# Bernoulli F-polynomials and Fibo-Bernoulli matrices 

## Semra Kuş ${ }^{1}$, Naim Tuglu ${ }^{2 *}$ © © and Taekyun Kim ${ }^{3}$

"Correspondence:
naimtuglu@gazi.edu.tr
${ }^{2}$ Department of Mathematics, Gazi University, Ankara, Turkey Full list of author information is available at the end of the article


#### Abstract

In this article, we define the Euler-Fibonacci numbers, polynomials and their exponential generating function. Several relations are established involving the Bernoulli F-polynomials, the Euler-Fibonacci numbers and the Euler-Fibonacci polynomials. A new exponential generating function is obtained for the Bernoulli F-polynomials. Also, we describe the Fibo-Bernoulli matrix, the Fibo-Euler matrix and the Fibo-Euler polynomial matrix by using the Bernoulli F-polynomials, the Euler-Fibonacci numbers and the Euler-Fibonacci polynomials, respectively. Factorization of the Fibo-Bernoulli matrix is obtained by using the generalized Fibo-Pascal matrix and a special matrix whose entries are the Bernoulli-Fibonacci numbers. The inverse of the Fibo-Bernoulli matrix is also found.


MSC: Primary 11B68; 11B39; secondary 15A60
Keywords: Bernoulli polynomials; Bernoulli F-polynomials; Euler-Fibonacci numbers; Bernoulli matrices; Generating function

## 1 Introduction

Many mathematicians have recently studied various matrices and analogs of these matrices. Especially, these matrices are the Bernoulli, Pascal and Euler matrices [1-11]. These matrices and their analogs are obtained using numbers and polynomials such as the Bernoulli, Euler, $q$-Bernoulli, and $q$-Euler expressions [5, 12-18].

In this study we are interested in some matrices whose entries are the Bernoulli F-polynomials, Bernoulli-Fibonacci numbers, Euler-Fibonacci numbers and EulerFibonacci polynomials.
The Fibonacci sequence $\left\{F_{n}\right\}_{n \geq 0}$ is defined by

$$
F_{n}=\left\{\begin{array}{l}
F_{n+2}=F_{n+1}+F_{n} \\
F_{0}=0, \quad F_{1}=1
\end{array}\right.
$$

For convenience of the reader, we provide a summary of the mathematical notations and some basic definitions of the Fibonomial coefficient.

The F-factorial is defined as follows:

$$
F_{n}!=F_{n} F_{n-1} F_{n-2} \cdots F_{1}, \quad F_{0}!=1 .
$$

The Fibonomial coefficients are defined $n \geq k \geq 1$ as

$$
\binom{n}{k}_{F}=\frac{F_{n}!}{F_{n-k}!F_{k}!},
$$

with $\binom{n}{0}_{F}=1$ and $\binom{n}{k}_{F}=0$ for $n<k$. Fibonomial coefficients have the following properties:

$$
\binom{n}{k}_{F}=\binom{n}{n-k}_{F}
$$

and

$$
\binom{n}{k}_{F}\binom{k}{j}_{F}=\binom{n}{j}_{F}\binom{n-j}{k-j}_{F} .
$$

The binomial theorem for the F-analog is given by

$$
\begin{equation*}
\left(x+_{F} y\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}_{F} x^{k} y^{n-k} . \tag{1}
\end{equation*}
$$

The F-exponential function $e_{F}^{t}$ is defined by

$$
\begin{equation*}
e_{F}^{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{F_{n}!} \tag{2}
\end{equation*}
$$

in $[19,20]$.

## 2 The Bernoulli F-polynomials and some of its properties

Firstly, we mention the Bernoulli F-polynomials. Krot [19] defined the Bernoulli Fpolynomials. In this section, we obtain an exponential generating function of the Bernoulli F-polynomials. Then we give some properties of the Bernoulli F-polynomials.

Definition 1 ([19]) Let $\binom{n}{k}_{F}$ be Fibonomial coefficients and $F_{n}$ be the $n$th Fibonacci numbers, and we use Bernoulli's F-polynomials of order 1; we define

$$
\begin{equation*}
B_{n, F}(x)=\sum_{k \geq 0} \frac{1}{F_{k+1}}\binom{n}{k}_{F} x^{n-k} \tag{3}
\end{equation*}
$$

The first few Bernoulli's F-polynomials are as follows:

$$
\begin{aligned}
& B_{0, F}(x)=1 \\
& B_{1, F}(x)=x+1 \\
& B_{2, F}(x)=x^{2}+x+\frac{1}{2} \\
& B_{3, F}(x)=x^{3}+2 x^{2}+x+\frac{1}{3} \\
& B_{4, F}(x)=x^{4}+3 x^{3}+3 x^{2}+x+\frac{1}{5}
\end{aligned}
$$

$$
B_{5, F}(x)=x^{5}+5 x^{4}+\frac{15}{2} x^{3}+5 x^{2}+x+\frac{1}{8}
$$

Theorem 1 The exponential generating function of the Bernoulli F-polynomial $B_{n, F}(x)$ is

$$
\begin{equation*}
g(x)=\frac{e_{F}^{x t}\left(e_{F}^{t}-1\right)}{t} \tag{4}
\end{equation*}
$$

Proof For the proof, we use the F-exponential function $e_{F}^{t}$.

$$
\begin{aligned}
\frac{e_{F}^{x t}\left(e_{F}^{t}-1\right)}{t} & =\frac{1}{t}\left(\sum_{n=0}^{\infty} x^{n} \frac{t^{n}}{F_{n}!}\right)\left(\sum_{n=0}^{\infty} \frac{t^{n}}{F_{n}!}-1\right) \\
& =\left(\sum_{n=0}^{\infty} \frac{1}{F_{n+1}} \frac{t^{n}}{F_{n}!}\right)\left(\sum_{n=0}^{\infty} x^{n} \frac{t^{n}}{F_{n}!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{F_{k+1}!} \frac{x^{n-k}}{F_{n-k}!}\right) t^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{F_{k+1}}\binom{n}{k}_{F} x^{n-k}\right) \frac{t^{n}}{F_{n}!} \\
& =\sum_{n=0}^{\infty} B_{n, F}(x) \frac{t^{n}}{F_{n}!} .
\end{aligned}
$$

Theorem 2 Let $B_{n, F}(x+y)$ be the Bernoulli F-polynomials, we have

$$
\begin{equation*}
B_{n, F}(x+y)=\sum_{k=0}^{n}\binom{n}{k}_{F} B_{k, F}(x) y^{n-k}, \tag{5}
\end{equation*}
$$

where $B_{n, F}(x+y)=\sum_{k \geq 0} \frac{1}{F_{k+1}}\binom{n}{k}_{F}\left(x+_{F} y\right)^{n-k}$ for all nonnegative integers $n$.
Proof By virtue of the definition of the Bernoulli F-polynomials we get

$$
\begin{align*}
\left(\sum_{n=0}^{\infty} B_{n, F}(x) \frac{t^{n}}{F_{n}!}\right)\left(\sum_{n=0}^{\infty} y^{n} \frac{t^{n}}{F_{n}!}\right) & =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{B_{k, F}(x)}{F_{k}!} \frac{y^{n-k}}{F_{n-k}!}\right) t^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k}_{F} B_{k, F}(x) y^{n-k}\right) \frac{t^{n}}{F_{n}!} \tag{6}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
\left(\sum_{n=0}^{\infty} B_{n, F}(x) \frac{t^{n}}{F_{n}!}\right)\left(\sum_{n=0}^{\infty} y^{n} \frac{t^{n}}{F_{n}!}\right) & =\left(\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{F_{k+1}}\binom{n}{k}_{F} x^{n-k} \frac{t^{n}}{F_{n}!}\right)\left(\sum_{n=0}^{\infty} y^{n} \frac{t^{n}}{F_{n}!}\right) \\
& =\left(\sum_{n=0}^{\infty} \frac{1}{F_{n+1}} \frac{t^{n}}{F_{n}!}\right)\left(\sum_{n=0}^{\infty} x^{n} \frac{t^{n}}{F_{n}!}\right)\left(\sum_{n=0}^{\infty} y^{n} \frac{t^{n}}{F_{n}!}\right) \\
& =\left(\sum_{n=0}^{\infty} \frac{t^{n}}{F_{n+1}!}\right)\left(\sum_{n=0}^{\infty}\left(x+{ }_{F} y\right)^{n} \frac{t^{n}}{F_{n}!}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{F_{k+1}}\binom{n}{k}_{F}\left(x+_{F} y\right)^{n-k}\right) \frac{t^{n}}{F_{n}!} \\
& =\sum_{n=0}^{\infty} B_{n, F}(x+y) \frac{t^{n}}{F_{n}!} \tag{7}
\end{align*}
$$

Comparing the coefficients of $\frac{t^{n}}{F_{n}!}$ on both sides of Eqs. (6) and (7), we arrive at the desired result.

## 3 The Euler-Fibonacci polynomials and their relation with Bernoulli F-polynomials

In this section, we define the Euler-Fibonacci numbers and the Euler-Fibonacci polynomials. Then we obtain their exponential functions and the relationship between the Bernoulli F-polynomials and these polynomials.

Definition 2 For all nonnegative integer $n$, the Euler-Fibonacci numbers $E_{n, F}$ are defined by

$$
\begin{equation*}
E_{n, F}=-\sum_{k=0}^{n}\binom{n}{k}_{F} E_{k, F} \tag{8}
\end{equation*}
$$

where $E_{0, F}=1$.

The first few Euler-Fibonacci numbers are as follows:

$$
\begin{array}{cccccc}
E_{0, F} & E_{1, F} & E_{2, F} & E_{3, F} & E_{4, F} & E_{5, F} \\
1 & -\frac{1}{2} & -\frac{1}{4} & -\frac{1}{4} & \frac{11}{8} & \frac{17}{16}
\end{array}
$$

Theorem 3 The exponential generating function of Euler-Fibonacci numbers $E_{n, F}$ is defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} E_{n, F} \frac{t^{n}}{F_{n}!}=\frac{2}{e_{F}^{t}+1} \tag{9}
\end{equation*}
$$

Proof For the proof, we show that

$$
\left(\sum_{n=0}^{\infty} E_{n, F} \frac{t^{n}}{F_{n}!}\right)\left(e_{F}^{t}+1\right)=2
$$

From (2), we have

$$
\begin{aligned}
\left(\sum_{n=0}^{\infty} E_{n, F} \frac{t^{n}}{F_{n}!}\right)\left(\sum_{n=0}^{\infty} \frac{t^{n}}{F_{n}!}+1\right) & =\left(\sum_{n=0}^{\infty} E_{n, F} \frac{t^{n}}{F_{n}!}\right)\left(2+\sum_{n=1}^{\infty} \frac{t^{n}}{F_{n}!}\right) \\
& =2 \sum_{n=0}^{\infty} E_{n, F} \frac{t^{n}}{F_{n}!}+\sum_{n=1}^{\infty}\left(\sum_{k=0}^{n-1} \frac{E_{k, F}}{F_{k}!} \frac{1}{F_{n-k}!}\right) t^{n} \\
& =2 \sum_{n=0}^{\infty} E_{n, F} \frac{t^{n}}{F_{n}!}+\sum_{n=1}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k}_{F} E_{k, F}-E_{n, F}\right) \frac{t^{n}}{F_{n}!}
\end{aligned}
$$

$$
\begin{aligned}
& =2 \sum_{n=0}^{\infty} E_{n, F} \frac{t^{n}}{F_{n}!}+\sum_{n=1}^{\infty}\left(-2 E_{n, F}\right) \frac{t^{n}}{F_{n}!} \\
& =2,
\end{aligned}
$$

which is the desired result.

Definition 3 The Euler-Fibonacci polynomials $E_{n, F}(x)$ are defined by

$$
E_{n, F}(x)=\sum_{k=0}^{n}\binom{n}{k}_{F} E_{k, F} x^{n-k},
$$

where $E_{0, F}(x)=1$ and $E_{n, F}$ are the $n$th Euler-Fibonacci numbers.

The first few Euler-Fibonacci polynomials are as follows:

$$
\begin{aligned}
& E_{0, F}(x)=1 \\
& E_{1, F}(x)=x-\frac{1}{2} \\
& E_{2, F}(x)=x^{2}-\frac{x}{2}-\frac{1}{4}, \\
& E_{3, F}(x)=x^{3}-x^{2}-\frac{x}{2}-\frac{1}{4}, \\
& E_{4, F}(x)=x^{4}-\frac{3}{2} x^{3}-\frac{3}{2} x^{2}-\frac{3}{4} x+\frac{11}{8}, \\
& E_{5, F}(x)=x^{5}-\frac{5}{2} x^{4}-\frac{15}{4} x^{3}-\frac{15}{4} x^{2}+\frac{55}{8} x+\frac{17}{16} .
\end{aligned}
$$

Theorem 4 The exponential generating function of Euler-Fibonacci polynomials $E_{n, F}(x)$ is defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} E_{n, F}(x) \frac{t^{n}}{F_{n}!}=\frac{2 e_{F}^{x t}}{\left(e_{F}^{t}+1\right)} \tag{10}
\end{equation*}
$$

Proof By virtue of the definition of the Euler-Fibonacci polynomials, we get

$$
\begin{aligned}
\frac{2 e_{F}^{x t}}{\left(e_{F}^{t}+1\right)} & =\sum_{n=0}^{\infty} E_{n, F} \frac{t^{n}}{F_{n}!} \sum_{n=0}^{\infty} x^{n} \frac{t^{n}}{F_{n}!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{E_{k, F}}{F_{k}!} \frac{x^{n-k}}{F_{n-k}!}\right) t^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k}_{F} E_{k, F} x^{n-k}\right) \frac{t^{n}}{F_{n}!} \\
& =\sum_{n=0}^{\infty} E_{n, F}(x) \frac{t^{n}}{F_{n}!} .
\end{aligned}
$$

In the following proposition, we will give a relationship between the Bernoulli Fpolynomials $B_{n, F}(x)$ and the Euler-Fibonacci polynomials $E_{n, F}(x)$.

Proposition 1 Let n be a nonnegative integer,

$$
\begin{equation*}
B_{n, F}(x)=\frac{x^{n+1}-E_{n+1, F}(x)}{F_{n+1}}+\sum_{k=0}^{n} \frac{1}{F_{k+1}}\binom{n}{k}_{F}\left(x^{k+1}-E_{k+1, F}(x)\right) . \tag{11}
\end{equation*}
$$

Proof For the proof, we use the exponential generating functions for the Bernoulli Fpolynomial and the Euler-Fibonacci polynomials. We have

$$
\begin{aligned}
\sum_{n=0}^{\infty} & B_{n, F}(x) \frac{t^{n}}{F_{n}!} \\
& =\frac{e_{F}^{x t}\left(e_{F}^{t}-1\right)}{t} \\
& =\frac{\left(e_{F}^{t}+1\right)}{t}\left(e_{F}^{x t}-\frac{2 e_{F}^{x t}}{e_{F}^{t}+1}\right) \\
& =\left(\sum_{n=0}^{\infty} \frac{t^{n}}{F_{n}!}+1\right)\left(\sum_{n=0}^{\infty} \frac{x^{n} t^{n-1}}{F_{n}!}-\sum_{n=0}^{\infty} E_{n, F}(x) \frac{t^{n-1}}{F_{n}!}\right) \\
& =\left(\sum_{n=0}^{\infty} \frac{t^{n}}{F_{n}!}+1\right)\left(\sum_{n=0}^{\infty}\left(x^{n+1}-E_{n+1, F}(x)\right) \frac{t^{n}}{F_{n+1}!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{x^{k+1}-E_{k+1, F}(x)}{F_{k+1}!} \frac{1}{F_{n-k}!}\right) t^{n}+\sum_{n=0}^{\infty}\left(\frac{x^{n+1}-E_{n+1, F}(x)}{F_{n+1}}\right) \frac{t^{n}}{F_{n}!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{F_{k+1}}\binom{n}{k}_{F}\left(x^{k+1}-E_{k+1, F}(x)\right)\right)^{n}+\sum_{n=0}^{\infty}\left(\frac{x^{n+1}-E_{n+1, F}(x)}{F_{n+1}}\right) \frac{t^{n}}{F_{n}!} \\
& =\sum_{n=0}^{\infty}\left(\frac{x^{n+1}-E_{n+1, F}(x)}{F_{n+1}}+\sum_{k=0}^{n} \frac{1}{F_{k+1}}\binom{n}{k}\left(x^{k+1}-E_{k+1, F}(x)\right)\right) \frac{t^{n}}{F_{n}!} .
\end{aligned}
$$

Comparing the coefficients of $t^{n} / F_{n}$ ! on both sides of the above equations we arrive at the desired result.

Also,

$$
\begin{equation*}
B_{n, F}(x)=2\left(\frac{x^{n+1}-E_{n+1, F}(x)}{F_{n+1}}\right)+\sum_{k=0}^{n-1} \frac{1}{F_{k+1}}\binom{n}{k}_{F}\left(x^{k+1}-E_{k+1, F}(x)\right) . \tag{12}
\end{equation*}
$$

For example, if we take $n=2$ in Proposition 1, we have

$$
\begin{aligned}
B_{2, F}(x)= & \frac{x^{3}-E_{3, F}(x)}{F_{3}}+\sum_{k=0}^{2} \frac{1}{F_{k+1}}\binom{2}{k}_{F}\left(x^{k+1}-E_{k+1, F}(x)\right) \\
= & \frac{1}{2}\left(x^{2}+\frac{x}{2}-\frac{1}{4}\right)+x-\left(x-\frac{1}{2}\right)+x^{2}-\left(x^{2}-\frac{x}{2}-\frac{1}{4}\right) \\
& +\frac{1}{2}\left(x^{3}-\left(x^{3}-x^{2}+\frac{x}{2}+\frac{1}{4}\right)\right) \\
= & x^{2}+x+\frac{1}{2} .
\end{aligned}
$$

Proposition 2 Let $E_{n, F}$ be the nth Euler-Fibonacci number. Then we have

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}_{F} B_{k, F}(x) E_{n-k, F}=\sum_{k=0}^{n} \frac{1}{F_{k+1}}\binom{n}{k}_{F} E_{n-k, F}(x) \tag{13}
\end{equation*}
$$

Proof We have

$$
\begin{align*}
\left(\sum_{n=0}^{\infty} E_{n, F}(x) \frac{t^{n}}{F_{n}!}\right)\left(\frac{e_{F}^{t}-1}{t}\right) & =\left(\sum_{n=0}^{\infty} E_{n, F}(x) \frac{t^{n}}{F_{n}!}\right)\left(\sum_{n=1}^{\infty} \frac{t^{n-1}}{F_{n}!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{F_{k+1}!} \frac{E_{n-k, F}(x)}{F_{n-k}!}\right) t^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{F_{k+1}}\binom{n}{k}_{F} E_{n-k, F}(x)\right) \frac{t^{n}}{F_{n}!},  \tag{14}\\
\left(\sum_{n=0}^{\infty} E_{n, F}(x) \frac{t^{n}}{F_{n}!}\right)\left(\frac{e_{F}^{t}-1}{t}\right) & =\left(\sum_{n=0}^{\infty} E_{n, F} \frac{t^{n}}{F_{n}!}\right)\left(\sum_{n=0}^{\infty} x^{n} \frac{t^{n}}{F_{n}!}\right)\left(\sum_{n=1}^{\infty} \frac{t^{n-1}}{F_{n}!}\right) \\
& =\left(\sum_{n=0}^{\infty} E_{n, F} \frac{t^{n}}{F_{n}!}\right)\left(\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{F_{k+1}!} \frac{x^{n-k}}{F_{n-k}!}\right) t^{n}\right) \\
& =\sum_{n=0}^{\infty} E_{n, F} \frac{t^{n}}{F_{n}!} \sum_{n=0}^{\infty} B_{n, F}(x) \frac{t^{n}}{F_{n}!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k}_{F} B_{k, F}(x) E_{n-k, F}\right) \frac{t^{n}}{F_{n}!} . \tag{15}
\end{align*}
$$

From (14) and (15), we get

$$
\sum_{k=0}^{n}\binom{n}{k}_{F} B_{k, F}(x) E_{n-k, F}=\sum_{k=0}^{n} \frac{1}{F_{k+1}}\binom{n}{k}_{F} E_{n-k, F}(x)
$$

For example

$$
\begin{aligned}
\sum_{k=0}^{2}\binom{2}{k}_{F} B_{k, F}(x) E_{2-k, F} & =-\frac{1}{4}+(x+1)\left(-\frac{1}{2}\right)+\left(x^{2}+x+\frac{1}{2}\right) 1 \\
& =x^{2}+\frac{1}{2} x-\frac{1}{4}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{k=0}^{2} \frac{1}{F_{k+1}}\binom{2}{k}_{F} E_{2-k, F}(x) & =x^{2}-\frac{x}{2}-\frac{1}{4}+x-\frac{1}{2}+\frac{1}{2} \\
& =x^{2}+\frac{1}{2} x-\frac{1}{4}
\end{aligned}
$$

## 4 The Bernoulli-Fibonacci numbers and the Bernoulli-Fibonacci polynomials

In [20], the author defined the $n$th Bernoulli-Fibonacci numbers and the BernoulliFibonacci polynomials. For all nonnegative integers $n$, the $n$th Bernoulli-Fibonacci poly-
nomials $B_{n}^{F}(x)$ are given with the exponential generating function as follows:

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n}^{F}(x) \frac{t^{n}}{F_{n}!}=\frac{t e_{F}^{t x}}{e_{F}^{t}+1} \tag{16}
\end{equation*}
$$

where $B_{n}^{F}(0)=B_{n}^{F}$.
Let the $n$th Bernoulli-Fibonacci number be $B_{n}^{F}(0)=B_{n}^{F}$, its exponential generating function is

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n}^{F} \frac{t^{n}}{F_{n}!}=\frac{t}{e_{F}^{t}+1} \tag{17}
\end{equation*}
$$

Proposition 3 ([20]) Let the nth Bernoulli-Fibonacci numbers be $B_{n}^{F}$ having defined $B_{0}^{F}=1$ and

$$
\begin{equation*}
B_{n}^{F}=-\sum_{k=0}^{n} \frac{1}{F_{n-k+1}}\binom{n}{k}_{F} B_{k}^{F} . \tag{18}
\end{equation*}
$$

The first few Bernoulli-Fibonacci numbers are as follows:

$$
\begin{array}{cccccccc}
B_{0}^{F} & B_{1}^{F} & B_{2}^{F} & B_{3}^{F} & B_{4}^{F} & B_{5}^{F} & B_{6}^{F} & B_{7}^{F} \\
1 & -1 & \frac{1}{2} & -\frac{1}{3} & \frac{3}{10} & -\frac{5}{8} & \frac{101}{39} & -\frac{323}{21}
\end{array}
$$

Proposition 4 ([20]) The recurrence formula of the nth Bernoulli-Fibonacci polynomials is

$$
\begin{equation*}
B_{n}^{F}(x)=\sum_{k=0}^{n}\binom{n}{k}_{F} B_{k}^{F} x^{n-k} . \tag{19}
\end{equation*}
$$

The first few Bernoulli-Fibonacci polynomials are as follows:

$$
\begin{aligned}
& B_{0}^{F}(x)=1, \\
& B_{1}^{F}(x)=x+1, \\
& B_{2}^{F}(x)=x^{2}-x+\frac{1}{2}, \\
& B_{3}^{F}(x)=x^{3}-2 x^{2}+x-\frac{1}{3}, \\
& B_{4}^{F}(x)=x^{4}-3 x^{3}+3 x^{2}-x+\frac{3}{10}, \\
& B_{5}^{F}(x)=x^{5}-5 x^{4}+\frac{15}{2} x^{3}-5 x^{2}+\frac{3}{2} x-\frac{5}{8} .
\end{aligned}
$$

Now, we give the relationship of the first few Bernoulli F-polynomials $B_{n, F}(x)$ and Bernoulli-Fibonacci polynomials $B_{n}^{F}(x)$ and the classical Bernoulli polynomials $B_{n}(x)$ with graphics in Fig. 1.


Figure 1 Graphs of $B_{n, F}(x), B_{n}^{F}(x)$ and $B_{n}(x)$ for $n=2,3,4,5$

## 5 Fibo-Bernoulli matrices

In this section, we define an interesting Fibo-Bernoulli matrix by using the Bernoulli F-polynomials. Then we obtain a factorization of the Fibo-Bernoulli matrix by using a generalized Fibo-Pascal matrix. Moreover, we obtain the inverse of the Fibo-Bernoulli matrix. We define the Fibo-Euler matrix, the Fibo-Euler polynomial matrix and their inverses. Also, we show a relationship of the Fibo-Bernoulli matrix, Fibo-Euler matrix and Fibo-Euler polynomial matrix.

Definition 4 ([5]) The generalized Fibo-Pascal matrix $U_{n+1}[x]=\left(U_{n+1}(x ; i, j)\right)$ is defined by

$$
U_{n+1}(x ; i, j)= \begin{cases}\binom{i}{j}_{F} x^{i-j} & \text { if } i \geq j  \tag{20}\\ 0 & \text { otherwise }\end{cases}
$$

Example 1 We have

$$
U_{6}[x]=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
x & 1 & 0 & 0 & 0 & 0 \\
x^{2} & x & 1 & 0 & 0 & 0 \\
x^{3} & 2 x^{2} & 2 x & 1 & 0 & 0 \\
x^{4} & 3 x^{3} & 6 x^{2} & 3 x & 1 & 0 \\
x^{5} & 5 x^{4} & 15 x^{3} & 15 x^{2} & 5 x & 1
\end{array}\right] .
$$

Definition 5 ([5]) For $n \geq 2$, the inverse of the generalized Fibo-Pascal matrix $V(F)=\left(v_{i j}\right)$ is defined by

$$
v_{i j}= \begin{cases}b_{i-j+1}\binom{i}{j}_{F} x^{i-j} & \text { if } i \geq j  \tag{21}\\ 0 & \text { otherwise }\end{cases}
$$

where $b_{1}=1$ and $b_{n}=-\sum_{k=1}^{n-1} b_{k}\binom{n}{k}_{F}$.

Example 2 For $n=5$, the inverse of the generalized Fibo-Pascal matrix $V(F)$ is as follows:

$$
V(F)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
-x & 1 & 0 & 0 & 0 & 0 \\
0 & -x & 1 & 0 & 0 & 0 \\
x^{3} & 0 & -2 x & 1 & 0 & 0 \\
-x^{4} & 3 x^{3} & 0 & -3 x & 1 & 0 \\
-6 x^{5} & -5 x^{4} & 15 x^{3} & 0 & -5 x & 1
\end{array}\right]
$$

Definition 6 Let $B_{n, F}(x)$ be the $n$th Bernoulli's F-polynomial. $(n+1) \times(n+1)$; the FiboBernoulli matrix $\mathcal{B}(x, F)=\left[b_{i j}(x, F)\right]$ is defined by

$$
b_{i j}(x, F)= \begin{cases}\binom{i}{j}_{F} B_{i-j, F}(x) & \text { if } i \geq j  \tag{22}\\ 0 & \text { otherwise }\end{cases}
$$

where $0 \leq i, j \leq n$.
For $n=3$, the Fibo-Bernoulli matrix is as follows:

$$
\mathcal{B}(x, F)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
x+1 & 1 & 0 & 0 \\
x^{2}+x+\frac{1}{2} & x+1 & 1 & 0 \\
x^{3}+2 x^{2}+x+\frac{1}{3} & 2 x^{2}+2 x+1 & 2 x+2 & 1
\end{array}\right] .
$$

Now, we define a special matrix by using the Fibonomial coefficient. Then we obtain the factorization Fibo-Bernoulli matrix by using the generalized Fibo-Pascal matrix.

Definition 7 Let the $n$th Fibonacci numbers be $F_{n}$. For $1 \leq i, j \leq n+1$, the $W(F)=\left[w_{i j}\right]$ matrix is defined as follows:

$$
w_{i j}= \begin{cases}\left.\frac{1}{F_{i-j+1}\left({ }_{j}^{i}\right)_{F}}\right)_{F} & \text { if } i \geq j  \tag{23}\\ 0 & \text { otherwise }\end{cases}
$$

For $n=5$, the $W(F)$ matrix is

$$
W(F)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 1 & 0 & 0 & 0 \\
\frac{1}{3} & 1 & 2 & 1 & 0 & 0 \\
\frac{1}{5} & 1 & 3 & 3 & 1 & 0 \\
\frac{1}{8} & 1 & 5 & \frac{15}{2} & 5 & 1
\end{array}\right] .
$$

Proposition 5 ([4]) We have

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}_{F} B_{n-k}^{F} \frac{1}{F_{k+1}}=F_{n}!\delta_{n, 0} \tag{24}
\end{equation*}
$$

Theorem 5 Let $B_{n}^{F}$ be the nth Bernoulli-Fibonacci numbers. $T(F)=\left[t_{i j}\right]_{(n+1) \times(n+1)}$, the inverse of the $W(F)$ matrix, is

$$
t_{i j}= \begin{cases}\binom{i}{j}_{F} B_{i-j}^{F} & \text { if } i \geq j  \tag{25}\\ 0 & \text { otherwise }\end{cases}
$$

Proof We have

$$
\begin{aligned}
(T(F) W(F))_{i j} & =\sum_{k=j}^{i} t_{i k} w_{k j} \\
& =\sum_{k=j}^{i}\binom{i}{k}_{F} B_{i-k}^{F} \frac{1}{F_{k-j+1}}\binom{k}{j}_{F} \\
& =\sum_{k=j}^{i}\binom{i}{j}_{F}\binom{i-j}{k-j}_{F} B_{i-k}^{F} \frac{1}{F_{k-j+1}} \\
& =\binom{i}{j}_{F} \sum_{k=0}^{i-j}\binom{i-j}{k}_{F} B_{i-j-k}^{F} \frac{1}{F_{k+1}} \\
& =\binom{i}{j}_{F} F_{i-j}!\delta_{i-j, 0} .
\end{aligned}
$$

Hence, $(T(F) W(F))_{i j}=1$ for $i=j$ and $(T(F) W(F))_{i j}=0$ for $i \neq j$.
For $n=5, T(F)$ is as follows:

$$
T(F)=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & -1 & 1 & 0 & 0 & 0 \\
-\frac{1}{3} & 1 & -2 & 1 & 0 & 0 \\
\frac{3}{10} & -1 & 3 & -3 & 1 & 0 \\
-\frac{5}{8} & \frac{3}{2} & -5 & \frac{15}{2} & -5 & 1
\end{array}\right]
$$

Theorem 6 Let $\mathcal{B}(x, F)$ be the Fibo-Bernoulli matrix and $U_{n+1}[x]$ be a generalized FiboPascal matrix, then

$$
\mathcal{B}(x, F)=U_{n+1}[x] W(F) .
$$

Proof We have

$$
\begin{aligned}
(U[x] \cdot W(F))_{i j} & =\sum_{k=j}^{i} u_{i k} w_{k j} \\
& =\sum_{k=j}^{i}\binom{i}{k}_{F} x^{i-k} \frac{1}{F_{k-j+1}}\binom{k}{j}_{F} \\
& =\binom{i}{j}_{F} \sum_{k=j}^{i} \frac{1}{F_{k-j+1}}\binom{i-j}{k-j}_{F} x^{i-k}
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{i}{j}_{F} \sum_{k=0}^{i-j} \frac{1}{F_{k+1}}\binom{i-j}{k}_{F} x^{i-j-k} \\
& =\binom{i}{j}_{F} B_{i-j, F}(x) \\
& =[\mathcal{B}(x, F)]_{i j}
\end{aligned}
$$

Example 3 For $n=3$, we have

$$
\begin{aligned}
U_{n+1}[x] W(F) & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
x & 1 & 0 & 0 \\
x^{2} & x & 1 & 0 \\
x^{3} & 2 x^{2} & 2 x & 1
\end{array}\right] \times\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
\frac{1}{2} & 1 & 1 & 0 \\
\frac{1}{3} & 1 & 2 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
x+1 & 1 & 0 & 0 \\
x^{2}+x+\frac{1}{2} & x+1 & 1 & 0 \\
x^{3}+2 x^{2}+x+\frac{1}{3} & 2 x^{2}+2 x+1 & 2 x+2 & 1
\end{array}\right] \\
& =\mathcal{B}(x, F) .
\end{aligned}
$$

Theorem 7 Let $\mathcal{D}(x, F)=\left[d_{i j}\right]$ be the $(n+1) \times(n+1)$ matrix defined by

$$
d_{i j}= \begin{cases}\binom{i}{j}_{F} \sum_{k=0}^{i-j}\binom{i-j}{k}_{F} B_{i-j-k}^{F} b_{k+1} x^{k} & \text { if } i \geq j,  \tag{26}\\ 0 & \text { otherwise } .\end{cases}
$$

Then $\mathcal{D}(x, F)$ is the inverse of the Fibo-Bernoulli matrix. Thus,

$$
\mathcal{B}^{-1}(x, F)=\mathcal{D}(x, F)
$$

Proof Let $U_{n+1}[x]$ be a generalized Fibo-Pascal matrix. Using the factorization of $\mathcal{B}(x, F)$ in Theorem 6

$$
\mathcal{B}^{-1}(x, F)=W^{-1}(F) U_{n+1}^{-1}[x]=T(F) V(F)
$$

and the inverse of the generalized Fibo-Pascal matrix in (21), we obtain

$$
\begin{aligned}
{[T(F) V(F)]_{i j} } & =\sum_{k=j}^{i}\binom{i}{k}_{F} B_{i-k}^{F}\binom{k}{j}_{F} b_{k-j+1} x^{k-j} \\
& =\binom{i}{j}_{F} \sum_{k=j}^{i}\binom{i-j}{k-j}_{F} B_{i-k}^{F} b_{k-j+1} x^{k-j} \\
& =\binom{i}{j}_{F} \sum_{k=0}^{i-j}\binom{i-j}{k}_{F} B_{i-j-k}^{F} b_{k+1} x^{k-j} \\
& =[\mathcal{D}(x, F)]_{i j}
\end{aligned}
$$

Example 4 For $n=4, \mathcal{D}(x, F)$ is as follows:

$$
\begin{aligned}
\mathcal{D}(x, F) & =\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
\frac{1}{2} & -1 & 1 & 0 & 0 \\
-\frac{1}{3} & 1 & -2 & 1 & 0 \\
\frac{3}{10} & -1 & 3 & -3 & 1
\end{array}\right] \times\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-x & 1 & 0 & 0 & 0 \\
0 & -x & 1 & 0 & 0 \\
x^{3} & 0 & -2 x & 1 & 0 \\
-x^{4} & 3 x^{3} & 0 & -3 x & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-x-1 & 1 & 0 & 0 & 0 \\
x+\frac{1}{2} & -x-1 & 1 & 0 & 0 \\
x^{3}-x-\frac{1}{3} & 2 x+1 & -2 x-2 & 1 & 0 \\
-x^{4}-3 x^{3}+x+\frac{3}{10} & 3 x^{3}-3 x-1 & 6 x+3 & -3 x-3 & 1
\end{array}\right] .
\end{aligned}
$$

Definition 8 Let $E_{n, F}$ be the Euler-Fibonacci number. For $1 \leq i, j \leq n+1$, then the FiboEuler matrix $E_{F}=\left(e_{F}\right)_{i j}$ is defined as follows:

$$
\left(e_{F}\right)_{i j}= \begin{cases}\binom{i}{j}_{F} E_{i-j, F} & \text { if } i \geq j  \tag{27}\\ 0 & \text { otherwise }\end{cases}
$$

Example 5 For $n=3$, the Fibo-Euler matrix is

$$
E_{F}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 & 0 \\
-\frac{1}{4} & -\frac{1}{2} & 1 & 0 \\
\frac{1}{4} & -\frac{1}{2} & -1 & 1
\end{array}\right]
$$

Definition 9 ([5]) The Fibo-Pascal matrix $U_{n+1, F}=\left[u_{i, j}\right]_{(n+1) \times(n+1)}$ is defined by

$$
u_{i, j}= \begin{cases}\binom{i}{j}_{F} & \text { if } i \geq j \\ 0 & \text { otherwise }\end{cases}
$$

Proposition 6 ([16]) Let $E_{n, F}$ be the Euler-Fibonacci number

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}_{F} E_{n-k, F}+E_{n, F}=2 \delta_{0, n} \tag{28}
\end{equation*}
$$

Theorem 8 Let $U_{n+1, F}=\left[u_{i, j}\right]$ be the $(n+1) \times(n+1)$ the Fibo-Pascal matrix, $I_{n+1}$ be the identity matrix, and $E_{F}$ be the Fibo-Euler matrix, then we get

$$
\frac{1}{2}\left(U_{n+1, F}+I_{n+1}\right)=E_{F}^{-1}
$$

Proof We have

$$
\begin{aligned}
\left(E_{F} \frac{1}{2}\left(U_{n+1, F}+I_{n+1}\right)\right)_{i j} & =\frac{1}{2}\left(E_{F} U_{n+1, F}+E_{F}\right)_{i j} \\
& =\sum_{k=j}^{i}\binom{i}{k}_{F} E_{i-k, F} \frac{1}{2}\binom{k}{j}_{F}+\binom{i}{j}_{F} E_{i-j, F} \\
& =\frac{1}{2}\binom{i}{j}_{F} \sum_{k=j}^{i}\binom{i-j}{k-j}_{F} E_{i-k, F}+\binom{i}{j}_{F} E_{i-j, F} \\
& =\frac{1}{2}\binom{i}{j}_{F}\left[\sum_{k=0}^{i-j}\binom{i-j}{k}_{F} E_{i-j-k, F}+E_{i-j, F}\right] \\
& =\frac{1}{2}\binom{i}{j}_{F} 2 \delta_{0, i-j} \\
& =\binom{i}{j}_{F} \delta_{0, i-j .} .
\end{aligned}
$$

Thus, for $i=j,\binom{i}{j}_{F} \delta_{0, i-j}=1$ and for $i \neq j\binom{i}{j}_{F} \delta_{0, i-j}=0$. Hence,

$$
\frac{1}{2}\left(U_{n+1, F}+I_{n+1}\right)=E_{F}^{-1}
$$

Definition 10 Let $E_{n, F}$ be the Euler-Fibonacci number. For $1 \leq i, j \leq n+1$, then the FiboEuler polynomial matrix $E_{F}(x)=\left[\left(\varepsilon_{F}\right)_{i j}\right]$ is defined as follows:

$$
\left(\varepsilon_{F}\right)_{i j}= \begin{cases}\binom{i}{j}_{F} E_{i-j, F} x^{i-j} & \text { if } i \geq j  \tag{29}\\ 0 & \text { otherwise }\end{cases}
$$

Example $65 \times 5$ For $n=4$, the Fibo-Euler polynomial matrix is as follows:

$$
E_{F}(x)=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-\frac{x}{2} & 1 & 0 & 0 & 0 \\
-\frac{x^{2}}{4} & -\frac{x}{2} & 1 & 0 & 0 \\
\frac{x^{3}}{4} & -\frac{x^{2}}{2} & -x & 1 & 0 \\
\frac{5 x^{4}}{8} & \frac{3 x^{3}}{4} & -\frac{3 x^{2}}{2} & -\frac{3 x}{2} & 1
\end{array}\right] .
$$

Theorem 9 Let $H_{F}(x)=\left[\left(h_{F}\right)_{i j}\right]$ be the inverse of the Fibo-Euler polynomial matrix, then we have

$$
\begin{equation*}
H_{F}(x)=\frac{1}{2}\left(U_{n+1}[x]+I_{n+1}\right) \tag{30}
\end{equation*}
$$

where $U_{n+1, F}$ is $(n+1) \times(n+1)$ Fibo-Pascal matrix and $I_{n+1}$ is the identity matrix.

Proof

$$
\begin{aligned}
\left(E_{F}(x)\left(U_{n+1}[x]+I_{n+1}\right)\right)_{i j} & =\sum_{k=j}^{i}\binom{i}{k}_{F} E_{i-k, F} x^{i-k}\binom{k}{j}_{F} x^{k-j}+\binom{i}{j}_{F} E_{i-j, F} x^{i-j} \\
& =\binom{i}{j}_{F} \sum_{k=j}^{i}\binom{i-j}{k-j}_{F} E_{i-k, F} x^{i-j}+\binom{i}{j}_{F} E_{i-j, F} x^{i-j} \\
& =\binom{i}{j}_{F} x^{i-j}\left[\sum_{k=0}^{i-j}\binom{i-j}{k}_{F} E_{i-j-k, F}+E_{i-j, F}\right] \\
& =2\binom{i}{j}_{F} x^{i-j} \delta_{0, i-j}
\end{aligned}
$$

for $i=j\binom{i}{j} F x^{i-j} \delta_{0, i-j}=1$ and for $i \neq j\binom{i}{j}_{F} x^{i-j} \delta_{0, i-j}=0$. Thus the proof is completed.

Now, we obtain the Fibo-Bernoulli matrix factorization by using the inverse of the FiboEuler polynomial matrix.

Theorem 10 Let $\mathcal{B}(x, F)$ be $(n+1) \times(n+1)$ the Fibo-Bernoulli matrix, then we have

$$
\begin{equation*}
\mathcal{B}(x, F)=\left[2 H_{F}(x)-I_{n+1}\right] W(F) . \tag{31}
\end{equation*}
$$

Proof We have

$$
\left(\left[2 H_{F}(x)-I_{n+1}\right] W(F)\right)_{i j}=\sum_{k=j}^{i}\left(2 \frac{1}{2}\binom{i}{k}_{F} x^{i-k}-\delta_{i k}\right)\binom{k}{j}_{F} \frac{1}{F_{k-j+1}}
$$

for $j<k<i \delta_{i k}=0$, then we get

$$
\begin{aligned}
\left(\left[2 H_{F}(x)-I_{n+1}\right] W(F)\right)_{i j} & =\sum_{k=j}^{i}\binom{i}{k}_{F} x^{i-k}\binom{k}{j}_{F} \frac{1}{F_{k-j+1}} \\
& =\binom{i}{j} \sum_{k=j}^{i}\binom{i-j}{k-j}_{F} \frac{1}{F_{k-j+1}} x^{i-k} \\
& =\binom{i}{j} \sum_{k=0}^{i-j}\binom{i-j}{k}_{F} \frac{1}{F_{k+1}} x^{i-j-k} \\
& =\binom{i}{j}_{F} B_{i-j, F}(x) \\
& =[\mathcal{B}(x, F)]_{i j}
\end{aligned}
$$

and

$$
\left(\left[2 H_{F}(x)-\delta\right] W(F)\right)_{i j}=0
$$

for $i=j=k$ and $i<k<j$. Thus the proof is completed.

## Acknowledgements

The authors are grateful to two anonymous referees and the associate editor for their careful reading, helpful comments and constructive suggestions, which improved the presentation of results.

## Funding

Not applicable

## Availability of data and materials

Not applicable

## Competing interests

The authors declare that they have no competing interests

## Authors' contributions

Each of the authors contributed to each part of this work equally and read and approved the final version of the manuscript.

## Author details

${ }^{1}$ Mucur Vocational High School, Kırşehir Ahi Evran University, Kırşehir, Turkey. ${ }^{2}$ Department of Mathematics, Gazi University, Ankara, Turkey. ${ }^{3}$ Department of Mathematics, Kwangwoon University, Seoul, Republic of Korea.

## Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 10 January 2019 Accepted: 4 April 2019 Published online: 18 April 2019

## References

1. Call, G.S., Velleman, D.J.: Pascal's matrices. Am. Math. Mon. 100, 372-376 (1993)
2. Ernst, T.: $q$-Pascal and $q$-Bernoulli matrices and umbral approach. D.M. Report 2008(23), Department of Mathematics, Uppsala Universty (2008)
3. Ernst, T.: On several $q$-special matrices, including the $q$-Bernoulli and $q$-Euler matrices. Linear Algebra Appl. 542 422-440 (2018)
4. Infante, G.M., Ramirez, J.L., Sahin, A.: Some results on $q$-analogue of the Bernoulli, Euler and Fibonacci matrices. Mathem. Rep. 4, 399-417 (2017)
5. Kocer, E.G., Tuglu, N.: The Pascal matrix associated with Fontene-Ward generalized binomial coefficients. In: 4th International Conference on Matrix Analysis and Applications (ICMAA-2013), 2-5 July, Konya, Turkey (2013)
6. Quintana, Y., Ramirez, W., Urieles, A.: Euler matrices and their algebraic properties (2018). arXiv:1811.01455v1
7. Tuglu, N., Kuş, S.: q-Bernoulli matrices and their some properties. Gazi Univ. J. Sci. 28, 269-273 (2015)
8. Yang, S.-L., Liu, Z.-K.: Explicit inverse of the Pascal matrix plus one. Int. J. Math. Sci. 2006, Article ID 90901 (2006)
9. Zhang, Z., Whang, J.: Bernoulli matrix and its algebraic properties. Discrete Appl. Math. 154, 1622-1632 (2006)
10. Zhang, Z.: The linear algebra of generalized Pascal matrix. Linear Algebra Appl. 250, 51-60 (1997)
11. Zheng, D.: $q$-Analogue of the Pascal matrix. Ars Comb. 80, 321-336 (2008)
12. Al-Salam, W.A.: $q$-Bernoulli numbers and polynomials. Math. Nachr. 17, 239-260 (1959)
13. Carlitz, L.: q-Bernoulli numbers and polynomials. Duke Math. J. 15, 987-1000 (1948)
14. Hegazi, A.S., Mansour, M.: A note on $q$-Bernoulli numbers and polynomials. J. Nonlinear Math. Phys. 13, 9-18 (2005)
15. Kim, T.: A note on $q$-Euler and Genocchi numbers (2015) arXiv:math/0703476
16. Kim, D.S., Kim, T.: Some identities of $q$-Euler polynomials arising from $q$-umbral calculus. J. Inequal. Appl. 2014, 1 (2014)
17. Kim, D.S., Kim, T.: q-Bernoulli polynomials and q-umbral calculus. Sci. China Math. 57, 1867-1874 (2014)
18. Nörlund, N.E.: Vorlesungen über Differenzenrechnung. Chelsea, New York (1924)
19. Krot, E.: An introduction to finite fibonomial calculus (2005) arXiv:math/0503210
20. Özvatan, M.: Generalized golden-Fibonacci calculus and applications. Ph.D. thesis, Izmir Institute of Technology (2018)

## Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

