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Abstract
In this paper, we investigate sums of finite products of Chebyshev polynomials of the
first kind and those of Lucas polynomials. We express each of them as linear
combinations of Hermite, extended Laguerre, Legendre, Gegenbauer, and Jacobi
polynomials whose coefficients involve some terminating hypergeometric functions
1F1 and 2F1. These are obtained by means of explicit computations.
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1 Introduction and preliminaries
In this section, we will first fix some notations that will be used throughout this paper
and then recall the necessary basic facts about orthogonal polynomials. As we will limit
the facts to the minimum, the interested reader is advised to refer to general books on
orthogonal polynomials, for example [2, 4].

For any nonnegative integer n, the falling factorial polynomials (x)n and the rising fac-
torial polynomials 〈x〉n are respectively given by

(x)n = x(x – 1) · · · (x – n + 1) (n ≥ 1), (x)0 = 1, (1.1)

〈x〉n = x(x + 1) · · · (x + n – 1) (n ≥ 1), 〈x〉0 = 1. (1.2)

The two factorial polynomials are related by

(–1)n(x)n = 〈–x〉n, (–1)n〈x〉n = (–x)n, (1.3)

(2n – 2j)!
(n – j)!

=
22n–2j(–1)j〈 1

2 〉n

〈 1
2 – n〉j

(n ≥ j ≥ 0), (1.4)

(2n + 2j)!
(n + j)!

= 22n+2j
〈

1
2

〉
n

〈
n +

1
2

〉
j

(n, j ≥ 0), (1.5)

Γ (
(

n +
1
2

)
=

(2n)!
√

π

22nn!
(n ≥ 0), (1.6)
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Γ (x + 1)
Γ (x + 1 – n)

= (x)n,
Γ (x + n)

Γ (x)
= 〈x〉n (n ≥ 0), (1.7)

where Γ (x) is the gamma function. The hypergeometric function is defined by

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∞∑

n=0

〈a1〉n · · · 〈ap〉n

〈b1〉n · · · 〈bq〉n

xn

n!
. (1.8)

Next, we need to recall some basic facts about Chebyshev polynomials of the first kind
Tn(x), Hermite polynomials Hn(x), extended Laguerre polynomials Lα

n(x), Legendre poly-
nomials Pn(x), Gegenbauer polynomials C(λ)

n (x), and Jacobi polynomials P(α,β)
n (x). All of

these facts can be also found in [7–10, 13, 14]. Also, we will mention some necessary facts
on Lucas polynomials Ln(x). Here we note that when α = 0, the extended Laguerre poly-
nomials L0

n(x) are usually denoted by Ln(x) and called Laguerre polynomials. However, in
this paper Ln(x) always indicates the Lucas polynomials and never means the Laguerre
polynomials.

In terms of generating functions, the above mentioned polynomials are given as in the
following:

F(t, x) =
2 – xt

1 – xt – t2 =
∞∑

n=0

Ln(x)tn, (1.9)

G(t, x) =
1 – xt

1 – 2xt + t2 =
∞∑

n=0

Tn(x)tn, (1.10)

e2xt–t2
=

∞∑
n=0

Hn(x)
tn

n!
, (1.11)

(1 – t)–α–1 exp

(
–

xt
1 – t

)
=

∞∑
n=0

Lα
n(x)tn (α > –1), (1.12)

(
1 – 2xt + t2)– 1

2 =
∞∑

n=0

Pn(x)tn, (1.13)

1
(1 – 2xt + t2)λ

=
∞∑

n=0

C(λ)
n (x)tn

(
λ > –

1
2

,λ �= 0, |t| < 1, |x| ≤ 1
)

, (1.14)

α + β

R(1 – t + R)α(1 + t + R)β
=

∞∑
n=0

P(α,β)
n (x)tn (

R =
√

1 – 2xt + t2,α,β > –1
)
. (1.15)

Those special polynomials are also explicitly given as follows:

Ln(x) = n
[ n

2 ]∑
l=0

1
n – l

(
n – l

l

)
xn–2l (n ≥ 1), (1.16)

Tn(x) = 2F1

(
–n, n;

1
2

;
1 – x

2

)

=
n
2

[ n
2 ]∑

l=0

(–1)l 1
n – l

(
n – l

l

)
(2x)n–2l (n ≥ 1), (1.17)



Kim et al. Advances in Difference Equations        (2019) 2019:162 Page 3 of 15

Hn(x) = n!
[ n

2 ]∑
l=0

(–1)l

l!(n – 2l)!
(2x)n–2l (n ≥ 0), (1.18)

Lα
n(x) =

〈α + 1〉n

n! 1F1(–n;α + 1; x)

=
n∑

l=0

(–1)l(n+α

n–l
)

l!
xl (n ≥ 0), (1.19)

Pn(x) = 2F1

(
–n, n + 1; 1;

1 – x
2

)

=
1
2n

[ n
2 ]∑

l=0

(–1)l
(

n
l

)(
2n – 2l

n

)
xn–2l (n ≥ 0), (1.20)

C(λ)
n (x) =

(
n + 2λ – 1

n

)
2F1

(
–n, n + 2λ;λ +

1
2

;
1 – x

2

)

=
[ n

2 ]∑
k=0

(–1)k Γ (n – k + λ)
Γ (λ)k!(n – 2k)!

(2x)n–2k (n ≥ 0), (1.21)

P(α,β)
n (x) =

〈α + 1〉n

n! 2F1

(
–n, 1 + α + β + n;α + 1;

1 – x
2

)

=
n∑

k=0

(
n + α

n – k

)(
n + β

k

)(
x – 1

2

)k(x + 1
2

)n–k

(n ≥ 0). (1.22)

Next, we would like to mention Rodrigues-type formulas for Hermite and extended La-
guerre polynomials and Rodrigues’ formulas for Legendre, Gegenbauer, and Jacobi poly-
nomials.

Hn(x) = (–1)nex2 dn

dxn e–x2
, (1.23)

Lα
n(x) =

1
n!

x–αex dn

dxn

(
e–xxn+α

)
, (1.24)

Pn(x) =
1

2nn!
dn

dxn

(
x2 – 1

)n, (1.25)

(
1 – x2)λ– 1

2 C(λ)
n (x) =

(–2)n

n!
〈λ〉n

〈n + 2λ〉n

dn

dxn

(
1 – x2)n+λ– 1

2 , (1.26)

(1 – x)α(1 + x)βP(α,β)
n (x) =

(–1)n

2nn!
dn

dxn (1 – x)n+α(1 + x)n+β . (1.27)

The most important properties of the special polynomials in (1.23)–(1.27) are their or-
thogonalities with respect to various weight functions which are as follows:

∫ ∞

–∞
e–x2

Hn(x)Hm(x) dx = 2nn!
√

πδm,n, (1.28)

∫ ∞

0
xαe–xLα

n(x)Lα
m(x) dx =

1
n!

Γ (α + n + 1)δm,n, (1.29)

∫ 1

–1
Pn(x)Pm(x) dx =

2
2n + 1

δm,n, (1.30)
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∫ 1

–1

(
1 – x2)λ– 1

2 C(λ)
n (x)C(λ)

m (x) dx =
π21–2λΓ (n + 2λ)
n!(n + λ)Γ (λ)2 δm,n, (1.31)

∫ 1

–1
(1 – x)α(1 + x)βP(α,β)

n (x)P(α,β)
m (x) dx

=
2α+β+1Γ (n + α + 1)Γ (n + β + 1)

(2n + α + β + 1)Γ (n + α + β + 1)Γ (n + 1)
δm,n. (1.32)

The sums of finite products of Chebyshev polynomials of the first kind in (1.33) and
those of Lucas polynomials in (1.34) are the two main objects of study in this paper which
are respectively denoted by αm,r(x) and βm,r(x).

αm,r(x) =
m∑

l=0

∑
i1+···+ir+1=m–l

(
r + l

r

)
xlTi1 (x) · · ·Tir+1 (x)

–
m–2∑
l=0

∑
i1+···+ir+1=m–l–2

(
r + l

r

)
xlTi1 (x) · · ·Tir+1 (x) (m ≥ 2, r ≥ 1), (1.33)

βm,r(x) =
m∑

l=0

∑
i1+···+ir+1=m–l

(
r + l

r

)(
x
2

)l

Li1 (x) · · ·Lir+1 (x)

+
m–2∑
l=0

∑
i1+···+ir+1=m–l–2

(
r + l

r

)(
x
2

)l

Li1 (x) · · ·Lir+1 (x) (m ≥ 2, r ≥ 1). (1.34)

Note here that αm,r(x) and βm,r(x) are polynomials of degree m.
The purpose of this paper is to study the sums of finite products of Chebyshev polyno-

mials of the first kind in (1.33) and those of Lucas polynomials in (1.34), and to express
each of them as linear combinations of Hermite, extended Laguerre, Legendre, Gegen-
bauer, and Jacobi polynomials. These will be done by explicit computations with the help
of Propositions 2.1 and 2.2 in the next section.

Now, we state our main results of this paper, namely Theorems 1.1 and 1.2.

Theorem 1.1 Let m, r be any integers with m ≥ 2, r ≥ 1. Then we have the following iden-
tities:

m∑
l=0

∑
i1+···+ir+1=m–l

(
r + l

r

)
xlTi1 (x) · · ·Tir+1 (x)

–
m–2∑
l=0

∑
i1+···+ir+1=m–l–2

(
r + l

r

)
xlTi1 (x) · · ·Tir+1 (x)

=
(m + r)!

r!

[ m
2 ]∑

j=0

1F1(–j; 1 – m – r; –1)
j!(m – 2j)!

Hm–2j(x) (1.35)

=
(m + r)2m

r!

m∑
k=0

(–1)k

Γ (α + k + 1)

×
[ m–k

2 ]∑
l=0

(– 1
4 )l(m + r – 1 – l)!Γ (m + α + 1 – 2l)

l!(m – k – 2l)!
Lα

k (x) (1.36)
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=
(m + r)!

r!

[ m
2 ]∑

j=0

(2m – 4j + 1)
j!(m – j + 1

2 )m–j

× 2F1

(
–j, j – m –

1
2

; 1 – m – r; 1
)

Pm–2j(x) (1.37)

=
Γ (λ)(m + r)!

r!

[ m
2 ]∑

j=0

(m + λ – 2j)
j!Γ (m + λ + 1 – j)

× 2F1(–j, j – m – λ; 1 – m – r; 1)C(λ)
m–2j(x) (1.38)

=
(m + r)(–2)m

r!

m∑
k=0

(–2)kΓ (k + α + β + 1)
Γ (2k + α + β + 1)

×
[ m–k

2 ]∑
l=0

(– 1
4 )l(m + r – 1 – l)!
l!(m – k – 2l)!

× 2F1(k + 2l – m, k + β + 1; 2k + α + β + 2; 2)P(α,β)
k (x). (1.39)

Theorem 1.2 Let m, r be any integers with m ≥ 2, r ≥ 1. Then we have the following iden-
tities:

m∑
l=0

∑
i1+···+ir+1=m–l

(
r + l

r

)(
x
2

)l

Li1 (x) · · ·Lir+1 (x)

+
m–2∑
l=0

∑
i1+···+ir+1=m–l–2

(
r + l

r

)(
x
2

)l

Li1 (x) · · ·Lir+1 (x)

=
2r+1–m(m + r)!

r!

[ m
2 ]∑

j=0

1F1(–j, 1 – m – r; 4)
j!(m – 2j)!

Hm–2j(x) (1.40)

=
2r+1(m + r)

r!

m∑
k=0

(–1)k

Γ (α + k + 1)

×
[ m–k

2 ]∑
l=0

(m + r – 1 – l)!Γ (m + α + 1 – 2l)
l!(m – k – 2l)!

Lα
k (x) (1.41)

=
2r–m(m + r)!

r!

[ m
2 ]∑

j=0

(2m – 4j + 1)
j!(m – j + 1

2 )m–j+1

× 2F1

(
–j, j – m –

1
2

; 1 – m – r; –4
)

Pm–2j(x) (1.42)

= 2r+1–mΓ (λ)
(m + r)!

r!

[ m
2 ]∑

j=0

(m + λ – 2j)
j!Γ (m + λ + 1 – j)

× 2F1(–j, j – m – λ; 1 – m – r; –4)C(λ)
m–2j(x) (1.43)

=
(–1)m2r+1(m + r)

r!

m∑
k=0

(–2)kΓ (k + α + β + 1)
Γ (2k + α + β + 1)
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×
[ m–k

2 ]∑
l=0

(m + r – 1 – l)!
l!(m – k – 2l)!

× 2F1(k + 2l – m, k + β + 1; 2k + α + β + 2; 2)P(α,β)
k (x). (1.44)

Before moving on to the next section, we want to mention some of the previous works
that are related to the present results. Along the same line as this paper, certain sums
of finite products of Chebyshev polynomials of the first, second, third, and fourth kinds,
and of Legendre, Laguerre, Fibonacci, and Lucas polynomials are expressed in terms of
all four kinds of Chebyshev polynomials in [11, 16, 19, 24, 26]. Also, certain sums of fi-
nite products of Chebyshev polynomials of the second, third, and fourth kinds, and of
Fibonacci, Legendre, and Laguerre polynomials are expressed in terms of Hermite, ex-
tended Laguerre, Legendre, Gegenbauer, and Jacobi polynomials in [5, 12, 23, 27]. Also,
we would like to remark here that some Appell and non-Appell polynomials are also ex-
pressed as linear combinations of Bernoulli polynomials. Indeed, for Appell polynomials,
some sums of finite products of Bernoulli and Euler polynomials are expressed in terms
of Bernoulli polynomials in [1, 20]. As for non-Appell polynomials, some sums of finite
products of Chebyshev polynomials of the first, second, third, and fourth kinds, and of
Legendre, Laguerre, Genocchi, Fibonacci, and Lucas polynomials are expressed in terms
of Bernoulli polynomials in [15, 17, 18, 21, 22, 25]. Actually, all of these were obtained by
deriving Fourier series expansions for the functions closely related to such sums of finite
products of special polynomials.

Finally, we let the reader look at the papers [3, 6] for some related works.

2 Proof of Theorem 1.1
In this section, we will show (1.35)–(1.37) of Theorem 1.1, leaving (1.38) and (1.39) as ex-
ercises to the reader. For this, we will first state the next two results that will be needed in
showing Theorems 1.1 and 1.2. Here we note that facts (a), (b), (c), (d), and (e) of Propo-
sition 2.1 are respectively from (3.7) of [9], (2.3) of [13], (2,3) of [10], (2,3) of [7], and (2,7)
of [14]. We also observe here that the formulas in Proposition 2.1 are obtained from the
orthogonalities in (1.28)–(1.32), Redrigues’ and Rodrigues-type formulas in (1.23)–(1.27),
and integration by parts.

Proposition 2.1 Let q(x) ∈R[x] be a polynomial of degree n. Then the following hold.
(a) q(x) =

∑n
k=0 Ck,1Hk(x), where

Ck,1 =
(–1)k

2kk!
√

π

∫ ∞

–∞
q(x)

dk

dxk

(
e–x2)

dx.

(b) q(x) =
∑n

k=0 Ck,2Lk(x), where

Ck,2 =
1

Γ (α + k + 1)

∫ ∞

0
q(x)

dk

dxk

(
e–x2

xk+α
)

dx.

(c) q(x) =
∑n

k=0 Ck,3Pk(x), where

Ck,3 =
2k + 1
2k+1k!

∫ 1

–1
q(x)

dk

dxk

(
x2 – 1

)k dx.
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(d) q(x) =
∑n

k=0 Ck,4C(λ)
k (x), where

Ck,4 =
(k + λ)Γ (λ)

(–2)k√πΓ (k + λ + 1
2 )

∫ 1

–1
q(x)

dk

dxk

(
1 – x2)k+λ– 1

2 dx.

(e) q(x) =
∑n

k=0 Ck,5P(α,β)
k (x), where

Ck,5 =
(–1)k(2k + α + β + 1)Γ (k + α + β + 1)

2α+β+k+1Γ (α + k + 1)Γ (β + k + 1)

∫ 1

–1
q(x)

dk

dxk (1 – x)k+α(1 + x)k+β dx.

The next proposition is stated in [23].

Proposition 2.2 Let m, k be any nonnegative integers. Then the following hold.
(a) ∫ ∞

–∞
xme–x2

dx =

⎧⎨
⎩

0, if m ≡ 1 (mod 2),
m!

√
π

( m
2 )!2m , if m ≡ 0 (mod 2).

(b) ∫ 1

–1
xm(

1 – x2)k dx =

⎧⎨
⎩

0, if m ≡ 1 (mod 2),
22k+2k!m!(k+ m

2 +1)!
( m

2 )!(2k+m+2)! , if m ≡ 0 (mod 2).

(c) ∫ 1

–1
xm(

1 – x2)k+λ– 1
2 dx =

⎧⎨
⎩

0, if m ≡ 1 (mod 2),
Γ (k+λ+ 1

2 )Γ ( m
2 + 1

2 )
Γ (k+λ+ m

2 +1) , if m ≡ 0 (mod 2).

(d) ∫ 1

–1
xm(1 – x)k+α(1 + x)k+β dx = 22k+α+β+1

m∑
j=0

(
m
j

)
(–1)m–j2j

× Γ (k + α + 1)Γ (k + β + j + 1)
Γ (2k + α + β + j + 2)

.

The following lemma was proved in [22] which follows by differentiating (1.10).

Lemma 2.3 Let m, r be any integers with m ≥ 2, r ≥ 1. Then we have the following identity:

m∑
l=0

∑
i1+···+ir+1=m–l

(
r + l

r

)
xlTi1 (x) · · ·Tir+1 (x)

–
m–2∑
l=0

∑
i1+···+ir+1=m–l–2

(
r + l

r

)
xlTi1 (x) · · ·Tir+1 (x)

=
1

2r–1r!
T (r)

m+r(x), (2.1)

where the first and second inner sums on the left-hand side are respectively over all nonneg-
ative integers i1, . . . , ir+1, with i1 + · · · + ir+1 = m – l and those with i1 + · · · + ir+1 = m – l – 2.

From (1.17), the rth derivative of Tn(x) is given by

T (r)
n (x) =

n
2

[ n–r
2 ]∑

l=0

(–1)l 1
n – l

(
n – l

l

)
2n–2l(n – 2l)rxn–2l–r . (2.2)
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Actually, we need the following particular case:

T (r+k)
m+r (x) =

m + r
2

[ m–k
2 ]∑

l=0

(–1)l 1
m + r – l

(
m + r – l

l

)
2m+r–2l(m + r – 2l)r+kxm–k–2l. (2.3)

With αm,r(x) as in (1.33), we let

αm,r(x) =
m∑

k=0

Ck,1Hk(x). (2.4)

Then, from (a) of Proposition 2.1, (2.1), (2.3), and integration by parts k times, we have

Ck,1 =
(–1)k

2kk!
√

π

∫ ∞

–∞
αm,r(x)

dk

dxk e–x2
dx

=
(–1)k

2kk!
√

π2r–1r!

∫ ∞

–∞
T (r)

m+r(x)
dk

dxk e–x2
dx

=
1

2kk!
√

π2r–1r!

∫ ∞

–∞
T (r+k)

m+r (x)e–x2
dx

=
1

2kk!
√

π2r–1r!
m + r

2

[ m–k
2 ]∑

l=0

(–1)l 1
m + r – l

(
m + r – l

l

)
2m+r–2l

× (m + r – 2l)r+k

∫ ∞

–∞
xm–k–2le–x2

dx, (2.5)

where we note from (a) of Proposition 2.2 that

∫ ∞

–∞
xm–k–2le–x2

dx =

⎧⎨
⎩

0, if k �≡ m (mod 2),
(m–k–2l)!

√
π

( m–k
2 –l)!2m–k–2l , if k ≡ m (mod 2).

(2.6)

Now, from (2.4)–(2.6) and after some simplifications, we get

αm,r(x) =
m + r

r!
∑

0≤k≤m,k≡m (mod 2)

1
k!

[ m–k
2 ]∑

l=0

(–1)l(m + r – l – 1)!
l!( m–k

2 – l)!
Hk(x)

=
(m + r)!

r!

[ m
2 ]∑

j=0

1
j!(m – 2j)!

j∑
l=0

(–1)l〈–j〉l

l!〈1 – m – r〉l
Hm–2j(x)

=
(m + r)!

r!

[ m
2 ]∑

j=0

1F1(–j; 1 – m – r; –1)
j!(m – 2j)!

Hm–2j(x). (2.7)

This shows (1.35) of Theorem 1.1.
Next, let us put

αm,r(x) =
m∑

k=0

Ck,2Lα
k (x). (2.8)
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Then, from (b) of Proposition 2.1, (2.1), (2.3), and integration by parts k times, we have

Ck,2 =
1

Γ (α + k + 1)2r–1r!

∫ ∞

0
T (r)

m+r(x)
dk

dxk

(
e–xxk+α

)
dx

=
(–1)k

Γ (α + k + 1)2r–1r!
m + r

2

[ m–k
2 ]∑

l=0

(–1)l 1
m + r – l

(
m + r – l

l

)
2m+r–2l

× (m + r – 2l)r+kΓ (m + α + 1 – 2l). (2.9)

By (2.8) and (2.9) and after simplifications, we have

αm,r(x) =
2m(m + r)

r!

m∑
k=0

(–1)k

Γ (α + k + 1)

×
[ m–k

2 ]∑
l=0

(– 1
4 )l(m + r – 1 – l)!Γ (m + α + 1 – 2l)

l!(m – k – 2l)!
Lα

k (x). (2.10)

This completes the proof for (1.36) of Theorem 1.1.
Lastly, we set

αm,r(x) =
m∑

k=0

Ck,3Pk(x). (2.11)

Then, by (c) of Proposition 2.1, (2.1), (2.3), and integration by parts k times, we get

Ck,3 =
(–1)k(2k + 1)
2k+1k!2r–1r!

m + r
2

[ m–k
2 ]∑

l=0

(–1)l 1
m + r – l

(
m + r – l

l

)

× 2m+r–2l(m + r – 2l)r+k

∫ 1

–1
xm–k–2l(x2 – 1

)k dx. (2.12)

Here, from (b) of Proposition 2.2, we note that

∫ 1

–1
xm–k–2l(1 – x2)k dx

=

⎧⎨
⎩

0, if k �≡ m (mod 2),
22k+2k!(m–k–2l)!( m+k

2 –l+1)!
( m–k

2 –l)!(m+k–2l+2)!
, if k ≡ m (mod 2).

(2.13)

From (2.11)–(2.13), and after some simplifications, we obtain

αm,r(x) =
2m(m + r)

r!
∑

0≤k≤m,k≡m (mod 2)

(2k + 1)2k+1

× (– 1
4 )l(m + r – 1 – l)!( m+k

2 – l + 1)!
l!( m–k

2 – l)!(m + k – 2l + 2)!

=
22m+1(m + r)

r!

[ m
2 ]∑

j=0

2–2j(2m – 4j + 1)
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×
j∑

l=0

(– 1
4 )l(m + r – 1 – l)!(m – j – l + 1)!

l!(j – l)!(2m – 2j – 2l + 2)!
Pm–2j(x)

=
(m + r)!

r!

[ m
2 ]∑

j=0

(2m – 4j + 1)
j!(m – j + 1

2 )m–j

×
j∑

l=0

〈–j〉l〈j – m – 1
2 〉l

l!〈1 – m – r〉l
Pm–2j(x)

=
(m + r)!

r!

[ m
2 ]∑

j=0

(2m – 4j + 1)
j!(m – j + 1

2 )m–j

×2 F1

(
–j, j – m –

1
2

; 1 – m – r; 1
)

Pm–2j(x). (2.14)

This finishes up the proof for (1.37) of Theorem 1.1.

3 Proof of Theorem 1.2
Here we will show (1.43) and (1.44) for Theorem 1.2, leaving (1.40)–(1.42) as exercises to
the reader. The following lemma can be derived by differentiating (1.9), as was shown in
[16].

Lemma 3.1 Let m, r be any integers with m ≥ 2, r ≥ 1. Then we have the following identi-
ties:

m∑
l=0

∑
i1+···+ir+1=m–l

(
r + l

r

)(
x
2

)l

Li1 (x) · · ·Lir+1 (x)

+
m–2∑
l=0

∑
i1+···+ir+1=m–l–2

(
r + l

r

)(
x
2

)l

Li1 (x) · · ·Lir+1 (x)

=
2r+1

r!
L(r)

m+r(x), (3.1)

where the first and second inner sums on the left-hand side are respectively over all nonneg-
ative integers i1, . . . , ir+1 with i1 + · · · + ir+1 = m – l and those with i1 + · · · + ir+1 = m – l – 2.

From (1.16), the rth derivative of Ln(x) is given by

L(r)
n (x) = n

[ n–r
2 ]∑

l=0

1
n – l

(
n – l

l

)
(n – 2l)rxn–2l–r . (3.2)

Especially, we have

L(r+k)
m+r (x) = (m + r)

[ m–k
2 ]∑

l=0

1
m + r – l

(
m + r – l

l

)
(m + r – 2l)r+kxm–k–2l. (3.3)
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With βm,r(x) as in (1.34), we let

βm,r(x) =
m∑

k=0

Ck,4C(λ)
k (x). (3.4)

Then, by (d) of Proposition 2.1, (3.1), (3.3), and integration by parts k times, we have

Ck,4 =
(k + λ)Γ (λ)2r+1

(–2)k√πΓ (k + λ + 1
2 )r!

∫ 1

–1
L(r)

m+r(x)
dk

dxk

(
1 – x2)k+λ– 1

2 dx

=
(k + λ)Γ (λ)2r+1

2k√πΓ (k + λ + 1
2 )r!

∫ 1

–1
L(r+k)

m+r (x)
dk

dxk

(
1 – x2)k+λ– 1

2 dx

=
(k + λ)Γ (λ)2r+1

2k√πΓ (k + λ + 1
2 )r!

(m + r)
[ m–k

2 ]∑
l=0

1
m + r – l

(
m + r – l

l

)

× (m + r – 2l)r+k

∫ 1

–1
xm–k–2l(1 – x2)k+λ– 1

2 dx. (3.5)

From (c) of Proposition 2.2, we note that

∫ 1

–1
xm–k–2l(1 – x2)k+λ– 1

2 dx =

⎧⎨
⎩

0, if k �≡ m (mod 2),
Γ (k+λ+ 1

2 )Γ ( m–k
2 –l+ 1

2 )
Γ (k+λ+ m–k

2 –l+1)
, if k ≡ m (mod 2).

(3.6)

Combining (3.4)–(3.6), and after some simplifications, we obtain

βm,r(x) =
Γ (λ)2r+1(m + r)√

πr!

∑
0≤k≤m,k≡m (mod 2)

(k + λ)
2k

×
[ m–k

2 ]∑
l=0

(m + r – 1 – l)!Γ ( m–k
2 – l + 1

2 )
l!(m – k – 2l)!Γ (k + λ + m–k

2 – l + 1)
C(λ)

k (x)

= 2r+1–mΓ (λ)
(m + r)

r!

[ m
2 ]∑

j=0

(m – 2j + λ)
Γ (m + λ – j + 1)

×
j∑

l=0

4l(m + r – 1 – l)!(m + λ – l)l

l!(j – l)!

= 2r+1–mΓ (λ)
(m + r)!

r!

[ m
2 ]∑

j=0

(m – 2j + λ)
j!Γ (m + λ – j + 1)

×
j∑

l=0

4l(j)l(m + λ – j)l

l!(m + r – 1)l
C(λ)

m–2j(x)

= 2r+1–mΓ (λ)
(m + r)!

r!

[ m
2 ]∑

j=0

(m – 2j + λ)
j!Γ (m + λ – j + 1)

×
j∑

l=0

(–4)l〈–j〉l〈j – m – λ〉l

l!〈1 – m – r〉l
C(λ)

m–2j(x)
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= 2r+1–mΓ (λ)
(m + r)!

r!

[ m
2 ]∑

j=0

(m – 2j + λ)
j!Γ (m + λ – j + 1)

×2 F1(–j, j – m – λ; 1 – m – r; –4)C(λ)
m–2j(x). (3.7)

This shows (1.43) of Theorem 1.2. Next, we put

βm,r(x) =
m∑

k=0

Ck,5P(α,β)
k (x). (3.8)

Then, from (e) of Proposition 2.1, (3.1), (3.3), and integration by parts k times, we get

Ck,5 =
(2k + α + β + 1)Γ (k + α + β + 1)2r+1(m + r)

2α+β+k+1Γ (α + k + 1)Γ (β + k + 1)r!

×
[ m–k

2 ]∑
l=0

1
m + r – l

(
m + r – l

l

)
(m + r – 2l)r+k

×
∫ 1

–1
xm–k–2l(1 – x)k+α(1 + x)k+β dx, (3.9)

where we note from (d) of Proposition 2.2 that

∫ 1

–1
xm–k–2l(1 – x)k+α(1 + x)k+β dx

= 22k+α+β+1
m–k–2l∑

j=0

(
m – k – 2l

j

)
(–1)m–k–j2j

× Γ (k + α + 1)Γ (k + β + j + 1)
Γ (2k + α + β + j + 2)

. (3.10)

Combining (3.8)–(3.10), and after some simplifications, we have

βm,r(x) = –
(–1)m2r+1(m + r)

r!

m∑
k=0

(–2)k(2k + α + β + 1)Γ (k + α + β + 1)
Γ (β + k + 1)

×
[ m–k

2 ]∑
l=0

(m + r – 1 – l)!
l!

m–k–2l∑
j=0

(–2)jΓ (k + β + j + 1)
j!(m – k – 2l – j)!Γ (2k + α + β + j + 2)

, (3.11)

where the inner most sum is

m–k–2l∑
j=0

(–2)jΓ (k + β + j + 1)
j!(m – k – 2l – j)!Γ (2k + α + β + j + 2)

=
Γ (k + β + 1)

Γ (2k + α + β + 2)(m – k – 2l)!

× 2F1(k + 2l – m, k + β + 1; 2k + α + β + 2; 2). (3.12)
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Finally, from (3.11) and (3.12), we obtain

βm,r(x) =
(–1)m2r+1(m + r)

r!

m∑
k=0

(–2)kΓ (k + α + β + 1)
Γ (2k + α + β + 1)

×
[ m–k

2 ]∑
l=0

(m + r – 1 – l)!
l!(m – k – 2l)!

× 2F1(k + 2l – m, k + β + 1; 2k + α + β + 2; 2)P(α,β)
k (x). (3.13)

Thus we have shown the desired result (1.44) of Theorem 1.2.

4 Conclusion
As is well known, the Chebyshev polynomials of the first kind Tn(x) and the Lucas poly-
nomials Ln(x) are related by

Ln(x) = 2i–nTn

(
ix
2

)
. (4.1)

From (1.33), (1.34), and (4.1), we have the following relation:

i–m2r+1αm,r

(
ix
2

)
= βm,r(x). (4.2)

We now have our last result from Theorems 1.1 and 1.2, and (4.2).

Theorem 4.1 Let m, r be any integers with m ≥ 2, r ≥ 1. Then the following identities hold:

i–m2r+1(m + r)!
r!

[ m
2 ]∑

j=0

1F1(–j; 1 – m – r; –1)
j!(m – 2j)!

Hm–2j

(
ix
2

)

=
i–m2m+r+1(m + r)

r!

m∑
k=0

(–1)k

Γ (α + k + 1)

×
[ m–k

2 ]∑
l=0

(– 1
4 )l(m + r – 1 – l)!Γ (m + α + 1 – 2l)

l!(m – k – 2l)!
Lα

k

(
ix
2

)

=
i–m2r+1(m + r)!

r!

[ m
2 ]∑

j=0

(2m – 4j + 1)
j!(m – j + 1

2 )m–j

× 2F1

(
–j; j – m –

1
2

; 1 – m – r; 1
)

Pm–2j

(
ix
2

)

=
i–m2r+1Γ (λ)(m + r)!

r!

[ m–k
2 ]∑

j=0

(m + λ – 2j)
j!Γ (m + λ + 1 – j)

× 2F1(–j; j – m – λ; 1 – m – r; 1)C(λ)
m–2j

(
ix
2

)

=
(–i)–m2m+r+1(m + r)

r!

m∑
k=0

(–2)kΓ (k + α + β + 1)
Γ (2k + α + β + 1)

[ m–k
2 ]∑

l=0

(– 1
4 )l(m + r – 1 – l)!
l!(m – k – 2l)!
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× 2F1(k + 2l – m, k + β + 1; 2k + α + β + 2; 2)P(α,β)
k

(
ix
2

)

=
2r+1–m(m + r)!

r!

[ m
2 ]∑

j=0

1F1(–j; 1 – m – r; 4)
j!(m – 2j)!

Hm–2j(x)

=
2r+1(m + r)

r!

m∑
k=0

(–1)k

Γ (α + β + 1)

[ m–k
2 ]∑

l=0

(m + r – 1 – l)!Γ (m + α + 1 – 2l)
l!(m – k – 2l)!

Lα
k (x)

=
2r–m(m + r)!

r!

[ m
2 ]∑

j=0

(2m – 4j + 1)
j!(m – j + 1

2 )m–j+1
2F1

(
–j; j – m –

1
2

; 1 – m – r; –4
)

Pm–2j(x)

= 2r+1–mΓ (λ)
(m + r)!

r!

[ m
2 ]∑

j=0

(m + λ – 2j)
j!Γ (m + λ + 1 – j)

× 2F1(–j; j – m – λ; 1 – m – r; –4)C(λ)
m–2j(x)

=
(–1)m2r+1(m + r)

r!

m∑
k=0

(–2)kΓ (k + α + β + 1)
Γ (2k + α + β + 1)

[ m–k
2 ]∑

l=0

(m + r – 1 – l)!
l!(m – k – 2l)!

× 2F1(k + 2l – m, k + β + 1; 2k + α + β + 2; 2)P(α,β)
k (x). (4.3)
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