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Abstract
Volterra integro-differential equations arise in the modeling of natural systems where
the past influence the present and future, for example pollution, population growth,
mechanical systems and financial market. Furthermore, as many real-world
phenomena are subject to perturbations or random noise, it is natural to move from
deterministic models to stochastic models. Generally exact solutions of such models
are not available and numerical methods are used to obtain the approximate
solutions. Therefore the efficiency and long-term behavior of approximate solutions
for these systems is an important area of investigation. This paper presents a new
numerical approach for the approximate solution of stochastic Volterra
integro-differential (SVID) equations based on the Legendre-spectral collocation
method. In order to fully use the properties of orthogonal polynomials, we use some
function and a variable transformation to change the given SVID equation into a new
equation, which is defined on the standard interval [–1, 1]. For the evaluation of the
integral term efficiently a Legendre–Gauss quadrature formula will be used.
A rigorous error analysis of the proposed scheme will be provided under the
assumption that the solution of the given SVID is sufficiently smooth. For the
illustration of our theoretical results a number of numerical experiments will be
performed.

Keywords: Spectral collocation method; Stochastic Volterra integro-differential
equations; Legendre–Gauss–Lobatto points; Error analysis

1 Introduction
Stochastic Volterra-integral equations arise in mathematical modeling of many physical
phenomena such as mechanics, medical, finance, reactor dynamics, etc. These models also
arise in the study of biological populations growth model, the automatic systems theory in
delay-differential equations and in the investigation of the behavior to more practical dy-
namical systems in physics and engineering [1–8]. Most particularly, such systems rely on
additive noise, governed by certain probability laws, like Gaussian white noise, so it is nat-
ural to use the stochastic differential equations or stochastic Volterra-integral equations
and stochastic integro-differential equations for most complicated cases [4, 9]. Therefore
the study of stochastic differential equations is an important area of research. The ex-
plicit solutions of such a type of differential equations are very rare and one must adopt
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a numerical technique to solve such problems. Recently, for the simulation of complex or
smooth physical phenomena, spectral methods have emerged as a very powerful and ef-
ficient numerical technique, which are a well-known class of numerical methods for the
solutions of various differential equations due to the spectral rate of convergence [10–12].
These methods for the numerical solutions of stochastic fractional differential equations
were most recently used by Raffaele D’Ambrosio et al. [13–15], while Jacobi polynomials
for the numerical solution of time fractional diffusion systems was used in [16, 17]. The
aim of this research work is to develop the spectral collocation method using Legendre–
Gauss–Lobatto points for the approximate solution of SVIDEs. For this purpose, let us
consider the stochastic Volterra integro-differential equation with convolution kernels of
the form [18]

⎧
⎨

⎩

dy(t) = f (y(t),
∫ t

0 G(t – s)y(s) ds) dt + g(y(t),
∫ t

0 H(t – s)y(s) ds) dW (t),

y(0) = y0,
(1)

where W (t) is a stochastic Brownian motion, f , g , G and H are known functions, and
we consider the two functions f and g to be globally Lipschitz continuous and the linear
growth condition is satisfied, which means that there exist positive constants K1 and K2

for all x, x̄, t, t̄ ∈ R such that

∣
∣f (x, t) – f (x̄, t̄)

∣
∣2 ∨ ∣

∣g(x, t) – g(x̄, t̄)
∣
∣2 ≤ K1

(|x – x̄|2 + |t – t̄|2), (2)
∣
∣f (x, t)

∣
∣2 ∨ ∣

∣g(x, t)
∣
∣2 ≤ K2

(
1 + |x|2 + |t|2). (3)

The notation ∨ denotes the maximum one in both. Next, we consider that G and H are
continuous and satisfy the following for a positive constant K3:

∥
∥G(t) – G(s)

∥
∥ ∨ ∥

∥H(t) – H(s)
∥
∥ ≤ K3|t – s|, t, s ∈ [0, T], (4)

which implies that

∥
∥G(t)

∥
∥ ∨ ∥

∥H(t)
∥
∥ ≤ M < ∞, (5)

for any positive constant M. The conditions given in Eq. (2)–Eq. (4) can guarantee that
Eq. (1) has a unique solution y(t). Since most stochastic differential equations cannot be
solved analytically, a number of numerical method are applied to obtain the approximate
solutions of stochastic ordinary differential equations, such as the stochastic Runge–Kutta
method, the stochastic linear multistep method and the stochastic Taylor method. For
more details we refer the reader to [19, 20]. In contrast, for the approximate solution of
SVIDEs, there are very few results in the existing literature. In [21] one studied the conver-
gence of the Euler–Maruyama scheme for SVIDEs under some different assumptions and
the analytical and numerical asymptotic stability has been considered for a linear stochas-
tic functional differential equations in [22], which usually apply low-order methods. We
will apply spectral methods which are the most accurate and efficient available numerical
techniques for the approximate solution of SVIDEs.

The rest of the paper is organized as follows: A brief description of the proposed method
is given in Sect. 2. Comprehensive error analyses of the scheme are performed in Sect. 3.
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Numerical experiments are performed in Sect. 4, which illustrate the theoretical results,
and a conclusion is given in Sect. 5.

2 Description of the spectral collocation method
Let ΛN = {tk}N

k=0 denote the grid points, which is the space of real polynomials of degree
not greater than N , and the set of (N +1) LGL points lies in the interval [–1, 1]. We consider
Eq. (1) in the following simplified form [23]:

dy(t) = y(t) dt +
(∫ t

0
G(t – s)y(s) ds

)

dt + y(t) dW (t) +
(∫ t

0
H(t – s)y(s) ds

)

dW (t),

y(0) = y0,
(6)

where G(s, t) and H(s, t), for s, t ∈ [0, T], are given functions, and y(t) is an unknown
stochastic process. Also W (t) is a Brownian motion process, and y0 is the initial condi-
tion. In order to solve the SVIDE Eq. (6), we first apply the integral on both sides from
[0, ti], which gives

y(ti) = y0 +
∫ ti

0
y(s) ds +

∫ ti

0

(∫ s

0
G(s – u)y(u) du

)

ds

+
∫ ti

0
y(s) dW (s) +

∫ ti

0

(∫ s

0
H(s – u)y(u) du

)

dW (s). (7)

To analyze the integral of Eq. (7) on a standard interval [–1, 1], we take a linear transfor-
mation in the form s = ti

2 (θ + 1), then Eq. (7) takes the following form:

y(ti) = y0 +
ti

2

∫ 1

–1
y
(

ti

2
(θ + 1)

)

dθ +
ti

2

∫ 1

–1

(∫ ti
2 (θ+1)

0
G

(
ti

2
(θ + 1) – u

)

y(u) du
)

dθ

+
ti

2

∫ 1

–1
y
(

ti

2
(θ + 1)

)

dW (θ )

+
ti

2

∫ 1

–1

(∫ ti
2 (θ+1)

0
H

(
ti

2
(θ + 1) – u

)

y(u) du
)

dW (θ ). (8)

Let ηik = ti
2 (θ +1), k = 0, 1, . . . , N . Now by using (N +1) Gauss–Legendre nodes, the quadra-

ture formula associated with the Legendre weight for the integral equation (8) leads to the
semi-discretized spectral equation

y(ti) ≈ y0 +
ti

2

N∑

k=0

y(ηik)ωk +
ti

2

N∑

k=0

(∫ ηik

0
G(ηik – u)y(u) du

)

ωk

+
ti

2

N∑

k=0

W (tik)y(ηik)ωk +
ti

2

N∑

k=0

W (tik)
(∫ ηik

0
H(ηik – u)y(u) du

)

ωk , (9)

where ωk is the weight function, and W (t) is a Brownian motion process. Once again
having the linear transformation u = ηik

2 (θ + 1), applying to Eq. (9),

y(ti) ≈ y0 +
ti

2

N∑

k=0

y(ηik)ωk +
ti

2

N∑

k=0

(
ηik

2

∫ 1

–1
G

(

ηik –
ηik

2
(θ + 1)

)

y
(

ηik

2
(θ + 1)

)

dθ

)

ωk
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+
ti

2

N∑

k=0

W (tik)y(ηik)ωk

+
ti

2

N∑

k=0

W (tik)
(

ηik

2

∫ 1

–1
H

(

ηik –
ηik

2
(θ + 1)

)

y
(

ηik

2
(θ + 1)

)

dθ

)

ωk . (10)

Again by using (N + 1) Gauss–Legendre nodes, the quadrature formula associated with
the Legendre weight for the integral equation (10), we get

y(ti) ≈ y0 +
ti

2

N∑

k=0

y(ηik)ωk +
ti

2

N∑

k=0

(
ηik

2

N∑

r=0

G
(

ηik

2
(1 – θ )

)

y
(

ηik

2
(θ + 1)

)

ωr

)

ωk

+
ti

2

N∑

k=0

W (tik)y(ηik)ωk

+
ti

2

N∑

k=0

W (tik)

(
ηik

2

N∑

r=0

H
(

ηik

2
(1 – θ )

)

y
(

ηik

2
(θ + 1)

)

ωr

)

ωk , (11)

where ωr is the weight function.
Suppose that Y (tj) ≈ y(tj), and assume that the spectral approximate solution is

y(t) ≈ Y (t) :=
N∑

j=0

y(tj)Pj(t), 0 ≤ t ≤ T , (12)

where Pj(t) is Lagrange interpolation polynomial concerned with Gauss–Legendre points
ΛN = {tk}N

k=0. To compute Pj(t), the efficient way is to express it in terms of the Legendre
function; see [24, 25]. Using Eq. (12), the numerical spectral scheme of Eq. (11) takes the
following form:

y(ti) ≈ y0 +
ti

2

N∑

j=0

Yj

( N∑

k=0

Pj(ηik)ωk

)

+
ti

2

N∑

j=0

Yj

( N∑

k=0

N∑

r=0

ηik

2
G

(
ηik

2
(1 – θ )

)

Pj

(
ηik

2
(θ + 1)

)

ωrωk

)

+
ti

2

N∑

j=0

Yj

( N∑

k=0

W (tik)Pj(ηik)ωk

)

+
ti

2

N∑

j=0

Yj

( N∑

k=0

N∑

r=0

W (tik)
ηik

2
H

(
ηik

2
(1 – θ )

)

Pj

(
ηik

2
(θ + 1)

)

ωrωk

)

. (13)

Now taking Y := [Y0, Y1, . . . , YN ]T and CN := [y0, y1, . . . ,φ0]T , then we obtain a more com-
patible form of Eq. (13)

Y – (B1 + B2 + B3 + B4)Y = CN , (14)
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where the entries of the matrices B1, B2, B3, B4 ∈R
(N+1)×(N+1) are given now:

B1(i, j) =
ti

2

( N∑

k=0

Pj(ηik)ωk

)

,

B2(i, j) =
ti

2

( N∑

k=0

N∑

r=0

ηik

2
G

(
ηik

2
(1 – θ )

)

Pj

(
ηik

2
(θ + 1)

)

ωrωk

)

,

B3(i, j) =
ti

2

( N∑

k=0

W (tik)Pj(ηik)ωk

)

,

B4(i, j) =
ti

2

( N∑

k=0

N∑

r=0

W (tik)
ηik

2
H

(
ηik

2
(1 – θ )

)

Pj

(
ηik

2
(θ + 1)

)

ωrωk

)

.

3 Error analysis
In this section, we provide the error analysis of the spectral collocation method for SVIDE.
We will particularly determine the spectral accuracy for the numerical solution yN (t) [26].
Let us consider

UN
T ,1(t) = IT ,N

d
dt

Y (t) –
d
dt

IT ,N Y (t)

and

UN
T ,2(t) = f

(

yN (t),
∫ ti

0
G(t, s)yN (s) ds, t

)

– f
(

IT ,N Y (t), IT ,N

∫ ti

0
G(t, s)Y (s) ds, t

)

∨ g
(

yN (t),
∫ ti

0
H(t, s)yN (s) ds, t

)

– g
(

IT ,N Y (t), IT ,N

∫ ti

0
H(t, s)Y (s) ds, t

)

. (15)

Then we have from Eq. (1)

d
dt

IT ,N Y (t) = f
(

Y (t),
∫ ti

0
G(t, s)Y (s) ds, t

)

∨ g
(

Y (t),
∫ ti

0
H(t, s)Y (s) ds, t

)

– W N
T ,1(t), t ∈ ΛN . (16)

Furthermore, let EN (t) = yN (t) – IN ,T Y (t), then we have from Eq. (6) and Eq. (16) that

⎧
⎨

⎩

d
dt EN (t) = UN

T ,1(t) + UN
T ,2(t), t ∈ ΛN ,

EN (0) = Φ(0) – IT ,NΦ(0) = 0.
(17)

Lemma 3.1 Using the condition Eq. (17), the following inequality holds:

(
EN (T)

)2 ≤ 2
∥
∥EN∥

∥
T ,N

(∥
∥UN

T ,1
∥
∥

T ,N +
∥
∥UN

T ,2
∥
∥

T ,N

)
. (18)
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Proof Since EN (0) = 0, multiplying Eq. (17) by 2EN (tN
T ,k)ωN

T ,k and having the resulting equa-
tion summed up, 1 ≤ k ≤ N , we obtain

2
(

EN ,
d
dt

EN
)

T ,N
= 2

(
UN

T ,1, EN)

T ,N + 2
(
UN

T ,2, EN)

T ,N . (19)

Since d
dt EN (t) ∈ PN–1(0, T), then using the result, if ψ1,ψ2 ∈ P2N–1(0, T) then (ψ1,ψ2)T =

(ψ1,ψ2)T ,N . Using this, then

2
(

EN ,
d
dt

EN
)

T ,N
= 2

(

EN ,
d
dt

EN
)

T
=

(
EN (T)

)2. (20)

Put Eq. (20) into Eq. (19), and using a Cauchy–Schwartz inequality, we obtain Eq. (18). �

Next we estimate, UN
T ,1. For this purpose, the following lemma is given; one may refer to

[27].

Lemma 3.2 For the integers 1 ≤ r ≤ N ,

∥
∥UN

T ,1
∥
∥

T ≤ cTN–rRr
T ,1(Y ), (21)

where Rr
T ,1(Φ) is finite.

Proof For this purpose, using Lemma 3.1. for integers 1 ≤ r ≤ N + 1, we have

∥
∥
∥
∥IT ,N

d
dt

Y –
d
dt

Y
∥
∥
∥
∥

T
≤ c1TN–rRr

T ,1(Y ). (22)

Again we have, 0 ≤ r ≤ N ,

∥
∥
∥
∥

d
dt

(IT ,N Y – Y )
∥
∥
∥
∥

T
≤ c1TN–rRr

T ,1(Y ). (23)

Now by Eq. (22) and Eq. (23), we have

∥
∥UN

T ,1
∥
∥ ≤

∥
∥
∥
∥IT ,N

d
dt

Y –
d
dt

Y
∥
∥
∥
∥

T
+

∥
∥
∥
∥

d
dt

(IT ,N Y – Y )
∥
∥
∥
∥

T
≤ cTN–rRr

T ,1(Y ). (24)

Here 2c1 = c, which completes the proof. �

Now, to analyze the numerical error of functions f and g , we consider the following, for
a positive number β < 1/4.

Theorem 3.1 ([27]) If conditions Eq. (2)–Eq. (5) hold, Rr
T ,1(Φ) is a finite function for inte-

gers 1 ≤ r ≤ N , and

T
√

2 + N–1
(
1 +

√
2 + N–1

)(
K1 + K2(1 – λ)

) ≤ β <
1
4

, (25)
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where 0 ≤ λ < 1, then

∥
∥Y – yN∥

∥
T ≤ cβT2N–rRr

T ,1(Y ), (26)
∣
∣Y (T) – yN (T)

∣
∣ ≤ cβT

3
2 N–rRr

T ,1(Y ), (27)

and, in particular,

max
t∈[0,T]

∣
∣Y (t) – yN (t)

∣
∣ ≤ cβTN1–rRr

T ,1(Y ), (28)

where the constant cβ > 0, depending on β .

Proof Since UN
T ,2(0) = 0, we have from Eq. (15)

∥
∥UN

T ,2
∥
∥

T ,N =
∥
∥f

(
yN , vN

1 , ·) – f (IT ,N Y , IT ,N V1, ·)∥∥T ,N

∨ ∥
∥g

(
yN , vN

2 , ·) – g(IT ,N Y , IT ,N V2, ·)∥∥T ,N , t ∈ ΛN , (29)

where vN
1 (t) =

∫ ti
0 G(t, s)yN (s) ds, vN

2 (t) =
∫ ti

0 H(t, s)yN (s) ds ∈ PN (0, T). For simplicity, we de-
note KN =

√
2 + N–1, then, by using Eq. (2) and Eq. (3), we see that Eq. (29) takes the form

∥
∥UN

T ,2
∥
∥

T ,N ≤ ∥
∥f

(
yN , vN

1 , ·) – f
(
IT ,N Y , vN

1 , ·)∥∥T ,N

+
∥
∥f

(
IT ,N Y , vN

1 , ·) – f (IT ,N Y , IT ,N V1, ·)∥∥T ,N

∨ ∥
∥g

(
yN , vN

1 , ·) – g
(
IT ,N Y , vN

1 , ·)∥∥T ,N

+
∥
∥g

(
IT ,N Y , vN

1 , ·) – g(IT ,N Y , IT ,N V1, ·)∥∥T ,N

≤ K1
∥
∥EN∥

∥
T ,N + K2

∥
∥vN – IT ,N V

∥
∥

T ,N

≤ KN
(
K1

∥
∥EN∥

∥
T + K2

∥
∥vN – IT ,N V

∥
∥

T

)
. (30)

Furthermore, using Eq. (21) we obtain

∥
∥vN – IT ,N V

∥
∥

T ≤ ∥
∥vN – V

∥
∥

T + ‖V – IT ,N V‖T

≤ (1 – λ)– 1
2
∥
∥Y – yN∥

∥
T + cT2N–r–1Rr

T ,1(Y ). (31)

Now by Eq. (25), Eq. (30), and Eq. (31), we get

∥
∥UN

T ,2
∥
∥

T ,N ≤ KN
(
K1

∥
∥EN∥

∥
T + K2(1 – λ)– 1

2
∥
∥Y – yN∥

∥
T

)
+ cKN K2T2N–r–1Rr

T ,1(Y ). (32)

Now for any t ∈ [0, T] (cf. [28])

(
EN (t)

)2 ≤
(

T
1
2
(
EN (T)

)2 + 2
∥
∥EN∥

∥
T

∥
∥
∥
∥t

1
2

d
dt

EN
∥
∥
∥
∥

T

)

t– 1
2 . (33)

Integrating Eq. (33) with respect to t,

∥
∥EN∥

∥2
T ≤ 2T

(
EN (T)

)2 + 4T
1
2
∥
∥EN∥

∥
T

∥
∥
∥
∥t

1
2

d
dt

EN
∥
∥
∥
∥

T
. (34)
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Now since d
dt EN (t) ∈ PN–1(0, T) and |UN

T ,1(0) + UN
T ,2(0)| < ∞, we have

∥
∥
∥
∥t

1
2

d
dt

EN
∥
∥
∥
∥

T
=

∥
∥
∥
∥t

1
2

d
dt

EN
∥
∥
∥
∥

T ,N
=

∥
∥t

1
2
(
UN

T ,1 + UN
T ,2

)∥
∥

T ,N

≤ T
1
2
∥
∥UN

T ,1
∥
∥

T ,N + T
1
2
∥
∥UN

T ,2
∥
∥

T ,N . (35)

We use Eq. (34) and Eq. (35) to derive that

∥
∥EN∥

∥2
T ≤ 2T

(
EN (T)

)2 + 4T
∥
∥EN∥

∥
T

(∥
∥W N

T ,1
∥
∥

T ,N +
∥
∥W N

T ,2
∥
∥

T ,N

)
, (36)

which implies

(
EN (T)

)2 ≥ 1
2T

∥
∥EN∥

∥2
T – 2

∥
∥EN∥

∥
T

(∥
∥UN

T ,1
∥
∥

T ,N +
∥
∥UN

T ,2
∥
∥

T ,N

)
. (37)

Combining Eq. (18) and Eq. (37) gives

1
2T

∥
∥EN∥

∥2
T – 2

∥
∥EN∥

∥
T

(∥
∥UN

T ,1
∥
∥

T ,N +
∥
∥UN

T ,2
∥
∥

T ,N

)

≤ 2
∥
∥EN∥

∥
T ,N

∥
∥UN

T ,1
∥
∥

T ,N + 2
∥
∥EN∥

∥
T ,N

∥
∥UN

T ,2
∥
∥

T ,N , (38)

which together with Eq. (21), Eq. (25) and Eq. (32) yields

∥
∥EN∥

∥
T ≤ 4T(1 + KN )

(∥
∥UN

T ,1
∥
∥

T ,N +
∥
∥UN

T ,2
∥
∥

T ,N

)

≤ 4TKN (1 + KN )
(
K1

∥
∥EN∥

∥
T + K2(1 – λ)– 1

2
∥
∥Y – yN∥

∥
T

)
+ cT2N–rRr

T ,1(Y ). (39)

Here

∥
∥Y – yN∥

∥
T ≤ ∥

∥EN∥
∥

T + ‖Y – IT ,N Y‖T ≤ +
∥
∥EN∥

∥
T + cT2N–r–1Rr

T ,1(Y ). (40)

Putting Eq. (40) into Eq. (39), we have

(
1 – 4TKN (1 + KN )

(
K1 + K2(1 – λ)– 1

2
))∥

∥EN∥
∥

T

≤ cK2KN (1 + KN )(1 – λ)– 1
2 T3N–r–1Rr

T ,1(Y ) + cT2N–rRr
T ,1(Y )

≤ cT2N–rRr
T ,1(Y ), (41)

combining Eq. (41) with Eq. (25), we have

∥
∥EN∥

∥
T ≤ cβT2N–rRr

T ,1(Y ). (42)

Equation (42) with Eq. (40) gives

∥
∥Y – yN∥

∥
T ≤ cβT2N–rRr

T ,1(Y ), (43)

which leads to Eq. (26).
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Next by using Eq. (32), Eq. (42), and Eq. (43), we have

∥
∥UN

T ,2
∥
∥

T ,N ≤ cβT2N–rRr
T ,1(Y ). (44)

Furthermore, using Eq. (18), Eq. (21), Eq. (42), and Eq. (44), we deduce that

∣
∣Y (T) – yN (T)

∣
∣2 =

(
EN (T)

)2 ≤ 2KN
∥
∥EN∥

∥
T

(∥
∥UN

T ,1
∥
∥

T ,N +
∥
∥UN

T ,2
∥
∥

T ,N

)

≤ cβT3N–2r(Rr
T ,1(Y )

)2. (45)

This proves Eq. (27).
Again using Eq. (23), and Eq. (42), we deduce that

∥
∥
∥
∥

d
dt

(
Y – yN)

∥
∥
∥
∥

T
≤

∥
∥
∥
∥

d
dt

EN
∥
∥
∥
∥

T
+

∥
∥
∥
∥

d
dt

(Y – IT ,N Y )
∥
∥
∥
∥

T

≤ cT–1N2∥∥EN∥
∥

T +
∥
∥
∥
∥

d
dt

(Y – IT ,N Y )
∥
∥
∥
∥

T

≤ cβTN2–rRr
T ,1(Y ) + cTN–rRr

T ,1(Y )

≤ cβTN2–rRr
T ,1(Y ). (46)

This together with Eq. (43) implies that

∥
∥Y – yN∥

∥
H1(0,T) ≤ cβTN2–rRr

T ,1(Y ). (47)

For this purpose, according to the Sobolev inequality [26],

‖u‖L∞(0,T) ≤ √
2 + T–1‖u‖ 1

2
L2(0,T)‖u‖ 1

2
H1(0,T). (48)

Hence by Eq. (26) and Eq. (46), we obtain

max
t∈[0,T]

∣
∣Y (t) – yN (t)

∣
∣ ≤ √

2 + T–1
∥
∥Y – yN∥

∥
1
2
L2(0,T)

∥
∥Y – yN∥

∥
1
2
H1(0,T)

≤ cβTN1–rRr
T ,1(Y ), (49)

which is the proof of Eq. (28). �

4 Numerical results
In this section, we perform a number of numerical experiments to check the efficiency
of the proposed scheme. In our simulations we use Legendre–Gauss–Lobatto points with
the following norms:

L∞ = max
∣
∣
(
φN (t) – φ(t)

)∣
∣;

L1 =
1
2
∣
∣
(
φN (t) – φ(t)

)∣
∣′w;

L2 =
√

1
2
∣
∣
(
φN (t) – φ(t)

)∣
∣2w;

(50)
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Table 1 The point-wise error using Eq. (13) of Eq. (51)

N L∞-norm L1-norm L2-norm

2 3.450e–02 1.754e–02 2.175e–02
8 1.224e–02 7.038e–03 8.380e–03
14 6.028e–03 3.271e–03 3.877e–03
20 3.441e–03 1.583e–03 1.993e–03

Figure 1 Numerical errors of Eq. (51) at T = 1

where yN (t) is the global numerical solution. We apply the present method for numerical
solutions and compare with exact solutions of sample problems. For computations, we use
the final time T = 1 and N = 20 and the Legendre–Gauss quadrature with weights:

ωm =
(

2
(1 – x2

m)[L′
N+1(xm)]2

)

, 0 < m < N .

Example 4.1 ([29]) Consider the following SVIDE:

y(t) = y0 +
∫ t

0
s2y(s) ds +

∫ t

0
sy(s) dW (s), ∀t, s ∈ [0, T], (51)

the initial condition is y(0) = 1, actual solution of Eq. (51) is

y(t) = exp

(
t3

6
+

∫ t

0
s dW (s)

)

,

where y(t) is an unknown stochastic process, and W (t) is a Brownian motion process.
The errors with different norms between numerical solution by the spectral method and
the exact solution are shown in Table 1 and Fig. 1, which shows the efficiency of our pro-
posed scheme. The comparison of exact and numerical solutions is shown in Fig. 2, which
confirms their good agreement.

Example 4.2 ([29]) Consider the SVIDE,

y(t) = y0 +
∫ t

0
cos(s)y(s) ds +

∫ t

0
sin(s)y(s) dW (s), t, s ∈ [0, T], (52)
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Figure 2 Comparison of exact and approximate solution of Example 4.1

Table 2 The point-wise error using Eq. (13) of Eq. (52)

N L∞-norm L1-norm L2-norm

2 4.678e–03 4.678e–03 2.763e–03
8 1.658e–03 9.406e–04 1.141e–03
14 8.092e–04 4.341e–04 5.153e–04
20 4.328e–04 2.033e–04 2.525e–04

Figure 3 Numerical errors of Eq. (52) at T = 1

where y(t) is an unknown stochastic process, and W (t) is a Brownian motion process. The
initial condition is y(0) = 1

12 , and the exact solution of Eq. (52) is given by

y(t) =
1

12
exp

(
–t
4

+ sin(t) +
sin(2t)

8
+

∫ t

0
sin(s) dW (s)

)

.

The different norms are estimated for different N , between the exact and numerical solu-
tions as shown in Table 2 and Fig. 3. The comparison of exact and numerical approxima-
tions is shown in Fig. 4.



Khan et al. Advances in Difference Equations        (2019) 2019:161 Page 12 of 14

Figure 4 Comparison of exact and approximate solution of Example 4.2

Table 3 The point-wise error using Eq. (13) of Eq. (53)

N L∞-norm L1-norm L2-norm

2 2.952e–03 1.606e–03 1.841e–03
8 3.034e–05 1.212e–05 1.555e–05
14 9.747e–06 2.620e–06 4.258e–06
20 3.685e–06 7.545e–07 1.410e–06

Example 4.3 ([30]) Consider the linear SVIDE,

y(t) = y0 +
∫ t

0
u(s)y(s) ds +

m∑

i=1

∫ t

0
βi(s)y(s) dWi(s), t, s ∈ [0, T], (53)

where y(t) is an unknown stochastic process defined on a complete probability space, and
W (t) = (W1(t), W2(t), . . . , Wm(t)) is an m-dimension Brownian motion process, subject to
initial condition y(0) = 1

12 . The exact solution of Eq. (53) is

y(t) =
1

12
exp

(∫ t

0

(

u(s) –
1
2

m∑

i=1

β2
i (s)

)

ds +
m∑

i=1

∫ t

0
βi(s) dWi(s)

)

.

For the numerical simulation we choose m = 3, u(s) = s2, β1(s) = sin(s), β2(s) = cos(s) and
β3(s) = s. The errors in different norms between the exact solutions and numerical solu-
tions are shown in Table 3 and Fig. 5, which confirms the efficiency of the present method.
The comparison of exact and numerical solutions of Eq. (53) is shown in Fig. 6.

5 Conclusion
In this article, a Legendre-spectral method with Legendre–Gauss–Lobotto points as col-
location is presented for stochastic integro-differential equations. A comprehensive er-
ror analysis of the scheme is provided and a number of numerical experiments were per-
formed to validate the theoretical results. Both our theoretical and numerical results show
that our numerical method has a spectral rate of convergence which is a maximum that
any numerical method can achieve. In the future this scheme can be generalized to non-
linear SVIDEs, and a system of both linear and non-linear SVIDEs.
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Figure 5 Numerical errors of Eq. (53) at T = 1

Figure 6 Comparison of exact and approximate solution of Example 4.3
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