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Abstract
This paper introduces a simple method of the design of the output feedback
stabilizing controller (OFSC) for the nonlinear upper triangular fractional-order
systems (NUTFOS). The OFSC which makes the closed-loop system asymptotically
stable is given based on the fractional indirect Lyapunov method and the static gain
control method. Furthermore, an algorithm is established to design OFSC for the
NUTFOS. Finally, an example is presented to verify the validity of the proposed
method.
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1 Introduction
Fractional-order systems (FOS) have received a great deal of attention from mathemati-
cians, physicists, chemists, biologists, and so on [1–14]. It has been the huge development
of the theory and the applications in many fields, especially in control. The feedback con-
trol design problem is a hot topic for nonlinear fractional-order systems, such as linear
matrix inequality (LMI) methods [15–21], adaptive backstepping control scheme [22–24],
the static gain control method [25–27], etc.

Linear matrix inequality (LMI) methods have been used to discuss the feedback control
design problem of fractional-order systems; see [17–21]. The existence conditions and
design methods of the state feedback controller, static output feedback controller, and
observer-based controller for asymptotically stabilizing such uncertain linear FOS were
derived in [17]. The fuzzy output feedback stabilization for uncertain FOS was consid-
ered in [18]. The output feedback normalization and stabilization for singular FOS were
investigated in [19]. Based on a fractional-order indirect Lyapunov method, a new sin-
gular system approach, and linear matrix equality (LMI) methods, the problem of output
feedback sliding mode control for nonlinear FOS was studied in [20]. A robust fixed-order
dynamic output feedback controller for uncertain linear time-invariant FOS was designed
in [21].

Adaptive backstepping control scheme has been also used to considered the feedback
control design problem of FOS; see [22–24]. Mittag–Leffler stability of nonlinear FOS
was solved via fractional-order backstepping in [22]. A novel fractional order adaptive
backstepping output feedback control scheme for nonlinear FOS was presented via a state
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estimation filter and the indirect Lyapunov method in [23]. A fractional order adaptive
backstepping control scheme was presented for an incommensurate FOS in the presence
of input saturation in [24].

FOS in the triangular form plays an important role in describing many complicated
physical phenomena, especially in modeling the circuitry system [28–30]. Recently, the
static gain control method has been introduced to study the feedback control design prob-
lem of FOS especially fractional-order triangular systems; see [25–27]. Both the state feed-
back stabilizing controller (SFSC) and the OFSC were designed for both lower triangular
and upper triangular linear FOS in [25]. Using the static gain control method and the frac-
tional indirect Lyapunov method, design problems of both the SFSC and the OFSC for the
nonlinear lower triangular FOS were investigated in [26]. The SFSC for the NUTFOS was
designed in [27].

Based on the above discussions, fewer works have been done to investigate the OFSC
for the NUTFOS. In this paper, we study the design of the OFSC for the NUTFOS. The
main contributions are as follows:

• Via the fractional indirect Lyapunov method and the static gain control method, the
OFSC which makes the closed-loop system asymptotically stable is designed.

• A novel algorithm of designing OFSC for the NUTFOS is established.
• The OFSC for the NUTFOS is linear. The conditions for the existence of the OFSC

are very easy to verify.
• The design scheme in this paper is simple because most of works in the design

procedure of this paper can be completed by using MATLAB toolbox.
The rest of this paper is organized as follows. Section 2 presents some necessary pre-

liminaries. Section 3 introduces the NUTFOS, investigates the design of the OFSC for the
NUTFOS, and establishes an algorithm to design OFSC for the NUTFOS. Section 4 gives
an illustrative example to verify our simple method, which is followed by the conclusion
in Sect. 5.

2 Preliminaries
In this section, we first give some basic preliminaries. Throughout this paper, Dα

t denotes
Caputo fractional derivative, which is referred in [2, 26, 31].

Definition 2.1 ([2]) Let h(t) be a continuous function. Then α > 0-order Caputo fractional
derivative of h(t) is given by

Dα
t h(t) =

1
Γ (n – α)

∫ t

0

h(n)(s)
(t – s)α–n+1 ds.

Remark 2.1 The Leibniz rule of Caputo fractional derivative is given in [2]. However, it
implies that the form of the Leibniz rule of classical derivative is not appropriate for Caputo
fractional derivative.

Several fundamental conclusions of Caputo fractional derivative are given in the follow-
ing.
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Lemma 2.1 ([26]) Let si(t) (i = 1, 2, . . . , n) be continuous and derivable functions and s(t) =
(s1(t), s2(t), . . . , sn(t))T ∈R

n. Then, for any t ≥ 0,

1
2

Dα
t
(
sT (t)Ps(t)

) ≤ sT (t)PDα
t s(t) (1)

holds, where α ∈ (0, 1] and P ∈R
n×n is a positive definite matrix.

Remark 2.2 ([26]) Inequality (1) is equivalent to

Dα
t
(
sT (t)Ps(t)

) ≤ (
Dα

t s(t)
)T Ps(t) + sT (t)PDα

t s(t). (2)

Finally, we recall the fractional indirect Lyapunov theorem for FOS [31].

Lemma 2.2 ([31]) Let s = 0 be an equilibrium point of the nonautonomous FOS

Dα
t s(t) = f (t, s), s0 ∈R

n, (3)

where 0 < α < 1. Assume that there exist a Lyapunov function V (t, v(t)) and class-K func-
tions β1,β2, and β3 satisfying

β1
(‖s‖) ≤ V

(
t, s(t)

) ≤ β2
(‖s‖),

Dα
t V

(
t, s(t)

) ≤ –β3
(‖s‖).

Then system (3) is asymptotically stable.

3 Main results
In this section, the OFSC for the NUTFOS is designed. Firstly, we introduce the NUTFOS.
Then, we investigate the design of the OFSC for the systems by the fractional indirect
Lyapunov method and the static gain control method and establish an algorithm to design
the OFSC for the systems.

3.1 Problem description
In this subsection, the NUTFOS are presented.

Consider the following NUTFOS:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
t v1(t) = v2(t) + g1(t, v(t)),

Dα
t v2(t) = v3(t) + g2(t, v(t)),

...

Dα
t vn–2(t) = vn–1(t) + gn–2(t, v(t)),

Dα
t vn–1(t) = vn(t),

Dα
t vn(t) = u(t),

y = v1(t),

(4)

where α ∈ (0, 1], v(t) = (v1(t), v2(t), . . . , vn(t))T ∈ R
n denotes the state, u ∈ R denotes the

input, and y ∈R denotes the output. In this paper, vi, wi, ēi, and w̄i denote vi(t), wi(t), ēi(t),
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and w̄i(t), respectively. The functions gi : R × R
n → R (i = 1, 2, . . . , n – 2) are continuous

and satisfy the following.

Assumption 3.1

∣∣gi(t, v)
∣∣ ≤ c

(|vi+2| + |vi+3| + · · · + |vn|
)
, i = 1, 2, . . . , n – 2, (5)

where c ≥ 0.

3.2 OFSC design
In this subsection, the design of the OFSC for system (4) is given in terms of the fractional
indirect Lyapunov method and the static gain control method, and an algorithm to the
proposed method is examined.

Firstly, we present the design of the OFSC for system (4).

Theorem 3.1 Under Assumption 3.1, system (4) is asymptotically stabilized by a linear
OFSC.

Proof Examine the following linear observer:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
t w1 = w2 + a1l

R (v1 – w1),

Dα
t w2 = w3 + a2l2

R2 (v1 – w1),
...

Dα
t wn–1 = wn + an–1ln–1

Rn–1 (v1 – w1),

Dα
t wn = u + anln

Rn (v1 – w1),

(6)

where R > 1, l > 0, and aj > 0 (j = 1, 2, . . . , n) are coefficients of the Hurwitz polynomial

p̄(k) = kn + a1kn–1 + · · · + an–1k + an.

Set

hi =
vi – wi

Rn+1–i , w̄i =
wi

Rn+1–i , i = 1, 2, . . . , n.

By (4) and (6), we obtain

Dα
t h =

1
R

Ā(l)h + G, (7)

Dα
t w̄ =

1
R

Ω̄w̄ +
1
R

Fu +
1
R

C̄(l)h, (8)

where

h =

⎛
⎜⎜⎜⎜⎝

h1

h2
...

hn

⎞
⎟⎟⎟⎟⎠ , Ā(l) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

–a1l 1 0 · · · 0
–a2l2 0 1 · · · 0

...
...

...
. . .

...
–an–1ln–1 0 0 · · · 1

–anln 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1
Rn
g2

Rn–1
...

gn–2
R3

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, w̄ =

⎛
⎜⎜⎜⎜⎝

w̄1

w̄2
...

w̄n

⎞
⎟⎟⎟⎟⎠ ,

Ω̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

C̄(l) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1l 0 0 · · · 0
a2l2 0 0 · · · 0

...
...

...
. . .

...
an–1ln–1 0 0 · · · 0

anln 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We set R > 1 such that the system consisting of (7), (8) and

u = –(b1w̄1 + b2w̄2 + b3w̄3 + · · · + bnw̄n) (9)

is asymptotically stable at h = 0 and w̄ = 0, where bj > 0 (j = 1, 2, . . . , n) are the coefficients
of the Hurwitz polynomial

q̄(k) = kn + bnkn–1 + · · · + b2k + b1.

In forms of w̄i and (9), we obtain

u = –
1

Rn

(
b1w1 + b2Rw2 + b3R2w3 + · · · + bnRn–1wn

)
. (10)

By (8) and (9), we have

Dα
t w̄ =

1
R

B̄w̄ +
1
R

C̄(l)h, (11)

where

B̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
–b1 –b2 –b3 · · · –bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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Let Lyapunov function V̄1 = hT P̄(l)h, where P̄(l) > 0 is a positive definite matrix and
satisfies P̄(l)Ā(l) + ĀT (l)P̄(l) = –I . Then we have

Dα
t V̄1|(7) ≤ (

Dα
t h

)T P̄(l)h + hT P̄(l)Dα
t h

=
(

1
R

Ā(l)h + G
)T

P̄(l)h + hT P̄(l)
(

1
R

Ā(l)h + G
)

≤ –
1
R

‖h‖2 + 2
∥∥P̄(l)

∥∥ · ‖h‖ · ‖G‖.

From (5) and the expressions of hi and w̄i, for any i (i = 1, 2, . . . , n), we have

∣∣∣∣ gi

Rn–i+1

∣∣∣∣ ≤ c
Rn–i+1

(|vi+2| + |vi+3| + · · · + |vn|
)

≤ c
R2

n∑
j=1

|vj|
Rn–j+1

=
c

R2

n∑
j=1

(|hj| + |w̄j|
)

≤ c
√

n
R2 ‖h‖ +

c
√

n
R2 ‖w̄‖,

where R > 1 and
∑n

j=1 |hj| ≤ √
n‖h‖.

Hence, we get

Dα
t V̄1|(7) ≤ –

1
R

‖h‖2 + 2
∥∥P̄(l)

∥∥ · ‖h‖
(

c
√

n
R2 ‖h‖ +

c
√

n
R2 ‖w̄‖

)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
...
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

≤ –
1
R

‖h‖2 +
2nc
R2

∥∥P̄(l)
∥∥ · ‖h‖2 +

nc
R2

∥∥P̄(l)
∥∥(‖h‖2 + ‖w̄‖2)

≤ –
1
R

‖h‖2 +
3nc
R2

∥∥P̄(l)
∥∥ · ‖h‖2 +

nc
R2

∥∥P̄(l)
∥∥ · ‖w̄‖2. (12)

Set Lyapunov function V̄2 = w̄T Q̄w̄, where Q̄ > 0 is a positive definite matrix Q̄ > 0 and
satisfies Q̄B̄ + B̄T Q̄ = –I . Then we have

Dα
t V̄2|(11) ≤ (

Dα
t w̄

)T Q̄w̄ + w̄T Q̄Dα
t w̄

=
(

1
R

B̄w̄ +
1
R

C̄(l)h
)T

Q̄w̄ + w̄T Q̄
(

1
R

B̄w̄ +
1
R

C̄(l)h
)

≤ –
1
R

‖w̄‖2 +
2
R

∥∥Q̄C̄(l)
∥∥ · ‖h‖ · ‖w̄‖

≤ –
1
R

‖w̄‖2 +
1
R

∥∥Q̄C̄(l)
∥∥(‖h‖2 + ‖w̄‖2). (13)
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Choose Lyapunov function V̄ = V̄1 + V̄2. By (12) and (13), we obtain

Dα
t V̄ |(7)(11) ≤ –

1
R

(
1 –

∥∥Q̄C̄(l)
∥∥)‖h‖2 +

3nc
R2

∥∥P̄(l)
∥∥ · ‖h‖2

–
1
R

(
1 –

∥∥Q̄C̄(l)
∥∥)‖w̄‖2 +

nc
R2

∥∥P̄(l)
∥∥ · ‖w̄‖2

= –
1

R2

[(
1 –

∥∥Q̄C̄(l)
∥∥)

R – 3nc
∥∥P̄(l)

∥∥]‖h‖2

–
1

R2

[(
1 –

∥∥Q̄C̄(l)
∥∥)

R – nc
∥∥P̄(l)

∥∥]‖w̄‖2.

Set l > 0 and R > 1 satisfying

∥∥Q̄C̄(l)
∥∥ ≤ δ, R >

3n
1 – δ

(
c
∥∥P̄(l)

∥∥ + η
)
,

where δ satisfies 0 < δ < 1 and η > 0.
Thus, from Lemma 2.2, we get Dα

t V̄ |( 7)(11) < – η

R2 (‖h‖2 +‖w̄‖2), which implies that system
(7) and (11) is asymptotically stable at h = 0 and w̄ = 0. Therefore, closed-loop system (4),
(8), and (9) is asymptotically stable at v = 0 and w̄ = 0. Closed-loop system (4), (6), and
(10) is also asymptotically stable at v = 0 and w = 0. Thus, it can be concluded that system
(6) and (10) is the linear output dynamic compensator of system (4). This completes the
proof. �

Based on the above analysis, we establish an algorithm to construct an OFSC for system
(4).

Algorithm 3.1 The algorithm is divided into the following five steps:
(1) Let aj > 0, bj > 0 (j = 1, 2, . . . , n) be the coefficients of the Hurwitz polynomials

p̄(k) = kn + a1kn–1 + · · · + an–1k + an,

q̄(k) = kn + bnkn–1 + · · · + b2k + b1.

Then we get Ā(l), C̄(l), and B̄.
(2) Solving the equation

B̄T Q̄ + Q̄B̄ = –I

leads to Q̄ > 0.
(3) Choose an appropriate constant l such that δ = ‖Q̄C̄(l)‖ < 1.
(4) Solve the equation

P̄(l)Ā(l) + ĀT (l)P̄(l) = –I.

Then we obtain P̄(l) > 0.
(5) Let

R >
3n

1 – δ
c
∥∥P̄(l)

∥∥.
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Then a linear OFSC for system (4) is u, where u is defined as in (10), and
w1, w2, . . . , wn are the states of system (6).

Remark 3.1 The different research problems of this paper and [27] are on the design prob-
lem of the OFSC output and the SFSC for the same system (4). The OFSC for the NUTFOS
is studied in this paper, and the SFSC for the NUTFOS is considered in [27]. In fact, the
design process of the OFSC is more complicated than that of the SFSC.

4 An example
In this section, we give an example to verify our simple method.

Example 4.1 Consider the following nonlinear FOS:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dα
t v1 = v2 – sin v1

c+ce–t v3,

Dα
t v2 = v3,

Dα
t v3 = u,

y = v1,

(14)

where α ∈ (0, 1].

By Algorithm 3.1, choose a1 = 99/100, a2 = 261/1000, a3 = 81/5000, b1 = 100, b2 = 120,
b3 = 21. Then

Ā(l) =

⎛
⎜⎝

–99l/100 1 0
–261l2/1000 0 1
–81l3/5000 0 0

⎞
⎟⎠ , C̄(l) =

⎛
⎜⎝

99l/100 0 0
261l2/1000 0 0
81l3/5000 0 0

⎞
⎟⎠ ,

B̄ =

⎛
⎜⎝

0 1 0
0 0 1

–100 –120 –21

⎞
⎟⎠ , Q̄ =

⎛
⎜⎝

4 –1/2 –1
–1/2 1 –1/2
–1 –1/2 1

⎞
⎟⎠ .

Set l = 0.9 and c = 3000. Then, we get R = 6.5. Therefore, the linear output feedback stabi-
lizer for system (14) is

u = –
100
R3 w1 –

120
R2 w2 –

21
R

w3, (15)

where w1, w2, and w3 are the states of the following system:

⎧⎪⎪⎨
⎪⎪⎩

Dα
t w1 = w2 + 99l

100R (v1 – w1),

Dα
t w2 = w3 + 261l2

1000R2 (v1 – w1),

Dα
t w3 = – 100

R3 w1 – 120
R2 w2 – 21

R w3 + 81l3
5000R3 (v1 – w1).

(16)

Figures 1, 2, and 3 show the state trajectories of the system consisting of (14), (15), and
(16) with the order α = 0.9 for the initial condition (v1(0), v2(0), v3(0), w1(0), w2(0), w3(0)) =
(–0.03, 0.2, 0.6, 0.1, 0.5, 0.04), which shows the asymptotic stability of the system.
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Figure 1 Trajectories of v1 and w1

Figure 2 Trajectories of v2 and w2

5 Conclusion
By using the fractional indirect Lyapunov method and the static gain control method, a
simple method of design problem of the OFSC for the NUTFOS has been investigated in
this paper. We have obtained the OFSC making the closed-loop system asymptotically sta-
ble and established an algorithm to design output stabilizing controller for the NUTFOS.
Finally, an example has been given to verify the validity of the simple method.

In future works, one can study the controllability of the nonlinear upper triangular
fractional-order systems.
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Figure 3 Trajectories of v3 and w3
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