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Abstract
This paper is dedicated to Opial-type inequalities for arbitrary kernels using convex
functions. These inequalities are further applied to a power function. Applications of
the presented results are studied in fractional calculus via fractional integral operators
by associating special kernels.
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1 Introduction and preliminary results
Opial obtained the following integral inequality in 1960 [25].

Theorem 1.1 Let g ∈ C1[0, h] be such that g(0) = g(h) = 0 and g(t) > 0 for t ∈ (0, h). Then

∫ h

0

∣∣g(t)g ′(t)
∣∣dt ≤ h

4

∫ h

0

(
g ′(t)

)2 dt.

Here h
4 is a best possible constant.

This inequality has been studied by several mathematicians, and several related inequal-
ities have been investigated. For example its generalizations were published by Beesack in
1962 and 1971 [3, 5], Hua in 1965 [17], Redheffer in 1966 [30], Calvert in 1967 [8], Go-
dunova and Levin in 1967 [13], Maroni in 1967 [22], Boyd and Wong in 1967 [7], Beesack
and Das in 1968 [4], Boyd in 1969 [6], Rozanova in 1972 [31], Vrǎnceanu in 1973 [35],
Shum in 1974 and 1975 [32, 33], Hou in 1979 [16], G. Milovanovic and I. Milovanovic in
1980 [23], Lee in 1980 [20], He and Wang in 1981 [14], Yang in 1966 and 1983 [37, 38],
Hong, Yang, and Du in 1982 [15], Lin and Yang in 1985 [21], Qi in 1985 [29], Fagbohun
and Imoru in 1985 and 1986 [9, 10], Pachpatte in 1986 and 1993 [26, 27], Mitrinović and
Pečarić in 1988 [24], Hwang and Yang in 1990 [18], and Sinnamon in 1991 [34].

The aim of this paper is to establish some new Opial-type inequalities for convex func-
tions. Therefore, in the subsequent convex function, its properties, characterization, and
Opial-type inequalities for convex functions have been summarized as motivation behind
the recent work.
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Definition 1 Let I be an interval in R. Then f : I →R is said to be convex if, for all x, y ∈ I
and all α ∈ [0, 1],

f
(
αx + (1 – α)y

) ≤ αf (x) + (1 – α)f (y) (1)

holds.

A characterization of convex function is stated in the following lemma.

Lemma 1.2 ([36]) Let f be a differentiable function on (a, b). Then f is convex if and only
if f ′ is an increasing function.

The convexity of composition of two functions can be obtained under the conditions
stated in the following lemma.

Lemma 1.3 ([36]) Let f : I → R and g : J → R, where range(f ) ⊆ J . If f and g are convex
and g is increasing, then the composite function g ◦ f is convex on I .

In [24] generalized Opial-type inequalities for convex functions have been proved by
Mitrinović and Pečarić. Let U1(v, k) denote the class of functions u : [a, b] → R having
representation

u(x) =
∫ x

a
k(x, t)v(t) dt,

where v is a continuous function and k is an arbitrary nonnegative kernel such that k(x, t) =
0 for t > x, and v(x) > 0 implies u(x) > 0 for every x ∈ [a, b].

Let U2(v, k) denote the class of all the functions u : [a, b] →R having representation

u(x) =
∫ b

x
k(x, t)v(t) dt,

where v is a continuous function and k is an arbitrary nonnegative kernel such that k(x, t) =
0 for t < x, and v(x) > 0 implies u(x) > 0 for every x ∈ [a, b].

Theorem 1.4 ([28]) Let φ : [0,∞) → R be a differentiable function such that, for q > 1, the
function φ(x1/q) is convex and φ(0) = 0. Let u ∈ U1(v, k) where (

∫ x
a (k(x, t))p dt)1/p ≤ K and

1
p + 1

q = 1. Then

∫ b

a

∣∣u(x)
∣∣1–q

φ′(∣∣u(x)
∣∣)∣∣v(x)

∣∣q dx ≤ q
Kq φ

(
K

(∫ b

a

∣∣v(x)
∣∣q dx

)1/q)
.

If the function φ(x1/q) is concave, then the reverse inequality holds.

A similar result was obtained for class U2(v, k).

Theorem 1.5 ([28]) Let φ : [0,∞) → R be a differentiable function such that, for q > 1, the
function φ(x1/q) is convex and φ(0) = 0. Let u ∈ U2(v, k) where (

∫ b
x (k(x, t))p dt)1/p ≤ K and
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1
p + 1

q = 1. Then

∫ b

a

∣∣u(x)
∣∣1–q

φ′(∣∣u(x)
∣∣)∣∣v(x)

∣∣q dx ≤ q
Kq φ

(
K

(∫ b

a

∣∣v(x)
∣∣q dx

)1/q)
.

If the function φ(x1/q) is concave, then the reverse inequality holds.

In [1] Andrić et al. further extended these results stating the following.

Theorem 1.6 ([1]) Let φ : [0,∞) → R be a differentiable function such that, for q > 1, the
function φ(x1/q) is convex and φ(0) = 0. Let u ∈ U1(v, k) where (

∫ x
a (k(x, t))p dt)1/p ≤ K and

1
p + 1

q = 1. Then

∫ b

a

∣∣u(x)
∣∣1–q

φ′(∣∣u(x)
∣∣)∣∣v(x)

∣∣q dx ≤ q
Kq φ

(
K

(∫ b

a

∣∣v(x)
∣∣q dx

)1/q)

≤ q
Kq(b – a)

∫ b

a
φ
(
(b – a)1/qK

∣∣v(x)
∣∣)dx.

If the function φ(x1/q) is concave, then the reverse inequality holds.

A similar result for class U2(v, k) is stated in the following theorem.

Theorem 1.7 ([1]) Let φ : [0,∞) → R be a differentiable function such that, for q > 1, the
function φ(x1/q) is convex and φ(0) = 0. Let u ∈ U2(v, k) where (

∫ b
x (k(x, t))p dt)1/p ≤ K and

1
p + 1

q = 1. Then

∫ b

a

∣∣u(x)
∣∣1–q

φ′(∣∣u(x)
∣∣)∣∣v(x)

∣∣q dx ≤ q
Kq φ

(
K

(∫ b

a

∣∣v(x)
∣∣q dx

)1/q)

≤ q
Kq(b – a)

∫ b

a
φ
(
(b – a)1/qK

∣∣v(x)
∣∣)dx.

If the function φ(x1/q) is concave, then the reverse inequality holds.

In [11, 12] Farid and Pečarić studied these inequalities in a fractional point of view. They
considered several fractional integral operators via particular kernels to obtain Riemann–
Liouville, Caputo, and Canavati fractional Opial-type inequalities. Extensions of these
Opial-type fractional inequalities have been proved in [1] by Andrić et al., Basci and Du-
mitru in [2] considered some new aspects of these inequalities.

Next we present the Riemann–Liouville fractional integral, Caputo, and Canavati frac-
tional derivatives [19].

Definition 2 Let f ∈ L1[a, b]. Then the left-sided and right-sided Riemann–Liouville frac-
tional integrals of order α > 0 with a ≥ 0 are defined as follows:

Iα
a+f (x) =

1
Γ (α)

∫ x

a
(x – t)α–1f (t) dt, x > a,
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and

Iα
b–f (x) =

1
Γ (α)

∫ b

x
(t – x)α–1f (t) dt, x < b,

where Γ (·) is the gamma function.

Definition 3 Let α > 0 and α /∈ {1, 2, 3, . . .}, n = [α] + 1, f ∈ ACn[a, b]. Then the left-sided
and right-sided Caputo fractional derivatives of order α are defined as follows:

(CDα
a+f

)
(x) =

1
Γ (n – α)

∫ x

a

f (n)(t)
(x – t)α–n+1 dt, x > a, (2)

and

(CDα
b–f

)
(x) =

(–1)n

Γ (n – α)

∫ b

x

f (n)(t)
(t – x)α–n+1 dt, x < b. (3)

In [1] composition identities for the Caputo fractional derivatives are given, they are
stated in the following lemmas.

Lemma 1.8 Let β > α ≥ 0, m = [β] + 1, and n = [α] + 1 for α,β /∈ N0; n = [α] and m =
[β] for α,β ∈ N0. Let f ∈ ACm[a, b] be such that f (i)(a) = 0 for i = n, n + 1, . . . , m – 1. Let
CDβ

a+f ,C Dα
a+f ∈ L1[a, b]. Then

CDα
a+f (x) =

1
Γ (β – α)

∫ x

a
(x – t)β–α–1CDβ

a+f (t) dt, x ∈ [a, b].

Lemma 1.9 Let β > α ≥ 0, m = [β] + 1, and n = [α] + 1 for α,β /∈ N0; n = [α] and m =
[β] for α,β ∈ N0. Let f ∈ ACm[a, b] be such that f (i)(b) = 0 for i = n, n + 1, . . . , m – 1. Let
CDα

b–f ,C Dβ

b–f ∈ L1[a, b]. Then

CDα
b–f (x) =

1
Γ (β – α)

∫ b

x
(t – x)β–α–1CDβ

b–f (t) dt, x ∈ [a, b].

Next consider a subspace Cα
a+[a, b] defined by

Cα
a+[a, b] =

{
f ∈ Cn–1[a, b] : In–α

a+ f (n–1) ∈ C1[a, b]
}

.

Definition 4 Let f ∈ Cα
a+[a, b]. Then the left-sided Canavati fractional derivative is de-

fined by

C̃Dα
a+f (x) =

1
Γ (n – α)

d
dx

∫ x

a
(x – t)n–α–1f (n–1)(t) dt =

d
dx

In–α
a+ f (n–1)(x).

Composition identity for the left-sided Canavati fractional derivative is given in the fol-
lowing lemma.
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Lemma 1.10 ([1]) Let β > α > 0, m = [β] + 1, n = [α] + 1. Let f ∈ Cβ
a+[a, b] be such that

f i(a) = 0 for i = n – 1, n, . . . , m – 2. Then f ∈ Cα
a+[a, b] and

C̃Dα
a+f (x) =

1
Γ (β – α)

∫ x

a
(x – t)β–α–1C̃Dβ

a+f (t) dt, x ∈ [a, b].

Definition 5 Let f ∈ L1[a, b]. Then the left-sided Riemann–Liouville fractional derivative
of order α is defined by

Dα
a+f (x) =

1
Γ (n – α)

dn

dxn

∫ x

a
(x – t)n–α–1f (t) dt =

dn

dxn In–α
a+ f (x). (4)

The following lemma summarizes conditions in the composition identity for the left-
sided Riemann–Liouville fractional derivative.

Lemma 1.11 ([1]) Let β > α ≥ 0, m = [β] + 1, n = [α] + 1. The composition identity

Dα
a+f (x) =

1
Γ (β – α)

∫ x

a
(x – t)β–α–1Dβ

a+f (t) dt, x ∈ [a, b] (5)

is valid if one of the following conditions holds:
(i) f ∈ Iβ

a+(L1[a, b]) = {f : f = Iβ
a+ϕ,ϕ ∈ L1[a, b]}.

(ii) Im–β
a+ f ∈ ACm[a, b] and Dβ–k

a+ f (a) = 0 for k = 1, . . . , m.
(iii) Dβ–1

a+ f ∈ AC[a, b], Dβ–k
a+ f ∈ C[a, b] and Dβ–k

a+ f (a) = 0 for k = 1, . . . , m.
(iv) f ∈ ACm[a, b], Dβ

a+f , Dα
a+f ∈ L1[a, b], β – α /∈N, Dβ–k

a+ f (a) = 0 for k = 1, . . . , m and
Dα–k

a+ f (a) = 0 for k = 1, . . . , n.
(v) f ∈ ACm[a, b], Dβ

a+f , Dα
a+f ∈ L1[a, b], β – α = l ∈N, Dβ–k

a+ f (a) = 0 for k = 1, . . . , l.
(vi) f ∈ ACm[a, b], Dβ

a+f , Dα
a+f ∈ L1[a, b] and f k(a) = 0 for k = 0, . . . , m – 2.

(vii) f ∈ ACm[a, b], Dβ
a+f , Dα

a+f ∈ L1[a, b], β /∈N and Dβ–1
a+ f is bounded in a

neighborhood of a.

In the following paragraph, the spaces of functions which have been used in definitions
and results are summarized.

The space of all continuous functions whose nth time continuous derivative exists on
[a, b] is denoted by Cn[a, b], the space of all absolutely continuous functions on [a, b] is
denoted by AC[a, b]. While ACn[a, b] denotes the space of all the functions f ∈ Cn–1[a, b]
with f (n–1) ∈ AC[a, b] and Lp[a, b], 1 ≤ p < ∞, denotes the space of all Lebesgue measurable
functions f for which |f |p is Lebesgue integrable on [a, b].

The paper is organized as follows.
In Sect. 2, new Opial-type inequalities for convex functions are established by applying

an arbitrary kernel. Moreover, these inequalities are studied for a power function. Fur-
thermore, in Sect. 3 results of Sect. 2 are analyzed for particular kernels, and fractional
integral inequalities of Opial-type are produced by using the definitions and composition
identities of Riemann–Liouville fractional integral, Caputo fractional derivative, Canavati
fractional derivative. The results for fractional inequalities are obtained by using different
forms of the weighted functions and kernels.
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2 Opial-type inequalities for convex functions
In this section some new generalized Opial-type inequalities for convex functions are ob-
tained.

Theorem 2.1 Let φ, g : [0,∞) →R be differentiable convex and increasing functions with
φ(g(0)) = 0. Also, let u ∈ U1(g ◦ v, k) and |k(x, t)| ≤ K , where K is a constant. Then the
following inequalities hold:

∫ b

a
φ′(g

(∣∣u(x)
∣∣))g ′(∣∣u(x)

∣∣)∣∣g ◦ v(x)
∣∣dx ≤ 1

K
φ

(
g
(

K
∫ b

a

∣∣g ◦ v(t)
∣∣dt

))

≤ 1
K(b – a)

∫ b

a
φ
(
g
(
K(b – a)

∣∣g ◦ v(t)
∣∣))dt. (6)

Proof As u ∈ U1(g ◦ v, k), therefore, it has the representation u(x) =
∫ x

a k(x, t)g(v(t)) dt. By
using |k(x, t)| ≤ K , we find that

∣∣u(x)
∣∣ ≤ K

∫ x

a

∣∣g ◦ v(t)
∣∣dt. (7)

By applying the function g on both sides and using its monotonicity, we get

g
(∣∣u(x)

∣∣) ≤ g
(

K
∫ x

a

∣∣g ◦ v(t)
∣∣dt

)
.

If we set p(x) :=
∫ x

a |g ◦ v(t)|dt, then p′(x) = |g ◦ v(x)|, therefore the last inequality gives
g(|u(x)|) ≤ g(K(p(x))). As φ is a differentiable convex function, so by Lemma 1.2, φ′ is
increasing, therefore we get

φ′(g
(∣∣u(x)

∣∣)) ≤ φ′(g
(
Kp(x)

))
. (8)

As g is a differentiable convex function, by Lemma 1.2, g ′ is increasing. Using (7), we get

g ′(∣∣u(x)
∣∣) ≤ g ′(Kp(x)

)
. (9)

From inequalities (8) and (9), the following inequality can be obtained:

φ′(g
(∣∣u(x)

∣∣))g ′(∣∣u(x)
∣∣)∣∣g ◦ v(x)

∣∣ ≤ φ′(g
(
K

(
p(x)

)))
g ′(Kp(x)

)
p′(x). (10)

Integrating we have

∫ b

a
φ′(g

(∣∣u(x)
∣∣))g ′(∣∣u(x)

∣∣)∣∣gov(x)
∣∣dx ≤

∫ b

a
φ′(g

(
K

(
p(x)

)))
g ′(Kp(x)

)
p′(x) dx. (11)

The right-hand side is computed as follows:

∫ b

a
φ′(g

(
Kp(x)

))
g ′(Kp(x)

)
p′(x) dx

=
1
K

∫ b

a
φ′(g

(
Kp(x)

))
d
(
g
(
Kp(x)

))
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=
1
K

φ
(
g
(
Kp(b)

))

=
1
K

φ

(
g
(

K
∫ b

a

∣∣g ◦ v(t)
∣∣dt

))
.

Therefore (11) takes the form as follows:

∫ b

a
φ′(g

(∣∣u(x)
∣∣))g ′(∣∣u(x)

∣∣)∣∣gov(x)
∣∣dx ≤ 1

K
φ

(
g
(

K
∫ b

a

∣∣g ◦ v(t)
∣∣dt

))
. (12)

As φ and g are convex functions and φ is an increasing function, so by Lemma 1.3, φ ◦ g
is convex and the following Jensen’s inequality holds:

φ

(
g
(

K
∫ b

a

∣∣g ◦ v(t)
∣∣dt

))
≤ 1

b – a

∫ b

a
φ
(
g
(
K(b – a)

∣∣g ◦ v(t)
∣∣))dt. (13)

Inequalities (12) and (13) provide the required result. �

For power function g(x) = xq, q ≥ 1, the following Opial-type inequality holds.

Theorem 2.2 Let φ : [0,∞) → R be a differentiable convex and increasing function with
φ(0) = 0. Also let u ∈ U1(g ◦ v, k) and |k(x, t)| ≤ K , where K is a constant. Then, for q ≥ 1,
the following inequalities hold:

∫ b

a
φ′((∣∣u(x)

∣∣)q)(∣∣u(x)
∣∣)q–1∣∣(v(x)

)q∣∣dx

≤ 1
qK

φ

((
K

∫ b

a

∣∣v(t)
∣∣q dt

)q)

≤ 1
qK(b – a)

∫ b

a
φ
((

K(b – a)
∣∣v(t)

∣∣q)q)dt. (14)

Proof Let g(x) = xq. Then g is convex and increasing for q ≥ 1. Therefore applying Theo-
rem 2.1 for the function g , inequalities in (6) provide inequalities in (14). �

Remark 2.1 Inequalities of Opial-type which are proved in Theorems 2.1 and 2.2 hold too
for the class of functions denoted by U2(g ◦ v, k). Furthermore, these results for fractional
calculus are interesting to see in Theorems 3.2 and 3.4 for right-sided Riemann–Liouville
fractional integrals. For Caputo and Canavati derivatives, these results have been com-
prised in Theorems 3.6 and 3.8.

3 Fractional Opial-type inequalities
Here we utilize Riemann–Liouville fractional integrals, Caputo fractional derivatives,
composition identities for Caputo fractional derivatives, and composition identities for
Canavati fractional derivatives to obtain corresponding fractional Opial-type integral in-
equalities.
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Theorem 3.1 Let φ, g : [0,∞) →R be differentiable convex and increasing functions with
φ(g(0)) = 0. Also let v ∈ L[a, b]. Then, for α ≥ 1, the following fractional inequalities hold:

∫ b

a
φ′(g

(∣∣Iα
a+v(x)

∣∣))g ′(∣∣Iα
a+v(x)

∣∣)∣∣g ◦ v(x)
∣∣dx

≤ Γ (α)
(b – a)α–1 φ

(
g
(

(b – a)α–1

Γ (α)

∫ b

a

∣∣g ◦ v(t)
∣∣dt

))

≤ Γ (α)
(b – a)α

∫ b

a
φ

(
g
(

(b – a)α

Γ (α)
∣∣g ◦ v(t)

∣∣
))

dt. (15)

Proof Let us define for x ∈ [a, b] the kernel k(x, t) as follows:

k(x, t) =

⎧⎨
⎩

1
Γ (α) (x – t)α–1, a ≤ t ≤ x,

0, x < t ≤ b.

Also, if u is defined by

u(x) = Iα
a+v(x) =

1
Γ (α)

∫ x

a
(x – t)α–1v(t) dt, (16)

then we have |k(x, t)| ≤ (x–a)α–1

Γ (α) . Further (x – a)α ,α ≥ 0, is increasing on [a, b], therefore we

have |k(x, t)| ≤ (b–a)α–1

Γ (α) for α ≥ 1. Applying Theorem 2.1 for this particular kernel, we get
inequalities in (15). �

A similar result can be obtained for the class of functions denoted by U2(g ◦ v, k) for the
right-sided Riemann–Liouville fractional integral which is stated as follows.

Theorem 3.2 Let φ, g : [0,∞) →R be differentiable convex and increasing functions with
φ(g(0)) = 0. Also let v ∈ L[a, b]. Then, for α ≥ 1, the following fractional inequalities hold:

∫ b

a
φ′(g

(∣∣Iα
b–v(x)

∣∣))g ′(∣∣Iα
b–v(x)

∣∣)∣∣g ◦ v(x)
∣∣dx

≤ Γ (α)
(b – a)α–1 φ

(
g
(

(b – a)α–1

Γ (α)

∫ b

a

∣∣g ◦ v(t)
∣∣dt

))

≤ Γ (α)
(b – a)α

∫ b

a
φ

(
g
(

(b – a)α

Γ (α)
∣∣g ◦ v(t)

∣∣
))

dt. (17)

Proof The proof is similar to the proof of Theorem 3.1. �

Theorem 3.3 Let φ : [0,∞) → R be a differentiable convex and increasing function with
φ(0) = 0. Also let v ∈ L[a, b]. Then, for α, q ≥ 1, the following fractional inequalities hold:

∫ b

a
φ′(∣∣Iα

a+v(x)
∣∣q)∣∣Iα

a+v(x)
∣∣q–1∣∣v(x)

∣∣q dx

≤ Γ (α)
q(b – a)α–1 φ

((
(b – a)α–1

Γ (α)

∫ b

a

∣∣v(t)
∣∣q dt

)q)

≤ Γ (α)
q(b – a)α

∫ b

a
φ

((
(b – a)α

Γ (α)
∣∣v(t)

∣∣q
)q)

dt. (18)
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Proof Let g(x) = xq. Then g is convex and increasing for q ≥ 1. Therefore, using this power
function g in inequalities (15), we get inequalities in (18). �

A similar result for right-sided Riemann–Liouville fractional integrals holds.

Theorem 3.4 Let φ : [0,∞) → R be a differentiable convex and increasing function with
φ(0) = 0. Also let v ∈ L[a, b]. Then, for α, q ≥ 1, the following inequalities hold:

∫ b

a
φ′(∣∣Iα

b–v(x)
∣∣q)∣∣Iα

b–v(x)
∣∣q–1∣∣v(x)

∣∣q dx

≤ Γ (α)
q(b – a)α–1 φ

((
(b – a)α–1

Γ (α)

∫ b

a

∣∣v(t)
∣∣q dt

)q)

≤ Γ (α)
q(b – a)α

∫ b

a
φ

((
(b – a)α

Γ (α)
∣∣v(t)

∣∣q
)q)

dt. (19)

Proof The proof is similar to the proof of Theorem 3.3. �

For composition identity of left-sided Caputo fractional derivative given in Lemma 1.8,
the following result holds.

Theorem 3.5 Let φ, g : [0,∞) →R be differentiable convex and increasing functions with
φ(g(0)) = 0. Also let m = [β] + 1 and n = [α] + 1 for α,β /∈N0; n = [α] and m = [β] for α,β ∈
N0 and v ∈ ACm[a, b] such that f (i)(a) = 0 for i = n, n + 1, . . . , m – 1. Let CDβ

a+v ∈ Lq[a, b] and
CDα

a+v ∈ L1[a, b]. Then, for α < β – 1, the following fractional inequalities hold:

∫ b

a
φ′(g

(∣∣CDα
a+v(x)

∣∣))g ′(∣∣CDα
a+v(x)

∣∣)∣∣g ◦ CDβ
a+v(x)

∣∣dx

≤ Γ (β – α)
(b – a)β–α–1 φ

(
g
(

(b – a)β–α–1

Γ (β – α)

∫ b

a

∣∣g ◦ CDβ
a+v(t)

∣∣dt
))

≤ Γ (β – α)
(b – a)β–α

∫ b

a
φ

(
g
(

(b – a)β–α

Γ (β – α)
∣∣g ◦ CDβ

a+v(t)
∣∣
))

dt. (20)

Proof Let us define the kernel k(x, t) for x ∈ [a, b] as follows:

k(x, t) =

⎧⎨
⎩

1
Γ (β–α) (x – t)β–α–1, a ≤ t ≤ x,

0, x ≤ t ≤ b.

Also let us define the function u by

u(x) = CDα
a+v(x) =

1
Γ (β – α)

∫ x

a
(x – t)β–α–1CDβ

a+v(t) dt, (21)

then we have |k(x, t)| ≤ (x–a)β–α–1

Γ (β–α) for α < β –1. Also, for α < β –1, (x–a)β–α is an increasing
function on [a, b], therefore

∣∣∣∣
∫ x

a
k(x, t) dt

∣∣∣∣ ≤ (b – a)β–α

Γ (β – α)
= K .

Hence, by applying Theorem 2.1, inequalities in (20) can be obtained. �
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A similar result can be obtained from composition identity for right-sided Caputo frac-
tional derivative given in Lemma 1.9, for the class of functions denoted by U2(g ◦ v, k).

Theorem 3.6 Let φ, g : [0,∞) →R be differentiable convex and increasing functions with
φ(g(0)) = 0. Also let m = [β] + 1 and n = [α] + 1 for α,β /∈N0; n = [α] and m = [β] for α,β ∈
N0 and v ∈ ACm[a, b] such that f (i)(b) = 0 for i = n, n + 1, . . . , m – 1. Let CDβ

b–v ∈ Lq[a, b] and
CDα

b–v ∈ L1[a, b]. Then, for α < β – 1, the following fractional inequalities hold:

∫ b

a
φ′(g

(∣∣CDα
b–v(x)

∣∣))g ′(∣∣CDα
b–v(x)

∣∣)∣∣g ◦ CDβ

b–v(x)
∣∣dx

≤ Γ (β – α)
(b – a)β–α–1 φ

(
g
(

(b – a)β–α–1

Γ (β – α)

∫ b

a

∣∣g ◦ CDβ

b–v(t)
∣∣dt

))

≤ Γ (β – α)
(b – a)β–α

∫ b

a
φ

(
g
(

(b – a)β–α

Γ (β – α)
∣∣g ◦ CDβ

b–v(t)
∣∣
))

dt. (22)

Proof The proof is similar to the proof of Theorem 3.5. �

Theorem 3.7 Let φ : [0,∞) → R be a differentiable convex and increasing function with
φ(0) = 0. Also let m = [β] + 1 and n = [α] + 1 for α,β /∈N0; n = [α] and m = [β] for α,β ∈N0

and v ∈ ACm[a, b] such that f (i)(a) = 0 for i = n, n + 1, . . . , m – 1. Let CDβ
a+v ∈ Lq[a, b] and

CDα
a+v ∈ L1[a, b]. Then, for α < β – 1 and q ≥ 1, the following fractional inequalities hold:

∫ b

a
φ′(∣∣CDα

a+v(x)
∣∣q)∣∣CDα

a+v(x)
∣∣q–1∣∣CDβ

a+v(x)
∣∣q dx

≤ Γ (β – α)
q(b – a)β–α–1 φ

((
(b – a)β–α–1

Γ (β – α)

∫ b

a

∣∣CDβ
a+v(t)

∣∣q dt
)q)

≤ Γ (β – α)
q(b – a)β–α

∫ b

a
φ

((
(b – a)β–α

Γ (β – α)
∣∣CDβ

a+v(t)
∣∣q

)q)
dt. (23)

Proof Let g(x) = xq. Then g is convex and increasing for q ≥ 1. Therefore, using this power
function g in inequalities (20), we get inequalities in (23). �

A similar result can be obtained for the class of functions denoted by U2(g ◦ v, k).

Theorem 3.8 Let φ : [0,∞) → R be a differentiable convex and increasing function with
φ(0) = 0. Also let m = [β] + 1 and n = [α] + 1 for α,β /∈N0; n = [α] and m = [β] for α,β ∈N0

and v ∈ ACm[a, b] such that f (i)(b) = 0 for i = n, n + 1, . . . , m – 1. Let CDβ

b–v ∈ Lq[a, b] and
CDα

b–v ∈ L1[a, b]. Then, for α < β – 1 and q ≥ 1, the following fractional inequalities hold:

∫ b

a
φ′(∣∣CDα

b–v(x)
∣∣q)∣∣CDα

b–v(x)
∣∣q–1∣∣CDβ

b–v(x)
∣∣q dx

≤ Γ (β – α)
q(b – a)β–α–1 φ

((
(b – a)β–α–1

Γ (β – α)

∫ b

a

∣∣CDβ

b–v(t)
∣∣q dt

)q)

≤ Γ (β – α)
q(b – a)β–α

∫ b

a
φ

((
(b – a)β–α

Γ (β – α)
∣∣CDβ

b–v(t)
∣∣q

)q)
dt. (24)
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Proof The proof is similar to the proof of Theorem 3.7. �

Next result includes the Canavati fractional derivatives using composition identity given
in Lemma 1.10.

Theorem 3.9 Let φ, g : [0,∞) →R be differentiable convex and increasing functions with
φ(g(0)) = 0. Also let α ≥ 0, m = [β] + 1 and n = [α] + 1. Let v ∈ Cβ

a+[a, b] such that f (i)(a) = 0
for i = n – 1, n, . . . , m – 2. Let C̃Dβ

a+v ∈ Lq[a, b]. Then, for α < β – 1, the following fractional
inequalities hold:

∫ b

a
φ′(g

(∣∣C̃Dα
a+v(x)

∣∣))g ′(∣∣C̃Dα
a+v(x)

∣∣)∣∣g ◦ C̃Dβ
a+v(x)

∣∣dx

≤ Γ (β – α)
(b – a)β–α–1 φ

(
g
(

(b – a)β–α–1

Γ (β – α)

∫ b

a

∣∣g ◦ C̃Dβ
a+v(t)

∣∣dt
))

≤ Γ (β – α)
q(b – a)β–α

∫ b

a
φ

(
g
(

(b – a)β–α

Γ (β – α)
∣∣g ◦ C̃Dβ

a+v(t)
∣∣
))

dt. (25)

Theorem 3.10 Let φ : [0,∞) →R be a differentiable convex and increasing function with
φ(0) = 0. Also let α ≥ 0, m = [β] + 1, and n = [α] + 1. Let v ∈ Cβ

a+[a, b] such that f (i)(a) = 0
for i = n – 1, n, . . . , m – 2. Let C̃Dβ

a+v ∈ Lq[a, b]. Then, for α < β – 1 and q ≥ 1, the following
fractional inequalities hold:

∫ b

a
φ′(∣∣C̃Dα

a+v(x)
∣∣q)∣∣C̃Dα

a+v(x)
∣∣q–1∣∣C̃Dβ

a+v(x)
∣∣q dx

≤ Γ (β – α)
q(b – a)β–α–1 φ

((
(b – a)β–α–1

Γ (β – α)

∫ b

a

∣∣C̃Dβ
a+v(t)

∣∣q dt
)q)

≤ Γ (β – α)
q(b – a)β–α

∫ b

a
φ

((
(b – a)β–α

Γ (β – α)
∣∣C̃Dβ

a+v(t)
∣∣q

)q)
dt. (26)

Next results are for Riemann–Liouville fractional derivatives using the composition
identity given in Lemma 1.11.

Theorem 3.11 Let φ, g : [0,∞) →R be differentiable convex and increasing functions with
φ(g(0)) = 0. Also let α ≥ 0, m = [β] + 1, and n = [α] + 1. Suppose that one of the following
conditions (i)–(vii) in Lemma 1.11 holds for {β ,α, v}, and let Dβ

a+v ∈ Lq[a, b]. Then, for α <
β – 1, the following fractional inequalities hold:

∫ b

a
φ′(g

(∣∣Dα
a+v(x)

∣∣))g ′(∣∣Dα
a+v(x)

∣∣)∣∣g ◦ Dβ
a+v(x)

∣∣dx

≤ Γ (β – α)
q(b – a)β–α–1 φ

(
g
(

(b – a)β–α–1

Γ (β – α)

∫ b

a

∣∣g ◦ Dβ
a+v(t)

∣∣dt
))

≤ Γ (β – α)
(b – a)β–α

∫ b

a
φ

(
g
(

(b – a)β–α

Γ (β – α)
∣∣g ◦ Dβ

a+v(t)
∣∣
))

dt. (27)

Theorem 3.12 Let φ : [0,∞) →R be a differentiable convex and increasing function with
φ(0) = 0. Also let α ≥ 0, m = [β] + 1, and n = [α] + 1. Suppose that one of the following
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conditions (i)–(vii) in Lemma 1.11 hold for {β ,α, v}, and let Dβ
a+v ∈ Lq[a, b]. Then, for α <

β – 1 and q ≥ 1, the following fractional inequalities hold:

∫ b

a
φ′(∣∣Dα

a+v(x)
∣∣q)∣∣Dα

a+v(x)
∣∣q–1∣∣Dβ

a+v(x)
∣∣q dx

≤ Γ (β – α)
q(b – a)β–α–1 φ

((
(b – a)β–α–1

Γ (β – α)

∫ b

a

∣∣Dβ
a+v(t)

∣∣q dt
)q)

≤ Γ (β – α)
q(b – a)β–α

∫ b

a
φ

((
(b – a)β–α

Γ (β – α)
∣∣Dβ

a+v(t)
∣∣q

)q)
dt. (28)

4 Concluding remarks
The aim of this paper is to utilize the classes of functions Ui(g ◦ v, k), i = 1, 2, in the estab-
lishment of new Opial-type inequalities in general prospect for convex functions. A power
function is considered to obtain particular Opial-type inequalities. In application point of
view, all these results have been discussed for fractional calculus operators of Riemann–
Liouville, Caputo, and Canavati. Fractional inequalities have wide applications in the the-
ory of fractional differential equations and boundary value problems and other modern
areas of science like rheology, viscoelasticity, acoustics, optics, chemical and statistical
physics, robotics, control theory, electrical and mechanical engineering, bioengineering,
etc.
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