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Abstract
In this article, we define the Euler–Fibonacci numbers, polynomials and their
exponential generating function. Several relations are established involving the
Bernoulli F-polynomials, the Euler–Fibonacci numbers and the Euler–Fibonacci
polynomials. A new exponential generating function is obtained for the Bernoulli
F-polynomials. Also, we describe the Fibo–Bernoulli matrix, the Fibo–Euler matrix and
the Fibo–Euler polynomial matrix by using the Bernoulli F-polynomials, the
Euler–Fibonacci numbers and the Euler–Fibonacci polynomials, respectively.
Factorization of the Fibo–Bernoulli matrix is obtained by using the generalized
Fibo–Pascal matrix and a special matrix whose entries are the Bernoulli–Fibonacci
numbers. The inverse of the Fibo–Bernoulli matrix is also found.
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1 Introduction
Many mathematicians have recently studied various matrices and analogs of these matri-
ces. Especially, these matrices are the Bernoulli, Pascal and Euler matrices [1–11]. These
matrices and their analogs are obtained using numbers and polynomials such as the
Bernoulli, Euler, q-Bernoulli, and q-Euler expressions [5, 12–18].

In this study we are interested in some matrices whose entries are the Bernoulli
F-polynomials, Bernoulli–Fibonacci numbers, Euler–Fibonacci numbers and Euler–
Fibonacci polynomials.

The Fibonacci sequence {Fn}n≥0 is defined by

Fn =

⎧
⎨

⎩

Fn+2 = Fn+1 + Fn,

F0 = 0, F1 = 1.

For convenience of the reader, we provide a summary of the mathematical notations and
some basic definitions of the Fibonomial coefficient.

The F-factorial is defined as follows:

Fn! = FnFn–1Fn–2 · · ·F1, F0! = 1.
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The Fibonomial coefficients are defined n ≥ k ≥ 1 as

(
n
k

)

F
=

Fn!
Fn–k !Fk !

,

with
(n

0
)

F = 1 and
(n

k
)

F = 0 for n < k. Fibonomial coefficients have the following properties:

(
n
k

)

F
=

(
n

n – k

)

F

and
(

n
k

)

F

(
k
j

)

F
=

(
n
j

)

F

(
n – j
k – j

)

F
.

The binomial theorem for the F-analog is given by

(x +F y)n =
n∑

k=0

(
n
k

)

F
xkyn–k . (1)

The F-exponential function et
F is defined by

et
F =

∞∑

n=0

tn

Fn!
(2)

in [19, 20].

2 The Bernoulli F-polynomials and some of its properties
Firstly, we mention the Bernoulli F-polynomials. Krot [19] defined the Bernoulli F-
polynomials. In this section, we obtain an exponential generating function of the Bernoulli
F-polynomials. Then we give some properties of the Bernoulli F-polynomials.

Definition 1 ([19]) Let
(n

k
)

F be Fibonomial coefficients and Fn be the nth Fibonacci num-
bers, and we use Bernoulli’s F-polynomials of order 1; we define

Bn,F (x) =
∑

k≥0

1
Fk+1

(
n
k

)

F
xn–k . (3)

The first few Bernoulli’s F-polynomials are as follows:

B0,F (x) = 1,

B1,F (x) = x + 1,

B2,F (x) = x2 + x +
1
2

,

B3,F (x) = x3 + 2x2 + x +
1
3

,

B4,F (x) = x4 + 3x3 + 3x2 + x +
1
5

,
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B5,F (x) = x5 + 5x4 +
15
2

x3 + 5x2 + x +
1
8

.

Theorem 1 The exponential generating function of the Bernoulli F-polynomial Bn,F (x) is

g(x) =
ext

F (et
F – 1)
t

. (4)

Proof For the proof, we use the F-exponential function et
F .

ext
F (et

F – 1)
t

=
1
t

( ∞∑

n=0

xn tn

Fn!

)( ∞∑

n=0

tn

Fn!
– 1

)

=

( ∞∑

n=0

1
Fn+1

tn

Fn!

)( ∞∑

n=0

xn tn

Fn!

)

=
∞∑

n=0

( n∑

k=0

1
Fk+1!

xn–k

Fn–k !

)

tn

=
∞∑

n=0

( n∑

k=0

1
Fk+1

(
n
k

)

F
xn–k

)
tn

Fn!

=
∞∑

n=0

Bn,F (x)
tn

Fn!
. �

Theorem 2 Let Bn,F (x + y) be the Bernoulli F-polynomials, we have

Bn,F (x + y) =
n∑

k=0

(
n
k

)

F
Bk,F (x)yn–k , (5)

where Bn,F (x + y) =
∑

k≥0
1

Fk+1

(n
k
)

F (x +F y)n–k for all nonnegative integers n.

Proof By virtue of the definition of the Bernoulli F-polynomials we get

( ∞∑

n=0

Bn,F (x)
tn

Fn!

)( ∞∑

n=0

yn tn

Fn!

)

=
∞∑

n=0

( n∑

k=0

Bk,F (x)
Fk !

yn–k

Fn–k !

)

tn

=
∞∑

n=0

( n∑

k=0

(
n
k

)

F
Bk,F (x)yn–k

)
tn

Fn!
. (6)

On the other hand,

( ∞∑

n=0

Bn,F (x)
tn

Fn!

)( ∞∑

n=0

yn tn

Fn!

)

=

( ∞∑

n=0

n∑

k=0

1
Fk+1

(
n
k

)

F
xn–k tn

Fn!

)( ∞∑

n=0

yn tn

Fn!

)

=

( ∞∑

n=0

1
Fn+1

tn

Fn!

)( ∞∑

n=0

xn tn

Fn!

)( ∞∑

n=0

yn tn

Fn!

)

=

( ∞∑

n=0

tn

Fn+1!

)( ∞∑

n=0

(x +F y)n tn

Fn!

)
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=
∞∑

n=0

( n∑

k=0

1
Fk+1

(
n
k

)

F
(x +F y)n–k

)
tn

Fn!

=
∞∑

n=0

Bn,F (x + y)
tn

Fn!
. (7)

Comparing the coefficients of tn

Fn ! on both sides of Eqs. (6) and (7), we arrive at the desired
result. �

3 The Euler–Fibonacci polynomials and their relation with Bernoulli
F-polynomials

In this section, we define the Euler–Fibonacci numbers and the Euler–Fibonacci poly-
nomials. Then we obtain their exponential functions and the relationship between the
Bernoulli F-polynomials and these polynomials.

Definition 2 For all nonnegative integer n, the Euler–Fibonacci numbers En,F are defined
by

En,F = –
n∑

k=0

(
n
k

)

F
Ek,F , (8)

where E0,F = 1.

The first few Euler–Fibonacci numbers are as follows:

E0,F E1,F E2,F E3,F E4,F E5,F

1 – 1
2 – 1

4 – 1
4

11
8

17
16

Theorem 3 The exponential generating function of Euler–Fibonacci numbers En,F is de-
fined by

∞∑

n=0

En,F
tn

Fn!
=

2
et

F + 1
. (9)

Proof For the proof, we show that

( ∞∑

n=0

En,F
tn

Fn!

)
(
et

F + 1
)

= 2.

From (2), we have

( ∞∑

n=0

En,F
tn

Fn!

)( ∞∑

n=0

tn

Fn!
+ 1

)

=

( ∞∑

n=0

En,F
tn

Fn!

)(

2 +
∞∑

n=1

tn

Fn!

)

= 2
∞∑

n=0

En,F
tn

Fn!
+

∞∑

n=1

( n–1∑

k=0

Ek,F

Fk !
1

Fn–k !

)

tn

= 2
∞∑

n=0

En,F
tn

Fn!
+

∞∑

n=1

( n∑

k=0

(
n
k

)

F
Ek,F – En,F

)
tn

Fn!



Kuş et al. Advances in Difference Equations        (2019) 2019:145 Page 5 of 16

= 2
∞∑

n=0

En,F
tn

Fn!
+

∞∑

n=1

(–2En,F )
tn

Fn!

= 2,

which is the desired result. �

Definition 3 The Euler–Fibonacci polynomials En,F (x) are defined by

En,F (x) =
n∑

k=0

(
n
k

)

F
Ek,F xn–k ,

where E0,F (x) = 1 and En,F are the nth Euler–Fibonacci numbers.

The first few Euler–Fibonacci polynomials are as follows:

E0,F (x) = 1,

E1,F (x) = x –
1
2

,

E2,F (x) = x2 –
x
2

–
1
4

,

E3,F (x) = x3 – x2 –
x
2

–
1
4

,

E4,F (x) = x4 –
3
2

x3 –
3
2

x2 –
3
4

x +
11
8

,

E5,F (x) = x5 –
5
2

x4 –
15
4

x3 –
15
4

x2 +
55
8

x +
17
16

.

Theorem 4 The exponential generating function of Euler–Fibonacci polynomials En,F (x)
is defined by

∞∑

n=0

En,F (x)
tn

Fn!
=

2ext
F

(et
F + 1)

. (10)

Proof By virtue of the definition of the Euler–Fibonacci polynomials, we get

2ext
F

(et
F + 1)

=
∞∑

n=0

En,F
tn

Fn!

∞∑

n=0

xn tn

Fn!

=
∞∑

n=0

( n∑

k=0

Ek,F

Fk !
xn–k

Fn–k !

)

tn

=
∞∑

n=0

( n∑

k=0

(
n
k

)

F
Ek,F xn–k

)
tn

Fn!

=
∞∑

n=0

En,F (x)
tn

Fn!
. �

In the following proposition, we will give a relationship between the Bernoulli F-
polynomials Bn,F (x) and the Euler–Fibonacci polynomials En,F (x).
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Proposition 1 Let n be a nonnegative integer,

Bn,F (x) =
xn+1 – En+1,F (x)

Fn+1
+

n∑

k=0

1
Fk+1

(
n
k

)

F

(
xk+1 – Ek+1,F (x)

)
. (11)

Proof For the proof, we use the exponential generating functions for the Bernoulli F-
polynomial and the Euler–Fibonacci polynomials. We have

∞∑

n=0

Bn,F (x)
tn

Fn!

=
ext

F (et
F – 1)
t

=
(et

F + 1)
t

(

ext
F –

2ext
F

et
F + 1

)

=

( ∞∑

n=0

tn

Fn!
+ 1

)( ∞∑

n=0

xntn–1

Fn!
–

∞∑

n=0

En,F (x)
tn–1

Fn!

)

=

( ∞∑

n=0

tn

Fn!
+ 1

)( ∞∑

n=0

(
xn+1 – En+1,F (x)

) tn

Fn+1!

)

=
∞∑

n=0

( n∑

k=0

xk+1 – Ek+1,F (x)
Fk+1!

1
Fn–k !

)

tn +
∞∑

n=0

(
xn+1 – En+1,F (x)

Fn+1

)
tn

Fn!

=
∞∑

n=0

( n∑

k=0

1
Fk+1

(
n
k

)

F

(
xk+1 – Ek+1,F (x)

)
)

tn +
∞∑

n=0

(
xn+1 – En+1,F (x)

Fn+1

)
tn

Fn!

=
∞∑

n=0

(
xn+1 – En+1,F (x)

Fn+1
+

n∑

k=0

1
Fk+1

(
n
k

)

F

(
xk+1 – Ek+1,F (x)

)
)

tn

Fn!
.

Comparing the coefficients of tn/Fn! on both sides of the above equations we arrive at the
desired result. �

Also,

Bn,F (x) = 2
(

xn+1 – En+1,F (x)
Fn+1

)

+
n–1∑

k=0

1
Fk+1

(
n
k

)

F

(
xk+1 – Ek+1,F (x)

)
. (12)

For example, if we take n = 2 in Proposition 1, we have

B2,F (x) =
x3 – E3,F (x)

F3
+

2∑

k=0

1
Fk+1

(
2
k

)

F

(
xk+1 – Ek+1,F (x)

)

=
1
2

(

x2 +
x
2

–
1
4

)

+ x –
(

x –
1
2

)

+ x2 –
(

x2 –
x
2

–
1
4

)

+
1
2

(

x3 –
(

x3 – x2 +
x
2

+
1
4

))

= x2 + x +
1
2

.
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Proposition 2 Let En,F be the nth Euler–Fibonacci number. Then we have

n∑

k=0

(
n
k

)

F
Bk,F (x)En–k,F =

n∑

k=0

1
Fk+1

(
n
k

)

F
En–k,F (x). (13)

Proof We have

( ∞∑

n=0

En,F (x)
tn

Fn!

)(
et

F – 1
t

)

=

( ∞∑

n=0

En,F (x)
tn

Fn!

)( ∞∑

n=1

tn–1

Fn!

)

=
∞∑

n=0

( n∑

k=0

1
Fk+1!

En–k,F (x)
Fn–k !

)

tn

=
∞∑

n=0

( n∑

k=0

1
Fk+1

(
n
k

)

F
En–k,F (x)

)
tn

Fn!
, (14)

( ∞∑

n=0

En,F (x)
tn

Fn!

)(
et

F – 1
t

)

=

( ∞∑

n=0

En,F
tn

Fn!

)( ∞∑

n=0

xn tn

Fn!

)( ∞∑

n=1

tn–1

Fn!

)

=

( ∞∑

n=0

En,F
tn

Fn!

)( ∞∑

n=0

( n∑

k=0

1
Fk+1!

xn–k

Fn–k !

)

tn

)

=
∞∑

n=0

En,F
tn

Fn!

∞∑

n=0

Bn,F (x)
tn

Fn!

=
∞∑

n=0

( n∑

k=0

(
n
k

)

F
Bk,F (x)En–k,F

)
tn

Fn!
. (15)

From (14) and (15), we get

n∑

k=0

(
n
k

)

F
Bk,F (x)En–k,F =

n∑

k=0

1
Fk+1

(
n
k

)

F
En–k,F (x). �

For example

2∑

k=0

(
2
k

)

F
Bk,F (x)E2–k,F = –

1
4

+ (x + 1)
(

–
1
2

)

+
(

x2 + x +
1
2

)

1

= x2 +
1
2

x –
1
4

and

2∑

k=0

1
Fk+1

(
2
k

)

F
E2–k,F (x) = x2 –

x
2

–
1
4

+ x –
1
2

+
1
2

= x2 +
1
2

x –
1
4

.

4 The Bernoulli–Fibonacci numbers and the Bernoulli–Fibonacci polynomials
In [20], the author defined the nth Bernoulli–Fibonacci numbers and the Bernoulli–
Fibonacci polynomials. For all nonnegative integers n, the nth Bernoulli–Fibonacci poly-
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nomials BF
n(x) are given with the exponential generating function as follows:

∞∑

n=0

BF
n(x)

tn

Fn!
=

tetx
F

et
F + 1

, (16)

where BF
n(0) = BF

n .
Let the nth Bernoulli–Fibonacci number be BF

n(0) = BF
n , its exponential generating func-

tion is

∞∑

n=0

BF
n

tn

Fn!
=

t
et

F + 1
. (17)

Proposition 3 ([20]) Let the nth Bernoulli–Fibonacci numbers be BF
n having defined BF

0 = 1
and

BF
n = –

n∑

k=0

1
Fn–k+1

(
n
k

)

F
BF

k . (18)

The first few Bernoulli–Fibonacci numbers are as follows:

BF
0 BF

1 BF
2 BF

3 BF
4 BF

5 BF
6 BF

7

1 –1 1
2 – 1

3
3

10 – 5
8

101
39 – 323

21

Proposition 4 ([20]) The recurrence formula of the nth Bernoulli–Fibonacci polynomials
is

BF
n(x) =

n∑

k=0

(
n
k

)

F
BF

k xn–k . (19)

The first few Bernoulli–Fibonacci polynomials are as follows:

BF
0 (x) = 1,

BF
1 (x) = x + 1,

BF
2 (x) = x2 – x +

1
2

,

BF
3 (x) = x3 – 2x2 + x –

1
3

,

BF
4 (x) = x4 – 3x3 + 3x2 – x +

3
10

,

BF
5 (x) = x5 – 5x4 +

15
2

x3 – 5x2 +
3
2

x –
5
8

.

Now, we give the relationship of the first few Bernoulli F-polynomials Bn,F (x) and
Bernoulli–Fibonacci polynomials BF

n(x) and the classical Bernoulli polynomials Bn(x) with
graphics in Fig. 1.
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Figure 1 Graphs of Bn,F (x), BFn(x) and Bn(x) for n = 2, 3, 4, 5

5 Fibo–Bernoulli matrices
In this section, we define an interesting Fibo–Bernoulli matrix by using the Bernoulli
F-polynomials. Then we obtain a factorization of the Fibo–Bernoulli matrix by using a
generalized Fibo–Pascal matrix. Moreover, we obtain the inverse of the Fibo–Bernoulli
matrix. We define the Fibo–Euler matrix, the Fibo–Euler polynomial matrix and their in-
verses. Also, we show a relationship of the Fibo–Bernoulli matrix, Fibo–Euler matrix and
Fibo–Euler polynomial matrix.

Definition 4 ([5]) The generalized Fibo–Pascal matrix Un+1[x] = (Un+1(x; i, j)) is defined
by

Un+1(x; i, j) =

⎧
⎨

⎩

(i
j
)

F
xi–j if i ≥ j,

0 otherwise.
(20)

Example 1 We have

U6[x] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
x 1 0 0 0 0
x2 x 1 0 0 0
x3 2x2 2x 1 0 0
x4 3x3 6x2 3x 1 0
x5 5x4 15x3 15x2 5x 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Definition 5 ([5]) For n ≥ 2, the inverse of the generalized Fibo–Pascal matrix V (F) = (vij)
is defined by

vij =

⎧
⎨

⎩

bi–j+1
(i

j
)

F
xi–j if i ≥ j,

0 otherwise,
(21)

where b1 = 1 and bn = –
∑n–1

k=1 bk
(n

k
)

F .
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Example 2 For n = 5, the inverse of the generalized Fibo–Pascal matrix V (F) is as follows:

V (F) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
–x 1 0 0 0 0
0 –x 1 0 0 0
x3 0 –2x 1 0 0

–x4 3x3 0 –3x 1 0
–6x5 –5x4 15x3 0 –5x 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Definition 6 Let Bn,F (x) be the nth Bernoulli’s F-polynomial. (n + 1) × (n + 1); the Fibo–
Bernoulli matrix B(x, F) = [bij(x, F)] is defined by

bij(x, F) =

⎧
⎨

⎩

(i
j
)

F
Bi–j,F (x) if i ≥ j,

0 otherwise,
(22)

where 0 ≤ i, j ≤ n.

For n = 3, the Fibo–Bernoulli matrix is as follows:

B(x, F) =

⎡

⎢
⎢
⎢
⎣

1 0 0 0
x + 1 1 0 0

x2 + x + 1
2 x + 1 1 0

x3 + 2x2 + x + 1
3 2x2 + 2x + 1 2x + 2 1

⎤

⎥
⎥
⎥
⎦

.

Now, we define a special matrix by using the Fibonomial coefficient. Then we obtain the
factorization Fibo–Bernoulli matrix by using the generalized Fibo–Pascal matrix.

Definition 7 Let the nth Fibonacci numbers be Fn. For 1 ≤ i, j ≤ n + 1, the W (F) = [wij]
matrix is defined as follows:

wij =

⎧
⎨

⎩

1
Fi–j+1

(i
j
)

F
if i ≥ j,

0 otherwise.
(23)

For n = 5, the W (F) matrix is

W (F) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
1 1 0 0 0 0
1
2 1 1 0 0 0
1
3 1 2 1 0 0
1
5 1 3 3 1 0
1
8 1 5 15

2 5 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Proposition 5 ([4]) We have

n∑

k=0

(
n
k

)

F
BF

n–k
1

Fk+1
= Fn!δn,0. (24)
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Theorem 5 Let BF
n be the nth Bernoulli–Fibonacci numbers. T(F) = [tij](n+1)×(n+1), the in-

verse of the W (F) matrix, is

tij =

⎧
⎨

⎩

(i
j
)

F
BF

i–j if i ≥ j,

0 otherwise.
(25)

Proof We have

(
T(F)W (F)

)

ij =
i∑

k=j

tikwkj

=
i∑

k=j

(
i
k

)

F
BF

i–k
1

Fk–j+1

(
k
j

)

F

=
i∑

k=j

(
i
j

)

F

(
i – j
k – j

)

F
BF

i–k
1

Fk–j+1

=
(

i
j

)

F

i–j∑

k=0

(
i – j

k

)

F
BF

i–j–k
1

Fk+1

=
(

i
j

)

F
Fi–j!δi–j,0.

Hence, (T(F)W (F))ij = 1 for i = j and (T(F)W (F))ij = 0 for i �= j. �

For n = 5, T(F) is as follows:

T(F) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
–1 1 0 0 0 0

1
2 –1 1 0 0 0

– 1
3 1 –2 1 0 0

3
10 –1 3 –3 1 0

– 5
8

3
2 –5 15

2 –5 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Theorem 6 Let B(x, F) be the Fibo–Bernoulli matrix and Un+1[x] be a generalized Fibo–
Pascal matrix, then

B(x, F) = Un+1[x]W (F).

Proof We have

(
U[x] · W (F)

)

ij =
i∑

k=j

uikwkj

=
i∑

k=j

(
i
k

)

F
xi–k 1

Fk–j+1

(
k
j

)

F

=
(

i
j

)

F

i∑

k=j

1
Fk–j+1

(
i – j
k – j

)

F
xi–k
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=
(

i
j

)

F

i–j∑

k=0

1
Fk+1

(
i – j

k

)

F
xi–j–k

=
(

i
j

)

F
Bi–j,F (x)

=
[
B(x, F)

]

ij. �

Example 3 For n = 3, we have

Un+1[x]W (F) =

⎡

⎢
⎢
⎢
⎣

1 0 0 0
x 1 0 0
x2 x 1 0
x3 2x2 2x 1

⎤

⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎣

1 0 0 0
1 1 0 0
1
2 1 1 0
1
3 1 2 1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 0 0 0
x + 1 1 0 0

x2 + x + 1
2 x + 1 1 0

x3 + 2x2 + x + 1
3 2x2 + 2x + 1 2x + 2 1

⎤

⎥
⎥
⎥
⎦

= B(x, F).

Theorem 7 Let D(x, F) = [dij] be the (n + 1) × (n + 1) matrix defined by

dij =

⎧
⎨

⎩

(i
j
)

F

∑i–j
k=0

(i–j
k
)

F BF
i–j–kbk+1xk if i ≥ j,

0 otherwise.
(26)

Then D(x, F) is the inverse of the Fibo–Bernoulli matrix. Thus,

B–1(x, F) = D(x, F).

Proof Let Un+1[x] be a generalized Fibo–Pascal matrix. Using the factorization of B(x, F)
in Theorem 6

B–1(x, F) = W –1(F)U–1
n+1[x] = T(F)V (F)

and the inverse of the generalized Fibo–Pascal matrix in (21), we obtain

[
T(F)V (F)

]

ij =
i∑

k=j

(
i
k

)

F
BF

i–k

(
k
j

)

F
bk–j+1xk–j

=
(

i
j

)

F

i∑

k=j

(
i – j
k – j

)

F
BF

i–kbk–j+1xk–j

=
(

i
j

)

F

i–j∑

k=0

(
i – j

k

)

F
BF

i–j–kbk+1xk–j

=
[
D(x, F)

]

ij. �
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Example 4 For n = 4, D(x, F) is as follows:

D(x, F) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
–1 1 0 0 0

1
2 –1 1 0 0

– 1
3 1 –2 1 0

3
10 –1 3 –3 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
–x 1 0 0 0
0 –x 1 0 0
x3 0 –2x 1 0

–x4 3x3 0 –3x 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
–x – 1 1 0 0 0
x + 1

2 –x – 1 1 0 0
x3 – x – 1

3 2x + 1 –2x – 2 1 0
–x4 – 3x3 + x + 3

10 3x3 – 3x – 1 6x + 3 –3x – 3 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Definition 8 Let En,F be the Euler–Fibonacci number. For 1 ≤ i, j ≤ n + 1, then the Fibo–
Euler matrix EF = (eF )ij is defined as follows:

(eF )ij =

⎧
⎨

⎩

(i
j
)

F
Ei–j,F if i ≥ j,

0 otherwise.
(27)

Example 5 For n = 3, the Fibo–Euler matrix is

EF =

⎡

⎢
⎢
⎢
⎣

1 0 0 0
– 1

2 1 0 0
– 1

4 – 1
2 1 0

1
4 – 1

2 –1 1

⎤

⎥
⎥
⎥
⎦

.

Definition 9 ([5]) The Fibo–Pascal matrix Un+1,F = [ui,j](n+1)×(n+1) is defined by

ui,j =

⎧
⎨

⎩

(i
j
)

F
if i ≥ j,

0 otherwise.

Proposition 6 ([16]) Let En,F be the Euler–Fibonacci number

n∑

k=0

(
n
k

)

F
En–k,F + En,F = 2δ0,n. (28)

Theorem 8 Let Un+1,F = [ui,j] be the (n + 1) × (n + 1) the Fibo–Pascal matrix, In+1 be the
identity matrix, and EF be the Fibo–Euler matrix, then we get

1
2

(Un+1,F + In+1) = E–1
F .
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Proof We have

(

EF
1
2

(Un+1,F + In+1)
)

ij
=

1
2

(EF Un+1,F + EF )ij

=
i∑

k=j

(
i
k

)

F
Ei–k,F

1
2

(
k
j

)

F
+

(
i
j

)

F
Ei–j,F

=
1
2

(
i
j

)

F

i∑

k=j

(
i – j
k – j

)

F
Ei–k,F +

(
i
j

)

F
Ei–j,F

=
1
2

(
i
j

)

F

[ i–j∑

k=0

(
i – j

k

)

F
Ei–j–k,F + Ei–j,F

]

=
1
2

(
i
j

)

F
2δ0,i–j

=
(

i
j

)

F
δ0,i–j.

Thus, for i = j,
(i

j
)

F
δ0,i–j = 1 and for i �= j

(i
j
)

F
δ0,i–j = 0. Hence,

1
2

(Un+1,F + In+1) = E–1
F . �

Definition 10 Let En,F be the Euler–Fibonacci number. For 1 ≤ i, j ≤ n + 1, then the Fibo–
Euler polynomial matrix EF (x) = [(εF )ij] is defined as follows:

(εF )ij =

⎧
⎨

⎩

(i
j
)

F
Ei–j,F xi–j if i ≥ j,

0 otherwise.
(29)

Example 6 5 × 5 For n = 4, the Fibo–Euler polynomial matrix is as follows:

EF (x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
– x

2 1 0 0 0
– x2

4 – x
2 1 0 0

x3

4 – x2

2 –x 1 0
5x4

8
3x3

4 – 3x2

2 – 3x
2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Theorem 9 Let HF (x) = [(hF )ij] be the inverse of the Fibo–Euler polynomial matrix, then
we have

HF (x) =
1
2
(
Un+1[x] + In+1

)
, (30)

where Un+1,F is (n + 1) × (n + 1) Fibo–Pascal matrix and In+1 is the identity matrix.
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Proof

(
EF (x)

(
Un+1[x] + In+1

))

ij =
i∑

k=j

(
i
k

)

F
Ei–k,F xi–k

(
k
j

)

F
xk–j +

(
i
j

)

F
Ei–j,F xi–j

=
(

i
j

)

F

i∑

k=j

(
i – j
k – j

)

F
Ei–k,F xi–j +

(
i
j

)

F
Ei–j,F xi–j

=
(

i
j

)

F
xi–j

[ i–j∑

k=0

(
i – j

k

)

F
Ei–j–k,F + Ei–j,F

]

= 2
(

i
j

)

F
xi–jδ0,i–j

for i = j
(i

j
)

F
xi–jδ0,i–j = 1 and for i �= j

(i
j
)

F
xi–jδ0,i–j = 0. Thus the proof is completed. �

Now, we obtain the Fibo–Bernoulli matrix factorization by using the inverse of the Fibo–
Euler polynomial matrix.

Theorem 10 Let B(x, F) be (n + 1) × (n + 1) the Fibo–Bernoulli matrix, then we have

B(x, F) =
[
2HF (x) – In+1

]
W (F). (31)

Proof We have

([
2HF (x) – In+1

]
W (F)

)

ij =
i∑

k=j

(

2
1
2

(
i
k

)

F
xi–k – δik

)(
k
j

)

F

1
Fk–j+1

for j < k < i δik = 0, then we get

([
2HF (x) – In+1

]
W (F)

)

ij =
i∑

k=j

(
i
k

)

F
xi–k

(
k
j

)

F

1
Fk–j+1

=
(

i
j

) i∑

k=j

(
i – j
k – j

)

F

1
Fk–j+1

xi–k

=
(

i
j

) i–j∑

k=0

(
i – j

k

)

F

1
Fk+1

xi–j–k

=
(

i
j

)

F
Bi–j,F (x)

=
[
B(x, F)

]

ij

and

([
2HF (x) – δ

]
W (F)

)

ij = 0

for i = j = k and i < k < j. Thus the proof is completed. �
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