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Abstract
In this paper, we compare solutions of q-order fractional differential equations of
Caputo type for q near 1 with solutions of the corresponding 1-order ordinary
differential equations. By establishing the explicit lower and upper bounds of
Mittag-Leffler functions, we obtain the effective convergence results. It is shown that
the limit cases q→ 1+ and q → 1– are different. A simple illustrative example is also
presented.
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1 Introduction
Fractional differential equations (FDEs) are a rapidly developing area of mathematics with
many stimulating applications [1–4]. Recently, plenty interesting existence and controlla-
bility results on the theory of solutions of FDEs or fractional inclusions have been given
in [5–22]. Mathematical modeling approaches using fractional derivatives are presented
in [17–22] with numerical simulations on various challenging topics.

On the one hand, several properties of ordinary or partial differential equations (DEs)
appear in FDEs as well, like asymptotic properties of solutions or equilibria. On the other
hand, unlike to DEs, FDEs have no nonconstant periodic solutions and they do not create
dynamical systems, which is one of the most obvious characteristics in studying FDEs. So
there is a natural question to study the relationship between solutions of FDEs and DEs
when the order q of FDEs is near to a natural number n ∈ N. Here, we call such FDEs
weakly fractional, which can be used to seek numerically the solutions of DEs.

In this paper, we investigate for simplicity the case when q is near to n = 1, but our
method can be directly extended to any n. We study two cases: q → 1– in Sect. 2 and
q → 1+ in Sect. 3. We derive error estimates in both cases. A simple numerical illustrative
example is given to demonstrate theoretical results. Our next step will be to extend this
paper for weakly fractional semilinear evolution equations in Banach spaces.

2 The case q → 1–

Consider a fractional differential equation

Dq
0x(t) = f

(
t, x(t)

)
, t ∈R+ = [0,∞),

x(0) = x0,
(1)
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where Dq
0 is the Caputo fractional derivative of order q ∈ (0, 1) with the lower limit at zero,

Dq
0x(t) =

1
Γ (1 – q)

d
dt

∫ t

0
(t – s)–q(x(s) – x(0)

)
ds,

and f ∈ C(R+ ×R
n,Rn) along with an ordinary differential equation

y′(t) = f
(
t, y(t)

)
, t ∈R+,

y(0) = y0,
(2)

where x0, y0 ∈ R
n. We suppose

(H) There are nonnegative constants M and L such that ‖f (t, x)‖ ≤ M and
‖f (t, x) – f (t, y)‖ ≤ L‖x – y‖ for any t ∈R+ and x, y ∈R

n, where ‖ · ‖ is a norm on R
n.

It is well known [4] that problem (1) is equivalent to the following integral equation:

x(t) = x0 +
1

Γ (q)

∫ t

0
(t – s)q–1f

(
s, x(s)

)
ds.

Then we derive

∥∥x(t) – y(t)
∥∥

≤ ‖x0 – y0‖ +
1

Γ (q)

∫ t

0
(t – s)q–1∥∥f

(
s, x(s)

)
– f

(
s, y(s)

)∥∥ds

+
∫ t

0

∣∣
∣∣1 –

1
Γ (q)

(t – s)q–1
∣∣
∣∣
∥
∥f

(
s, y(s)

)∥∥ds

≤ ‖x0 – y0‖ +
L

Γ (q)

∫ t

0
(t – s)q–1∥∥x(s) – y(s)

∥∥ds + M
∫ t

0

∣
∣∣
∣1 –

1
Γ (q)

(t – s)q–1
∣
∣∣
∣ds

= ‖x0 – y0‖ +
L

Γ (q)

∫ t

0
(t – s)q–1∥∥x(s) – y(s)

∥∥ds + M
∫ t

0

∣
∣∣∣1 –

1
Γ (q)

sq–1
∣
∣∣∣ds.

Thus by the Henry–Gronwall inequality (see [23, Corollary 2]), we get

∥
∥x(t) – y(t)

∥
∥ ≤

(
‖x0 – y0‖ + M

∫ t

0

∣∣
∣∣1 –

1
Γ (q)

sq–1
∣∣
∣∣ds

)
Eq

(
Ltq)

for any t ∈ R+, where Eq is the Mittag-Leffler function [24]. We continue with the case
x0 = y0. Then we get

∥
∥x(t) – y(t)

∥
∥ ≤ Mθq(t), θq(t) :=

∫ t

0

∣∣
∣∣1 –

1
Γ (q)

sq–1
∣∣
∣∣dsEq

(
Ltq) (3)

for any t ∈R+. The equation

1 –
1

Γ (q)
sq–1 = 0

has the only solution s0 > 0 given by

s0 = s0(q) = Γ (q)
1

q–1 . (4)
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Note that the function s0(q) is increasing on (0, 1) with limq→0+ s0(q) = 0 and

lim
q→1–

s0(q) = elimq→1–
ln[Γ [q]]

q–1 = elimq→1–
Γ ′[q]
Γ [q] = e–γ .= 0.561459

for the Euler constant γ . Next, clearly, we have

1 –
1

Γ (q)
sq–1

⎧
⎪⎪⎨

⎪⎪⎩

< 0 for 0 < s < s0,

= 0 for s = s0,

> 0 for s > s0.

Consequently, we obtain

∫ t

0

∣∣
∣∣1 –

1
Γ (q)

sq–1
∣∣
∣∣ds =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tq

Γ (q+1) – t for 0 < t < s0,

λ(q) := Γ (q)
q

q–1

Γ (q+1) – Γ (q)
1

q–1 for t = s0,
–tq+tΓ (q+1)+2Γ (q)

q
q–1

Γ (q+1) – 2Γ (q)
1

q–1 for t > s0.

(5)

We can check numerically that λ′′(q) > 0 for q ∈ (0, 1), then that λ′(q) is increasing from
–∞ to –e–γ .= –0.561459, and then that λ(q) is decreasing from 1 to 0. So we consider
q ∈ (1/2, 1) and then –0.751988 ≤ λ′(q) ≤ –0.561459. This implies that

0 < λ(q) ≤ 0.8(1 – q) (6)

for q ∈ (1/2, 1). Next, by [25, Lemma 2], we have the following.

Lemma 2.1 For all t ∈R+, q ∈ (0, 1), and κ > 0, it holds

1 ≤ Eq
(
κtq) ≤ eκ

1
q t

q
.

Furthermore, (5) implies

∫ t

0

∣∣
∣∣1 –

1
Γ (q)

sq–1
∣∣
∣∣ds ≤

∣∣
∣∣t –

tq

Γ (q + 1)

∣∣
∣∣ + 2λ(q)

for t ∈R+. So if q ∈ (1/2, 1), then by Lemma 2.1 we get

θq(t) ≤ eL
1
q t

q

(∣
∣∣
∣t –

tq

Γ (q + 1)

∣
∣∣
∣ + 2λ(q)

)
≤ 2etL̃

(∣
∣∣
∣t –

tq

Γ (q + 1)

∣
∣∣
∣ + 2λ(q)

)
(7)

for L̃ = max{L, L2}.
Now we are ready to deal with (3). First, (3) immediately implies the following expected

result.

Theorem 2.2 Under assumption (H), the solution x(t) of (1) uniformly converges on any
finite interval [0, T], T > 0, of R+ to the solution y(t) of (2) if q → 1– and x0 = y0.
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Proof The proof follows directly from (3), (5) and by

lim
q→1–

∣
∣∣∣t –

tq

Γ (q + 1)

∣
∣∣∣ = 0

uniformly for t ∈ [0, T] and any fixed T > 0. �

Next, we take any ε > 0 and consider an equation

θq(t) = ε. (8)

Clearly, θq(t) is increasing on R+ from 0 to ∞. Thus (8) has the only solution t̄(ε, q) ∈ R+.
By the above observations we can easily see that limε→0+ t̄(ε, q) = 0 and limq→1– t̄(ε, q) = ∞.

Furthermore, the function t �→ t – tq

Γ (q+1) is nonpositive on [0, r0] and nonnegative on
[r0,∞) for

r0 = r0(q) = Γ (q + 1)
1

q–1 . (9)

Note that the function r0(q) is increasing on (0, 1) from limq→0+ r0(q) = 1 to limq→1– r0(q) =
e1–γ .= 1.526205.

Next, we study the function φt(q) := tq

Γ (q+1) on (0, 1) for t > 0. We have

φ′
t(q) =

tq ln t
Γ (q + 1)

–
tqΓ ′(q + 1)
Γ 2(q + 1)

. (10)

For t ∈ (0, 1] and q ∈ (1/2, 1), we get

∣∣φ′
t(q)

∣∣ ≤ –
√

t ln t
Γ (q + 1)

+
∣
∣∣
∣
Γ ′(q + 1)
Γ 2(q + 1)

∣
∣∣
∣ ≤ 1.253,

while for 1 ≤ t ≤ T and q ∈ (1/2, 1), we get

∣∣φ′
t(q)

∣∣ ≤ 1.12838Tq ln T + 0.422784Tq

for T > 1. Consequently, we have

∣∣φ′
t(q)

∣∣ ≤ 1.253 + 1.12838Tq ln T + 0.422784Tq

for t ∈ (0, T], T > 1, and q ∈ (1/2, 1). This implies
∣∣
∣∣t –

tq

Γ (q + 1)

∣∣
∣∣ =

∣
∣φt(1) – φt(q)

∣
∣ ≤ (

1.253 + 1.12838Tq ln T + 0.422784Tq)(1 – q) (11)

for t ∈ [0, T], T > 1, and q ∈ (1/2, 1). Using (6), (7), and (11), we arrive at

θq(t) ≤ 2eTL̃(3 + 2Tq ln T + Tq)(1 – q)

for t ∈ [0, T], T > 1, and q ∈ (1/2, 1). Now, we consider instead of (8) the following one:

ηL,q(T) := 2eTL̃(3 + 2Tq ln T + Tq) =
1√

1 – q
. (12)
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The function ηL,q(T) is increasing from 8eL̃ to ∞ on [1,∞). So, for any

q > 1 –
1

64e2L̃
, q ∈ (1/2, 1), (13)

(12) has a unique solution TL(q) > 1. Note

lim
q→1–

TL(q) = ∞.

Summarizing, we have the following result.

Theorem 2.3 Under assumption (H) and for any q fulfilling (13), the solutions x(t) and
y(t) of (1) and (2) with x0 = y0, respectively, satisfy

∥∥x(t) – y(t)
∥∥ ≤ M

√
1 – q (14)

for any t ∈ [0, TL(q)], where TL(q) > 1 is the unique solution of (12).

3 The case q → 1+

Consider a fractional differential equation

Dq
0x(t) = f

(
t, x(t)

)
, t ∈R+,

x(0) = x0,

x′(0) = x1,

(15)

where q ∈ (1, 2) and f ∈ C(R+ ×R
n,Rn) along with an ordinary differential equation

y′(t) = f
(
t, y(t)

)
+ y1, t ∈R+,

y(0) = y0,
(16)

where x0, x1, y0, y1 ∈R
n. Again, we suppose assumption (H). It is known [2, Theorem 3.24]

that initial value problem (15) is equivalent to the integral equation

x(t) = x0 + x1t +
1

Γ (q)

∫ t

0
(t – s)q–1f

(
s, x(s)

)
ds.

Analogously to the previous section, we derive

∥∥x(t) – y(t)
∥∥ ≤ ‖x0 – y0‖ + ‖x1 – y1‖t

+
L

Γ (q)

∫ t

0
(t – s)q–1∥∥x(s) – y(s)

∥∥ds + M
∫ t

0

∣
∣∣
∣1 –

1
Γ (q)

sq–1
∣
∣∣
∣ds,

and the Henry–Gronwall inequality yields

∥
∥x(t) – y(t)

∥
∥ ≤

(
‖x0 – y0‖ + ‖x1 – y1‖t + M

∫ t

0

∣∣
∣∣1 –

1
Γ (q)

sq–1
∣∣
∣∣ds

)
Eq

(
Ltq).
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Hence, for x0 = y0, x1 = y1, estimation (3) follows for any t ∈ R+. Function s0(q) of (4) is
increasing on (1, 2) from

lim
q→1+

s0(q) = elimq→1+
ln[Γ [q]]

q–1 = elimq→1+
Γ ′[q]
Γ [q] = e–γ .= 0.561459

to 1. So this time,

1 –
1

Γ (q)
sq–1

⎧
⎪⎪⎨

⎪⎪⎩

> 0 for 0 < s < s0,

= 0 for s = s0,

< 0 for s > s0.

Consequently, we have (compare with (5))

∫ t

0

∣
∣∣
∣1 –

1
Γ (q)

sq–1
∣
∣∣
∣ds =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t – tq

Γ (q+1) for 0 < t < s0,

–λ(q) for t = s0,
tq–tΓ (q+1)–2Γ (q)

q
q–1

Γ (q+1) + 2Γ (q)
1

q–1 for t > s0,

(17)

where λ(q) is given by (5). One can check numerically that –λ′′(q) < 0 for q ∈ (1, 2). So,
–λ′(q) is decreasing from e–γ .= 0.561459 to 3

4 – γ

2
.= 0.461392, and –λ(q) is increasing

from 0 to 1/2. Hence for q ∈ (1, 2), we can estimate

0 ≤ –λ(q) ≤ 0.6(q – 1). (18)

Next, we need the following analog to Lemma 2.1.

Lemma 3.1 For all t ∈R+, q ∈ (1, 4/3), and κ > 0, it holds

1 ≤ Eq
(
κtq) ≤ eκ

1
q t

q
+

4
√

3 sin πq
2

9q
.

Proof Using Dzherbashyan’s recursion formula [26],

Eα,β (z) =
1
m

m–1∑

h=0

E α
m ,β

(
z

1
m e

2πıh
m

)

for α,β > 0, z ∈R, m ∈N, where ı =
√

–1, we can write

Eq(z) =
E q

2
(
√

z) + E q
2

(–
√

z)
2

(19)

for any z > 0. Next, from [27, Theorem 2.1] we know

Eα(z) =
–z sinπα

πα

∫ ∞

0

e–r
1
α dr

r2 – 2rz cosπα + z2
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for any α > 0, z < 0. So, using cos πq
2 ≥ –1/2 for q ∈ (1, 4/3), we get

E q
2

(–
√

z) =
2
√

z sin πq
2

πq

∫ ∞

0

e–r
2
q dr

r2 + 2r
√

z cos πq
2 + z

≤ 2
√

z sin πq
2

πq

∫ ∞

0

dr
r2 – r

√
z + z

=
2
√

z sin πq
2

πq
4
√

3π

9
√

z
=

8
√

3 sin πq
2

9q
.

Finally, applying this estimation and Lemma 2.1 to (19) results in

Eq
(
κtq) ≤ 1

2

(
2eκ

1
q t

q
+

8
√

3 sin πq
2

9q

)
=

eκ
1
q t

q
+

4
√

3 sin πq
2

9q
. �

Since by (17),

∫ t

0

∣
∣∣∣1 –

1
Γ (q)

sq–1
∣
∣∣∣ds ≤

∣
∣∣∣t –

tq

Γ (q + 1)

∣
∣∣∣ – 2λ(q)

for all t ∈ R+, Lemma 3.1 implies

θq(t) ≤
(

eL
1
q t

q
+

4
√

3 sin πq
2

9q

)(∣∣∣
∣t –

tq

Γ (q + 1)

∣∣∣
∣ – 2λ(q)

)

≤
(

etL +
4
√

3
9

)(∣∣
∣∣t –

tq

Γ (q + 1)

∣∣
∣∣ – 2λ(q)

)
(20)

for q ∈ (1, 4/3), where L = max{L, L3/4}. So we obtain a result on the uniform convergence.

Theorem 3.2 Under assumption (H), the solution x(t) of (15) uniformly converges on any
finite interval [0, T], T > 0, of R+ to the solution y(t) of (16) if q → 1+ and x0 = y0, x1 = y1.

Proof The statement can be proved analogously to Theorem 2.2. �

Next, we consider equation (8) for an arbitrary ε > 0 and q ∈ (1, 4/3). Clearly, θq(t) is
increasing onR+ from 0 to ∞, implying that (8) has the only solution t̄(ε, q) ∈R+ for which
limε→0+ t̄(ε, q) = 0 and limq→1+ t̄(ε, q) = ∞ hold. Moreover, the function t �→ t – tq

Γ (q+1) is
nonnegative on [0, r0] and nonpositive on [r0,∞) for r0 given by (9). Note that r0(q) is
increasing on (1,∞) from limq→1+ r0(q) = e1–γ .= 1.526205 to ∞.

Next, we consider the function φt(q) := tq

Γ (q+1) on (1, 4/3) for t > 0. From (10), we obtain

∣
∣φ′

t(q)
∣
∣ ≤ –

t ln t
Γ (q + 1)

+
Γ ′(q + 1)
Γ 2(q + 1)

≤ –t ln t +
Γ ′( 7

3 )
Γ 2( 7

3 )
≤ 1.038041

for t ∈ (0, 1], and

∣
∣φ′

t(q)
∣
∣ ≤ Tq ln T + 0.51902Tq

for t ∈ (1, T], T > 1. As a consequence, we have

∣∣φ′
t(q)

∣∣ ≤ 1.038041 + Tq ln T + 0.51902Tq
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for all t ∈ (0, T], T > 1, q ∈ (1, 4/3). This implies

∣
∣∣
∣t –

tq

Γ (q + 1)

∣
∣∣
∣ =

∣∣φt(1) – φt(q)
∣∣ ≤ (

1.038041 + Tq ln T + 0.51902Tq)(q – 1) (21)

for t ∈ (0, T], T > 1, q ∈ (1, 4/3). Using (18), (20), and (21), we arrive at

θq(t) ≤
(

eTL +
4
√

3
9

)(
3 + Tq ln T + Tq)(q – 1)

for t ∈ (0, T], T > 1, q ∈ (1, 4/3). Now, we consider the equation

μL,q(T) :=
(

eTL +
4
√

3
9

)(
3 + Tq ln T + Tq) =

1√
q – 1

. (22)

The function μL,q(T) is increasing from 4(eL + 4
√

3/9) to ∞ on [1,∞). So, for any

q < 1 +
1

16(eL + 4
√

3
9 )2

, q ∈ (1, 4/3), (23)

(22) has a unique solution TL(q) > 1. Note that limq→1+ TL(q) = ∞. Summarizing, we have
the following result.

Theorem 3.3 Under assumption (H) and for any q fulfilling (23), the solutions x(t) and
y(t) of (15) and (16) with x0 = y0, x1 = y1, respectively, satisfy

∥
∥x(t) – y(t)

∥
∥ ≤ M

√
q – 1 (24)

for any t ∈ [0, TL(q)], where TL(q) > 1 is the unique solution of (22).

Next, we present a simple example illustrating the convergence results when the order
q is close to 1.

Example 3.4 Let us consider the following initial-value problems:

Dq
0x(t) = px(t), t ∈ R+,

x(0) = x0,
(25)

y′(t) = py(t), t ∈R+,

y(0) = y0,
(26)

Dq
0u(t) = pu(t), t ∈R+,

u(0) = u0,

u′(0) = u1,

(27)

v′(t) = pv(t) + v1, t ∈R+,

v(0) = v0,
(28)
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Figure 1 Convergence of solutions of Caputo
fractional DEs (25) (dashed blue), (27) (dot-dashed
red) to solutions of ODEs (26), (28), respectively. The
closer q ∈ {0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4} is to 1, the
more saturated the colors are

where q ∈ (0, 1) in (25) and q ∈ (1, 2) in (27). The ODEs have the solutions y(t) = y0ept ,
v(t) = ept(v0 + v1/p) – v1/p. From [2, Theorem 4.3], the other solutions are x(t) = x0Eq(ptq)
and u(t) = u0Eq(ptq) + u1tEq,2(ptq). To see the convergence, we set all the initial conditions
and the parameter equal to 1, i.e., x0 = y0 = u0 = v0 = u1 = v1 = p = 1. Figure 1 depicts the
convergences x → y and u → v as q → 1– and q → 1+, respectively.

The physical significance of Fig. 1 relies on demonstration of transition of q through 1.
Since (25) is a one-dimensional system depending just on x0, its limit (26) is also one-
dimensional. But passing to (27), we get a two-dimensional system depending on u0 and
u1. Then its limit (28) as q → 1+ is also two-dimensional. This makes the difference. Note
that (28) is equivalent to a second order ODE

v′′(t) = pv′(t), t ∈R+,

v(0) = v0,

v′(0) = ṽ1 := pv0 + v1.

The above arguments are more visible for p < 0. Then by [27, Formula (7)] we see that
solutions of (25), (26), and (27) asymptotically tend to zero, while the one of (28) tends to
– v1

p . So all these equations are dissipative. But the limit of (27) as q → 2– is

z′′(t) = pz(t), t ∈R+,

z(0) = z0,

z′(0) = z1,

(29)

which has all solutions oscillating for p < 0. Consequently, the dissipation of (25)–(28) is
changing to oscillation on finite intervals as q → 2–. This is presented in Figs. 2 and 3.

These figures also support the fact that comparison estimates can be done in general
only on finite intervals.

4 Conclusion
Solutions of q-order fractional differential equations of Caputo type for q near 1 are com-
pared to solutions of the corresponding 1-order ordinary differential equations, by estab-
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Figure 2 The solutions of Caputo fractional DEs (25) for q ∈ {0.2, 0.4, 0.6, 0.8} and (26) for p = –5 and
x0 = y0 = 1

Figure 3 The solutions of Caputo fractional DEs (27) for q ∈ {1.2, 1.4, 1.6, 1.8} and (29) for p = –5 and
u0 = z0 = u1 = z1 = 1

lishing the effective convergence results. As a result we get that the limit cases q → 1+

and q → 1– are different. Theoretical results are demonstrated on a simple illustrative
example. Our method can be directly extended to any order q near a natural number.
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