(ξ )x(ξ ) + B(ξ )x

(
ξ – h(ξ )

)
+ f

(
ξ , x(ξ ), x

(
ξ – h(ξ )

))]
dξ

for all t ∈ [t0, t1] ∩ [t0, T] and

x(t) =
φk(sk , x(sk))

Γ (γ )Γ (2 – γ )
+

1
Γ (α)

∫ t

sk

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1

× [
A(ξ )x(ξ ) + B(ξ )x

(
ξ – h(ξ )

)
+ f

(
ξ , x(ξ ), x

(
ξ – h(ξ )

))]
dξ

for all t ∈ [sk , tk+1] ∩ [t0, T] and every k = 1, 2, . . . , p.

Lemma 2.9 Let 0 < α ≤ 1, 0 ≤ β ≤ 1, and γ = α + β(1 – α). If x ∈ PCγ ;ψ (J ,R), then x
satisfies the problem (1.4) if and only if x satisfies the Volterra integral equation

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t)
Γ (γ )Γ (2–γ ) , t ∈ [–h, t0],

φ(t0)
Γ (γ )Γ (2–γ ) + 1

Γ (α)
∫ t

t0
ψ ′(ξ )(ψ(t) – ψ(ξ ))α–1[A(ξ )x(ξ ) + B(ξ )x(ξ – h(ξ ))

+ f (ξ , x(ξ ), x(ξ – h(ξ )))] dξ , t ∈ [t0, t1] ∩ [t0, T],
φk (t,x(t))

Γ (γ )Γ (2–γ ) , t ∈ (tk , sk] ∩ [t0, T], k = 1, 2, . . . , p,
φk (sk ,x(sk ))
Γ (γ )Γ (2–γ ) + 1

Γ (α)
∫ t

sk
ψ ′(ξ )(ψ(t) – ψ(ξ ))α–1[A(ξ )x(ξ ) + B(ξ )x(ξ – h(ξ ))

+ f (ξ , x(ξ ), x(ξ – h(ξ )))] dξ , t ∈ [sk , tk+1] ∩ [t0, T], k = 1, 2, . . . , p.

(2.1)

Proof (⇒) Let x ∈ PCγ ;ψ (J ,R) be a solution of system (1.4), and we show that x is also
a solution of (2.1). We can easily obtain x(t) = φ(t)

Γ (γ )Γ (2–γ ) for all t ∈ [–h, t0]. Let g(t) =
A(t)x(t) + B(t)x(t – h(t)) + f (t, x(t), x(t – h(t))). For any t ∈ [t0, t1] ∩ [t0, T], applying the
fractional integral operator Iα;ψ

t0+ on both sides of the first equation in system (1.4), and
using Lemma 2.5, we have

x(t) =
(ψ(t) – ψ(t0))γ –1

Γ (γ )
1

Γ (1 – γ )

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)–γ x(t0) dξ

+ Iα;ψ
t0+ g(t)

=
φ(t0)

Γ (γ )Γ (2 – γ )
+

1
Γ (α)

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1g(ξ ) dξ . (2.2)

On the interval (t1, s1] ∩ [t0, T], we can obtain

x(t) =
φ1(t, x(t))

Γ (γ )Γ (2 – γ )
. (2.3)
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For each t ∈ (s1, t2] ∩ [t0, T], by the same approach, we have

x(t) =
φ1(s1, x(s1))

Γ (γ )Γ (2 – γ )
+

1
Γ (α)

∫ t

s1

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1g(ξ ) dξ . (2.4)

The rest functions on intervals can be done in the same manner. Hence, we can obtain
(2.1).

(⇐) Assume that x ∈ PCγ ;ψ (J ,R) satisfying the Volterra integral equation, Eq. (2.1), and
we prove that x also satisfies the fractional system (1.4). The following proof process is
similar to the relevant conclusion, and we can refer to Lemma 3.1 in [46]. The proof of
this lemma is completed. �

Definition 2.10 ([24]) System (1.4) is finite-time stable w.r.t. {δ,σ , J}, δ < σ , if and only if

‖φ‖PCγ ;ψ

Γ (γ )Γ (2 – γ )
≤ δ ⇒ ‖x‖PCγ ;ψ ≤ σ , ∀t ∈ J .

3 Existence and uniqueness of solutions
In this section, we will consider the existence and uniqueness of solutions for the ψ-Hilfer
fractional differential equation with time-varying delays and non-instantaneous impulsive
effects. B+(J) denotes the set of all nonnegative bounded functions on interval J .

Define the operator H : PCγ ;ψ (J ,R) → PCγ ;ψ (J ,R) by

(Hx)(t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t)
Γ (γ )Γ (2–γ ) , t ∈ [–h, t0],

φ(t0)
Γ (γ )Γ (2–γ ) + 1

Γ (α)
∫ t

t0
ψ ′(ξ )(ψ(t) – ψ(ξ ))α–1[A(ξ )x(ξ ) + B(ξ )x(ξ – h(ξ ))

+ f (ξ , x(ξ ), x(ξ – h(ξ )))] dξ , t ∈ [t0, t1] ∩ [t0, T],
φk (t,x(t))

Γ (γ )Γ (2–γ ) , t ∈ (tk , sk] ∩ [t0, T], k = 1, 2, . . . , p,
φk (sk ,x(sk ))
Γ (γ )Γ (2–γ ) + 1

Γ (α)
∫ t

sk
ψ ′(ξ )(ψ(t) – ψ(ξ ))α–1[A(ξ )x(ξ ) + B(ξ )x(ξ – h(ξ ))

+ f (ξ , x(ξ ), x(ξ – h(ξ )))] dξ , t ∈ [sk , tk+1] ∩ [t0, T], k = 1, 2, . . . , p.

(3.1)

Before stating and proving the results, we introduce the following hypotheses:
(H0) There exist constants MA, MB > 0 such that, for any t ∈ J ,

∣
∣A(t)x(t)

∣
∣ ≤ MA · ∣∣x(t)

∣
∣ and

∣
∣B(t)x(t)

∣
∣ ≤ MB · ∣∣x(t)

∣
∣.

(H1) Assume that the nonlinear function f satisfies: there exists a positive function l(t) ∈
B+(J) such that

∣
∣f (t, x1, y1) – f (t, x2, y2)

∣
∣ ≤ l(t) · (|x1 – x2| + |y1 – y2|

)
,

where t ∈ J , x1, x2, y1, y2 ∈ PCγ ;ψ (J ,R), and f (t, 0, 0) = 0, k = 1, 2, . . . , m.
(H2) For each k = 1, 2, . . . , p, and x1, x2 ∈ PCγ ;ψ (J ,R), there exist constants λk0, λk1 such

that

∣
∣φk(t1, x1) – φk(t2, x2)

∣
∣ ≤ λk0|t1 – t2| + λk1|x1 – x2|.
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Furthermore, for any t ∈ J , we have |(ψ(T) – ψ(t0))γ φk(t, x(t))| ≤ dk , where dk is a
positive constant.

Throughout this paper, we always assume that

sup
ξ∈[t0,t]

l(ξ ) = l

and

λ = max{λk0,λk1}, k = 1, 2, . . . , p.

Theorem 3.1 Suppose the validity of conditions (H0)–(H2), then system (1.4) has at least
one solution in Ωρ = {x ∈ PCγ ;ψ (J ,R) : ‖x‖PCγ ;ψ ≤ ρ} if

M1

Γ (γ )Γ (2 – γ ) · ρ ≤ 1 –
(MA + MB + 2l)(ψ(T) – ψ(t0))α

Γ (α + 1)
(3.2)

holds, where M1 = max{‖φ(t0)‖PCγ ;ψ , dk}, k = 1, 2, . . . , p.

Proof We define Ωρ = {x ∈ PCγ ;ψ (J ,R) : ‖x‖PCγ ;ψ ≤ ρ}, which is a closed, bounded and
convex subset of PCγ ;ψ (J ,R). We shall use Schauder’s fixed point theorem to prove that
operator H has a fixed point. The proof will be given in the following steps.

Step 1: H maps bounded sets into bounded sets.
It is enough to show that there exists a positive constant ρ , we have ‖Hx‖PCγ ;ψ ≤ ρ for

each x ∈ Ωρ .
For all t ∈ [–h, t0], we can easily get ‖Hx‖PCγ ;ψ =

‖φ‖PCγ ;ψ
Γ (γ )Γ (2–γ ) ≤ ρ .

As for t ∈ [t0, t1] ∩ [t0, T] and by the condition (3.1) and (3.2), we have

∣
∣
(
ψ(t) – ψ(t0)

)γ (Hx)(t)
∣
∣

≤ 1
Γ (α)

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1[MA · ∣∣(ψ(t) – ψ(t0)
)γ x(ξ )

∣
∣

+ MB · ∣∣(ψ(t) – ψ(t0)
)γ x

(
ξ – h(ξ )

)∣
∣

+ l(ξ ) · ((ψ(t) – ψ(t0)
)γ ∣

∣x(ξ )
∣
∣ +

(
ψ(t) – ψ(t0)

)γ ∣
∣x

(
ξ – h(ξ )

)∣
∣
)]

dξ

+
|(ψ(t) – ψ(t0))γ φ(t0)|

Γ (γ )Γ (2 – γ )

≤ (MA + MB + 2l) · ‖x‖PCγ ;ψ

Γ (α)

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1 dξ +
‖φ(t0)‖PCγ ;ψ

Γ (γ )Γ (2 – γ )

≤ ρ(MA + MB + 2l)(ψ(T) – ψ(t0))α

Γ (α + 1)
+

‖φ(t0)‖PCγ ;ψ

Γ (γ )Γ (2 – γ )

≤ ρ. (3.3)

According to the definition of the norm in the weighted space, one can obtain

‖Hx‖PCγ ;ψ ≤ ρ. (3.4)
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For each t ∈ (tk , sk] ∩ [t0, T], k = 1, 2, . . . , p, and according to (3.2), we have

‖Hx‖PCγ ;ψ =
∣
∣
(
ψ(t) – ψ(tk)

)γ (Hx)(t)
∣
∣

≤ dk

Γ (γ )Γ (2 – γ )
≤ M1

Γ (γ )Γ (2 – γ )
≤ ρ. (3.5)

As for any t ∈ [sk , tk+1] ∩ [t0, T], we have

∣
∣
(
ψ(t) – ψ(sk)

)γ (Hx)(t)
∣
∣

≤ dk

Γ (γ )Γ (2 – γ )
+

ρ(MA + MB + 2l)
Γ (α)

∫ t

sk

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1 dξ

≤ M1

Γ (γ )Γ (2 – γ )
+

ρ(MA + MB + 2l)(ψ(t) – ψ(sk))α

Γ (α + 1)

≤ M1

Γ (γ )Γ (2 – γ )
+

ρ(MA + MB + 2l)(ψ(T) – ψ(t0))α

Γ (α + 1)
≤ ρ. (3.6)

Hence, we can get ‖Hx‖PCγ ;ψ ≤ ρ , for t ∈ [sk , tk+1] ∩ [t0, T].
Step 2: H is continuous.
Let {xn} be a sequence such that xn → x (n → ∞) in Ωρ . As for t ∈ [–h, t0], we have

‖Hxn – Hx‖PCγ ;ψ = 0, (3.7)

which implies that H is continuous.
For ∀t ∈ [t0, t1] ∩ [t0, T], we have

∣
∣
(
ψ(t) – ψ(t0)

)γ (Hxn – Hx)(t)
∣
∣

≤ 1
Γ (α)

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1[MA · ∣∣(ψ(t) – ψ(t0)
)γ (

xn(ξ ) – x(ξ )
)∣
∣

+ MB · ∣∣(ψ(t) – ψ(t0)
)γ (

xn
(
ξ – h(ξ )

)
– x

(
ξ – h(ξ )

))∣
∣

+ l(ξ ) · ((ψ(t) – ψ(t0)
)γ ∣

∣xn(ξ ) – x(ξ )
∣
∣

+
(
ψ(t) – ψ(t0)

)γ ∣
∣xn

(
ξ – h(ξ )

)
– x

(
ξ – h(ξ )

)∣
∣
)]

dξ

≤ (MA + MB + 2l) · ‖xn – x‖PCγ ;ψ

Γ (α)

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1 dξ

≤ (ψ(T) – ψ(t0))α

Γ (α + 1)
(MA + MB + 2l) · ‖xn – x‖PCγ ;ψ , (3.8)

then we get

‖Hxn – Hx‖PCγ ;ψ → 0 as n → ∞. (3.9)
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For all t ∈ (tk , sk] ∩ [t0, T], k = 1, 2, . . . , p, we have

∣
∣
(
ψ(t) – ψ(tk)

)γ (Hxn – Hx)(t)
∣
∣

≤ 1
Γ (γ )Γ (2 – γ )

[
λk1

(
ψ(t) – ψ(tk)

)γ · ∣∣xn(t) – x(t)
∣
∣
]

≤ λ

Γ (γ )Γ (2 – γ )
· ‖xn – x‖PCγ ;ψ → 0 as n → ∞. (3.10)

For each t ∈ [sk , tk+1] ∩ [t0, T], k = 1, 2, . . . , p, we have

∣
∣
(
ψ(t) – ψ(sk)

)γ (Hxn – Hx)(t)
∣
∣

≤ λk1 · (ψ(t) – ψ(sk))γ |xn(sk) – x(sk)|
Γ (γ )Γ (2 – γ )

+
1

Γ (α)

∫ t

sk

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1

× [
MA · ∣∣(ψ(t) – ψ(sk)

)γ (
xn(ξ ) – x(ξ )

)∣
∣

+ MB · ∣∣(ψ(t) – ψ(sk)
)γ (

xn
(
ξ – h(ξ )

)
– x

(
ξ – h(ξ )

))∣
∣

+ l(ξ ) · ((ψ(t) – ψ(sk)
)γ ∣

∣xn(ξ ) – x(ξ )
∣
∣

+
(
ψ(t) – ψ(sk)

)γ ∣
∣xn

(
ξ – h(ξ )

)
– x

(
ξ – h(ξ )

)∣
∣
)]

dξ

≤ λ‖xn – x‖PCγ ;ψ

Γ (γ )Γ (2 – γ )
+

(MA + MB + 2l) · ‖xn – x‖PCγ ;ψ

Γ (α)

×
∫ t

sk

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1 dξ

≤
(

λ

Γ (γ )Γ (2 – γ )
+

(MA + MB + 2l)(ψ(T) – ψ(sk))α

Γ (α + 1)

)

· ‖xn – x‖PCγ ;ψ

→ 0 as n → ∞. (3.11)

Step 3: H maps bounded sets into equicontinuous sets.
It is obvious that Hx is equicontinuous on the time interval [–h, t0].
As for r1, r2 ∈ [t0, t1] ∩ [t0, T], r1 < r2, we have

∣
∣
[(

ψ(t) – ψ(t0)
)γ ][

(Hx)(r2) – (Hx)(r1)
]∣
∣

≤ 1
Γ (α)

∫ r1

t0

ψ ′(ξ )
[(

ψ(r2) – ψ(ξ )
)α–1 –

(
ψ(r1) – ψ(ξ )

)α–1]

× [
MA · (ψ(t) – ψ(t0)

)γ ∣
∣x(ξ )

∣
∣ + MB · (ψ(t) – ψ(t0)

)γ ∣
∣x

(
ξ – h(ξ )

)∣
∣

+
(
ψ(t) – ψ(t0)

)γ ∣
∣f

(
ξ , x(ξ ), x

(
ξ – h(ξ )

))∣
∣
]

dξ

+
1

Γ (α)

∫ r2

r1

ψ ′(ξ )
(
ψ(r2) – ψ(ξ )

)α–1[MA · (ψ(t) – ψ(t0)
)γ ∣

∣x(ξ )
∣
∣

+ MB · (ψ(t) – ψ(t0)
)γ ∣

∣x
(
ξ – h(ξ )

)∣
∣

+
(
ψ(t) – ψ(t0)

)γ ∣
∣f

(
ξ , x(ξ ), x

(
ξ – h(ξ )

))∣
∣
]

dξ



Luo and Luo Advances in Difference Equations        (2019) 2019:155 Page 11 of 21

≤ ρ(MA + MB + 2l)
Γ (α)

∫ r1

t0

ψ ′(ξ )
[(

ψ(r2) – ψ(ξ )
)α–1 –

(
ψ(r1) – ψ(ξ )

)α–1]dξ

+
ρ(MA + MB + 2l)

Γ (α)

∫ r2

r1

ψ ′(ξ )
(
ψ(r2) – ψ(ξ )

)α–1 dξ . (3.12)

By the Lagrange mean-value theorem, we have

∣
∣
[(

ψ(t) – ψ(t0)
)γ ][

(Hx)(r2) – (Hx)(r1)
]∣
∣

≤ (α – 1)ρψ ′(r)(MA + MB + 2l) · (r2 – r1)
Γ (α)

∫ r1

t0

ψ ′(ξ )
(
ψ(r) – ψ(ξ )

)α–2 dξ

+
ρ(MA + MB + 2l)

Γ (α)

∫ r2

r1

ψ ′(ξ )
(
ψ(r2) – ψ(ξ )

)α–1 dξ , r1 ≤ r ≤ r2, (3.13)

as r1 → r2, the right-hand side of the above inequality tends to zero. Then one can obtain
‖(Hx)(r2) – (Hx)(r1)‖PCγ ;ψ → 0, and Hx is equicontinuous on interval [t0, t1] ∩ [t0, T].

In general, for the time interval (tk , sk]∩ [t0, T], k = 1, 2, . . . , p, we can obtain the following
inequality:

∥
∥(Hx)(r2) – (Hx)(r1)

∥
∥

PCγ ;ψ

≤ λk0 · ‖r2 – r1‖PCγ ;ψ + λk1 · ‖x(r2) – x(r1)‖PCγ ;ψ

Γ (γ )Γ (2 – γ )

→ 0, as r1 → r2. (3.14)

Hence, Hx is equicontinuous.
For all t ∈ [sk , tk+1] ∩ [t0, T], similarly, we use the Lagrange mean-value theorem and get

∥
∥(Hx)(r2) – (Hx)(r1)

∥
∥

PCγ ;ψ
→ 0, as r1 → r2. (3.15)

Therefore, Hx is equicontinuous. Applying the PC-type Ascoli–Arzela theorem, we can
conclude that H : Ωρ → Ωρ is completely continuous. As a consequence of the Schauder’s
fixed point theorem, we deduce that H has a fixed point in Ωρ which is a solution of system
(1.4). The proof is completed. �

Theorem 3.2 Assume that the conditions (H0)–(H2) hold, then system (1.4) has one solu-
tion in PCγ ;ψ (J ,R) if

0 ≤ λ

Γ (γ )Γ (2 – γ )
+

(MA + MB + 2l)(ψ(T) – ψ(t0))α

Γ (α + 1)
< 1 (3.16)

holds.
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Proof For ∀t ∈ [t0, t1] ∩ [t0, T], according to the operator expression (3.1), we have

‖Hy – Hx‖PCγ ;ψ

≤ 1
Γ (α)

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1[(MA + l(ξ )
) · ∥∥y(ξ ) – x(ξ )

∥
∥

PCγ ;ψ

+
(
MB + l(ξ )

) · ∥∥y
(
ξ – h(ξ )

)
– x

(
ξ – h(ξ )

)∥
∥

PCγ ;ψ

]
dξ

≤ (MA + MB + 2l) · ‖y – x‖PCγ ;ψ

Γ (α)

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1 dξ

=
MA + MB + 2l

Γ (α)
· (ψ(t) – ψ(t0))α

α
· ‖y – x‖PCγ ;ψ

≤ (MA + MB + 2l)(ψ(t1) – ψ(t0))α

Γ (α + 1)
· ‖y – x‖PCγ ;ψ . (3.17)

By (3.16) and (3.17), we get

‖Hy – Hx‖PCγ ;ψ ≤ (MA + MB + 2l)(ψ(T) – ψ(t0))α

Γ (α + 1)
· ‖y – x‖PCγ ;ψ

< ‖y – x‖PCγ ;ψ , (3.18)

which implies that the operator H is a contractive mapping.
As for each t ∈ (tk , sk] ∩ [t0, T], k = 1, 2, . . . , p, by (3.1) and (3.16), we have

‖Hy – Hx‖PCγ ;ψ ≤ λ · ‖y – x‖PCγ ;ψ

Γ (γ )Γ (2 – γ )
< ‖y – x‖PCγ ;ψ , (3.19)

and one can see that the operator H is a contractive mapping.
As for all t ∈ [sk , tk+1] ∩ [t0, T], similarly, we have

‖Hy – Hx‖PCγ ;ψ ≤
(

λ

Γ (γ )Γ (2 – γ )
+

(MA + MB + 2l)(ψ(t) – ψ(sk))α

Γ (α + 1)

)

· ‖y – x‖PCγ ;ψ

≤
(

λ

Γ (γ )Γ (2 – γ )
+

(MA + MB + 2l)(ψ(T) – ψ(t0))α

Γ (α + 1)

)

· ‖y – x‖PCγ ;ψ

< ‖y – x‖PCγ ;ψ , (3.20)

and we can also see H is a contractive mapping. As a consequence of the Banach fixed
point theorem, we conclude that the operator H has a unique fixed point x ∈ PCγ ;ψ (J ,R),
which is the solution of system (1.4). This completes the proof of Theorem 3.2. �
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If we add the disturbance term G(t) into (1.4), we get the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

HDα,β ;ψ
t x(t) = A(t)x(t) + B(t)x(t – h(t)) + G(t) + f (t, x(t), x(t – h(t))),

t ∈ J1 = (sk , tk+1] ∩ [t0, T], k = 0, 1, . . . , p,

x(t) = φk (t,x(t))
Γ (γ )Γ (2–γ ) , t ∈ J2 = (tk , sk] ∩ [t0, T], k = 1, 2, . . . , p,

x(sk) = x(s+
k ) = x(s–

k ), k = 1, 2, . . . , p,

x(t) = φ(t)
Γ (γ )Γ (2–γ ) , t ∈ J3 = [–h, t0],

(3.21)

where G(t) ∈ C(J , R) is bounded satisfying G(t) ≤ ζ for all t ∈ J .

Remark 3.3 According to the proof of Theorem 3.1 and Theorem 3.2, we find that the
disturbance term G(t) will not affect the unique result, but will affect the existence result
in system (3.21). Therefore, the condition (3.2) in Theorem 3.1 should be modified into

M1

Γ (γ )Γ (2 – γ ) · ρ ≤ 1 –
[(MA + MB + 2l) + ζ

ρ
](ψ(T) – ψ(t0))α

Γ (α + 1)
,

where M1 is defined as Theorem 3.1.

4 Finite-time stability results
In this section, we mainly investigate the finite-time stability of Eq. (1.4).

Theorem 4.1 Suppose the validity of conditions (H0), (H1) and (H2), and there exist two
positive real numbers δ and σ such that δ < σ , and

‖φ‖PCγ ;ψ
Γ (γ )Γ (2–γ ) ≤ δ, then system (1.4) is

finite-time stable on J provided that

∫ T

t0

∞∑

n=1

(MA + MB + 2l)n

Γ (nα)
ψ ′(ξ )

(
ψ(T) – ψ(ξ )

)nα–1 dξ ≤ σΓ (γ )Γ (2 – γ )
M1

– 1 (4.1)

holds, where M1 = max{‖φ(t0)‖PCγ ;ψ , dk}.

Proof In view of the expression of the solution (2.1), for all t ∈ [–h, t0], it is obvious that
system (1.4) is finite-time stable.

For ∀t ∈ [t0, t1] ∩ [t0, T], we have

‖x‖PCγ ;ψ ≤ 1
Γ (α)

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1[MA · ∥∥x(ξ )
∥
∥

PCγ ;ψ
+ MB

· ∥∥x
(
ξ – h(ξ )

)∥
∥

PCγ ;ψ
+ l(ξ ) · (∥∥x(ξ )

∥
∥

PCγ ;ψ
+

∥
∥x

(
ξ – h(ξ )

)∥
∥

PCγ ;ψ

)]
dξ

+
‖φ(t0)‖PCγ ;ψ

Γ (γ )Γ (2 – γ )

=
1

Γ (α)

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1[(MA + l(ξ )
) · ∥∥x(ξ )

∥
∥

PCγ ;ψ

+
(
MB + l(ξ )

) · ∥∥x
(
ξ – h(ξ )

)∥
∥

PCγ ;ψ

]
dξ +

‖φ(t0)‖PCγ ;ψ

Γ (γ )Γ (2 – γ )
. (4.2)
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Let us set u(t) = supθ∈[–h,t] ‖x(θ )‖PCγ ;ψ , ∀t ∈ [t0, t1] ∩ [t0, T], and ‖x(ξ )‖PCγ ;ψ ≤ u(ξ ), ‖x(ξ –
h(ξ ))‖PCγ ;ψ ≤ u(ξ ), ∀ξ ∈ [t0, t], from (4.2) it follows that

∥
∥x(t)

∥
∥

PCγ ;ψ
≤ MA + MB + 2l

Γ (α)

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1u(ξ ) dξ

+
‖φ(t0)‖PCγ ;ψ

Γ (γ )Γ (2 – γ )
. (4.3)

Note that for all θ ∈ [t0, t] we can obtain

∥
∥x(θ )

∥
∥

PCγ ;ψ
≤ MA + MB + 2l

Γ (α)

∫ θ

t0

ψ ′(ξ )
(
ψ(θ ) – ψ(ξ )

)α–1u(ξ ) dξ

+
‖φ(t0)‖PCγ ;ψ

Γ (γ )Γ (2 – γ )
. (4.4)

Let

a(θ ) =
∫ θ

t0

ψ ′(ξ )
(
ψ(θ ) – ψ(ξ )

)α–1u(ξ ) dξ , 0 < α ≤ 1, (4.5)

then

a′(θ ) = lim
ξ→θ–

ψ ′(ξ )
(
ψ(θ ) – ψ(ξ )

)α–1u(ξ )

+ (α – 1)
∫ θ

t0

ψ ′(ξ )
(
ψ(θ ) – ψ(ξ )

)α–2
ψ ′(θ )u(ξ ) dξ

≥ 0. (4.6)

Therefore, a(θ ) is a nondecreasing function, and we have

∥
∥x(θ )

∥
∥

PCγ ;ψ
≤ MA + MB + 2l

Γ (α)

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1u(ξ ) dξ

+
‖φ(t0)‖PCγ ;ψ

Γ (γ )Γ (2 – γ )
. (4.7)

Hence, we can get

u(t) = sup
θ∈[–h,t]

∥
∥x(θ )

∥
∥

PCγ ;ψ

≤ max
{

sup
θ∈[–h,t0]

∥
∥x(θ )

∥
∥

PCγ ;ψ
, sup
θ∈[t0,t]

∥
∥x(θ )

∥
∥

PCγ ;ψ

}

≤ max

{

δ,
MA + MB + 2l

Γ (α)

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1u(ξ ) dξ

+
‖φ(t0)‖PCγ ;ψ

Γ (γ )Γ (2 – γ )

}

. (4.8)



Luo and Luo Advances in Difference Equations        (2019) 2019:155 Page 15 of 21

By using the generalized Gronwall inequality (see Lemma 2.2) and (4.1), we have

MA + MB + 2l
Γ (α)

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1u(ξ ) dξ +
‖φ(t0)‖PCγ ;ψ

Γ (γ )Γ (2 – γ )

≤ ‖φ(t0)‖PCγ ;ψ

Γ (γ )Γ (2 – γ )

×
(

1 +
∫ T

t0

∞∑

n=1

(MA + MB + 2l)n

Γ (nα)
ψ ′(ξ )

(
ψ(T) – ψ(ξ )

)nα–1 dξ

)

≤ σ , (4.9)

and one can obtain ‖x(t)‖PCγ ;ψ ≤ u(t) ≤ σ from (4.8) and (4.9).
For each t ∈ (tk , sk] ∩ [t0, T], k = 1, 2, . . . , p, and we can derive M1

Γ (γ )Γ (2–γ ) ≤ σ from (4.1).
Therefore, we have

∥
∥x(t)

∥
∥

PCγ ;ψ
≤ dk

Γ (γ )Γ (2 – γ )
≤ M1

Γ (γ )Γ (2 – γ )
≤ σ . (4.10)

As for t ∈ [sk , tk+1] ∩ [t0, T], k = 1, 2, . . . , p, we set u(t) = supθ∈[–h,t] ‖x(θ )‖PCγ ;ψ , ∀t ∈
[sk , tk+1] ∩ [t0, T], similarly, we have

u(t) ≤ max

{

δ,
MA + MB + 2l

Γ (α)

∫ t

sk

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1u(ξ ) dξ

+
dk

Γ (γ )Γ (2 – γ )

}

. (4.11)

By the generalized Gronwall inequality (see Lemma 2.2) and (4.1), we have

MA + MB + 2l
Γ (α)

∫ t

sk

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1u(ξ ) dξ +
dk

Γ (γ )Γ (2 – γ )

≤ dk

Γ (γ )Γ (2 – γ )

×
(

1 +
∫ t

sk

∞∑

n=1

(MA + MB + 2l)n

Γ (nα)
ψ ′(ξ )

(
ψ(T) – ψ(ξ )

)nα–1 dξ

)

≤ dk

Γ (γ )Γ (2 – γ )

×
(

1 +
∫ T

t0

∞∑

n=1

(MA + MB + 2l)n

Γ (nα)
ψ ′(ξ )

(
ψ(T) – ψ(ξ )

)nα–1 dξ

)

≤ σ , (4.12)

and it follows that ‖x(t)‖PCγ ;ψ ≤ u(t) ≤ σ from (4.11) and (4.12). By Definition 2.10, we see
that system (1.4) is finite-time stable on J . The proof of the theorem is completed. �
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Theorem 4.2 Assume that (H0), (H1) and (H2) are satisfied, and x(t) is the solution of
system (1.4). If (MA + MB + 2l)(ψ(T) – ψ(t0))α < Γ (α + 1), then we have the following:

M ≤ max

{ ‖φ‖PCγ ;ψ

Γ (γ )Γ (2 – γ )
,

Γ (α + 1) · M1

Γ (γ )Γ (2 – γ )[Γ (α + 1) – (MA + MB + 2l)(ψ(T) – ψ(t0))α]

}

, (4.13)

where M = supt∈J ‖x(t)‖PCγ ;ψ , and M1 = max{‖φ(t0)‖PCγ ;ψ , dk}, k = 1, 2, . . . , p.

Proof For all t ∈ [–h, t0], by (2.1), we have

∥
∥x(t)

∥
∥

PCγ ;ψ
≤ ‖φ‖PCγ ;ψ

Γ (γ )Γ (2 – γ )
. (4.14)

For each t ∈ [t0, t1] ∩ [t0, T], and by (2.1), we have

∥
∥x(t)

∥
∥

PCγ ;ψ

≤ 1
Γ (α)

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1[MA · ∥∥x(ξ )
∥
∥

PCγ ;ψ
+ MB

· ∥∥x
(
ξ – h(ξ )

)∥
∥

PCγ ;ψ
+ l(ξ ) · (∥∥x(ξ )

∥
∥

PCγ ;ψ
+

∥
∥x

(
ξ – h(ξ )

)∥
∥

PCγ ;ψ

)]
dξ

+
‖φ(t0)‖PCγ ;ψ

Γ (γ )Γ (2 – γ )

≤ M(MA + MB + 2l)
Γ (α)

∫ t

t0

ψ ′(ξ )
(
ψ(t) – ψ(ξ )

)α–1 dξ +
‖φ(t0)‖PCγ ;ψ

Γ (γ )Γ (2 – γ )

≤ M(MA + MB + 2l)(ψ(T) – ψ(t0))α

Γ (α + 1)
+

‖φ(t0)‖PCγ ;ψ

Γ (γ )Γ (2 – γ )
. (4.15)

For t ∈ (tk , sk] ∩ [t0, T], k = 1, 2, . . . , p, we have

∥
∥x(t)

∥
∥

PCγ ;ψ
≤ dk

Γ (γ )Γ (2 – γ )
. (4.16)

As for all t ∈ [sk , tk+1] ∩ [t0, T], similarly to (4.15), k = 1, 2, . . . , p, we have

∥
∥x(t)

∥
∥

PCγ ;ψ
≤ M(MA + MB + 2l)(ψ(T) – ψ(sk))α

Γ (α + 1)
+

dk

Γ (γ )Γ (2 – γ )

≤ M(MA + MB + 2l)(ψ(T) – ψ(t0))α

Γ (α + 1)
+

dk

Γ (γ )Γ (2 – γ )
, (4.17)

By inequalities (4.15)–(4.17), it follows that

M ≤ M(MA + MB + 2l)(ψ(T) – ψ(t0))α

Γ (α + 1)
+

M1

Γ (γ )Γ (2 – γ )
, (4.18)
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which implies that

M ≤ Γ (α + 1) · M1

Γ (γ )Γ (2 – γ )[Γ (α + 1) – (MA + MB + 2l)(ψ(T) – ψ(t0))α]
. (4.19)

Hence, by (4.14) and (4.19), we can easily get

M = sup
t∈J

∥
∥x(t)

∥
∥

PCγ ;ψ

≤ max

{ ‖φ‖PCγ ;ψ

Γ (γ )Γ (2 – γ )
,

Γ (α + 1) · M1

Γ (γ )Γ (2 – γ )[Γ (α + 1) – (MA + MB + 2l)(ψ(T) – ψ(0))α]

}

. (4.20)

The proof is completed. �

Theorem 4.3 Under the hypotheses (H0), (H1) and (H2), the system (1.4) is finite-time
stable w.r.t. {δ,σ , J} with δ < σ and

‖φ‖PCγ ;ψ
Γ (γ )Γ (2–γ ) ≤ δ, if the following conditions are satisfied:

(H3) for all k = 1, 2, . . . , p, we have dk ≤ ‖φ‖PCγ ;ψ
Γ (γ )Γ (2–γ ) .

(H4) (MA + MB + 2l)(ψ(T) – ψ(t0))α < Γ (α + 1).
(H5) δ

σ
≤ 1 – (MA+MB+2l)(ψ(T)–ψ(t0))α

Γ (α+1) .

Proof We know γ = α + β(1 – α) ∈ (0, 1], Γ (γ )Γ (2 – γ ) ≥ 1, and by (H3), dk
Γ (γ )Γ (2–γ ) ≤ dk ≤

‖φ‖PCγ ;ψ
Γ (γ )Γ (2–γ ) ≤ δ, and

‖φ(t0)‖PCγ ;ψ
Γ (γ )Γ (2–γ ) ≤ ‖φ‖PCγ ;ψ

Γ (γ )Γ (2–γ ) ≤ δ. Therefore, by (H4) and (H5), one can easily
conclude that

Γ (α + 1) · M1

Γ (γ )Γ (2 – γ )[Γ (α + 1) – (MA + MB + 2l)(ψ(T) – ψ(t0))α]
≤ δ · σ

δ
= σ , (4.21)

here M1 = max{‖φ(t0)‖PCγ ;ψ , dk}. From Theorem 4.2, we get ‖x‖PCγ ;ψ ≤ M ≤ σ , and we
conclude that the solution in (1.4) has finite-time stability. �

5 Example
In this section, we will present the following three examples to illustrate our main results.

Example 5.1 Assume that ψ(t) = 1
20 ln(1 + t), α = 0.5, β → 1, then γ → 1. Let h(t) = ecos t ,

[t0, T] = [1, 10], then h(t) ∈ [ 1
e , e], [–h, t0] = [–e, 1], e ≈ 2.718 is a natural constant. If f =

0.1 sin x(t) + 0.1 cos x(t – 2), φk(t, x(t), x(tk – 0)) = 1
10 e–|x(t)| – 1

10 cos x(tk – 0), φ(t) = t, then
l = 0.1, λ = 0.1, dk = 2

5 , ‖φ(t0)‖PCγ ;ψ = 1, M1 = 1, where k = 1, 2, . . . , p. We consider the
bounded operators

A(t)x(t) = sin x(t) · x(t) and B(t)x(t) = e–t · x(t),

then MA = 1, MB = 1
e . By Mathematica software, we know

λ

Γ (γ )Γ (2 – γ )
+

(MA + MB + 2l)(ψ(T) – ψ(t0))α

Γ (α + 1)
≈ 0.61 < 1,
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which implies that all the conditions in Theorem 3.2 are satisfied. Therefore, the specific
system (1.4) has a unique solution in PCγ ;ψ (J ,R). When we discuss the existence results
of system (1.4), for all ρ ≥ 2.05, one have

M1

Γ (γ )Γ (2 – γ ) · ρ < 0.49,

and

1 –
(MA + MB + 2l)(ψ(T) – ψ(t0))α

Γ (α + 1)
≈ 0.49.

Obviously, we can easily verify all conditions in Theorem 3.1, and we conclude that system
(1.4) has at least one solution in Ωρ , where Ωρ = {x ∈ PCγ ;ψ (J ,R) : ‖x‖PCγ ;ψ ≤ ρ}.

Remark 5.2 Since there are few papers research the existence and uniqueness of solutions
for the fractional order nonlinear differential equation involving time-varying delays and
non-instantaneous impulses, one can see that all the results in [7–12] cannot directly be
applicable to the Example 5.1 to obtain the results. This implies that the results in this
paper are essentially new.

Example 5.3 Assumed that all data are the same as in the above Example 5.1, for 1 ≤ x <
+∞, and we let

F(x) =
x∑

n=1

(MA + MB + 2l)n

Γ (nα)
(
ψ(T) – ψ(t0)

)nα–1.

By Fig. 1, we have
∑∞

n=1
(MA+MB+2l)n

Γ (nα) (ψ(T) – ψ(t0))nα–1 ≈ 7.55, then

∫ T

t0

∞∑

n=1

(MA + MB + 2l)n

Γ (nα)
ψ ′(ξ )

(
ψ(T) – ψ(t0)

)nα–1 dξ ≈ 0.64.

Figure 1 The graph of the function F(x)
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Meanwhile, let σ = 30, δ = 11, and we have

σΓ (γ )Γ (2 – γ )
M1

– 1 ≈ 29 > 0.64,

which implies (4.1) holds. Therefore, by Theorem 4.1, system (1.4) is finite-time stable on
[–e, 10].

Example 5.4 All the conditions are the same as above, one can easily conclude that dk =
2
5 <

‖φ‖PCγ ;ψ
Γ (γ )Γ (2–γ ) = 10, (MA + MB + 2l)(ψ(T) – ψ(t0))α ≈ 0.46, and Γ (α + 1) ≈ 0.89, and δ

σ
≈

0.37. We can easily demonstrate that conditions (H3), (H4), (H5) in Theorem 4.3 hold.
Therefore, system (1.4) has finite-time stability on [–e, 10].

6 Conclusion
In this paper, we mainly consider a kind of ψ-Hilfer fractional order differential equation.
The addressed equation has time-varying delay terms and non-instantaneous impulsive
effects, which are quite different from the related references discussed in the literature
[18, 19, 21, 22, 38–42]. The nonlinear fractional order differential system studied in the
present paper is more generalized and more practical. By applying Schauder’s fixed point
theorem, contraction mapping principle, and the definition of finite-time stability, we em-
ploy a novel argument, and the easily verifiable sufficient conditions have been provided
to determine the existence, uniqueness and finite-time stability of the solutions for the
considered equations. Finally, three typical numerical examples have been presented at
the end of this paper to illustrate the effectiveness and feasibility of the proposed criterion.
Consequently, this paper shows theoretically and numerically that some related references
known in the literature can be enriched and complemented.

An interesting extension of our study would be to discuss the stability with unknown pa-
rameters [37] and Ulam stability [20, 43] for the ψ-Hilfer fractional differential equations
with time-varying delay terms. This topic will be the subject of a forthcoming paper.
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