
Pang et al. Advances in Difference Equations        (2019) 2019:207 
https://doi.org/10.1186/s13662-019-2082-8

R E S E A R C H Open Access

Analytical solution of the generalized
Bagley–Torvik equation
Denghao Pang1* , Wei Jiang1, Jun Du2 and Azmat Ullah Khan Niazi3

*Correspondence:
pangdh197@163.com
1School of Mathematical Sciences,
Anhui University, Hefei, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we investigate the generalized Bagley–Torvik equation with the
fractional order (0, 2). With a novel max-metric containing a Caputo derivative, the
existence and uniqueness of the solution to the initial value problem are derived. We
obtain the analytical solutions in terms of the Prabhakar function and the Wiman
function, and they expand the well-known results about the general Bagley–Torvik
equation. Two examples are presented to illustrate the validity of our main results.
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1 Introduction
Fractional calculus is a generalization of classical calculus which studies noninteger pow-
ers of differentiation operators. A rising number of researchers, in the last three decades,
have perfectly utilized fractional calculus to describe hereditary and memory properties
of various processes and materials. Up to now, there have been various fractional opera-
tors based on many kinds of kernels including the power law kernel [1–3], the exponential
law kernel [4–7], the Mittag-Leffler function kernel [8, 9], and the sinc-function kernel
[10, 11]. And they appear frequently in the various applications in viscoelasticity [12, 13],
rheology [14, 15], economy [16], bioengineering [17], electronic circuits [18], control the-
ory [19–21], heat transfer [22–24], diffusion equation [9, 25, 26], some special equations
[27–29], etc.

In this paper, we study the generalized Bagley–Torvik (B–T) equation [30], which is a
precious paradigm for investigating the higher order fractional differential equations and
also popular in viscoelasticity and rheology.

ẍ(t) + bCDαx(t) + cx(t) = f (t) (0 < α < 2), (1.1)

x(0) = A, ẋ(0) = B, (1.2)

where the fractional derivative CDα is in the Caputo sense. In 2007, Bagley [31] investigated
the equivalence between the Caputo and Riemann–Liouville derivatives and pointed out
that they are identical in describing the linear viscoelastic material just under two minimal
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restrictions. For α = 3
2 , it is the famous general Bagley–Torvik equation

ẍ(t) + bD3/2x(t) + cx(t) = f (t). (1.3)

It was surprising success when Bagley [30], in 1984, described the behavior of a rigid
body immersed in a viscous Newtonian fluid, which also demonstrates that the fractional
derivative is a helpful instrument to express the response of a system with familiar natural
elements. For 1 < α < 2, Eq. (1.1) is obviously valid from the general B–T equation (1.3),
while for 0 < α ≤ 1, Eq. (1.1) can be obtained from a fractional vibration equation for vis-
coelastic damped structures with a springpot component. The springpot, also known as
the Scott Blair element, is an intermediate body between the purely elastic (Hookean ele-
ment) and the perfectly viscous liquid (Newtonian element), see [32, 33]. In 1967, Slonim-
sky [32] introduced the viscous element in studying the laws of mechanical relaxation
processes in polymers. And ever since, many researchers have attempted to study the
fractional rheological models by replacing the dashpot with a springpot in the classical
rheological models [33–37]. In 1971, Caputo and Minardi [35] generalized the standard
linear solid (Zener model) with Caputo fractional derivative, which was different from
previously used Riemann–Liouville fractional derivatives. Moreover, for some materials,
he provided many parametric values to the constitutive relations

[
1 + a

∂μ

∂tμ

]
σ (t) =

[
m + b

∂μ

∂tμ

]
ε(t) (0 < μ ≤ 1). (1.4)

With the parametric values, he derived a wider agreement between the theory and the
experimental data for various viscoelastic solids in his fractional dissipation. In 1983, on
the basis of the Scott Blair and Caputo models, Bagley [36] proposed the general form of
viscoelastic model with fractional order derivatives

σ (t) +
M∑

m=1

bmDβmσ (t) = E0ε(t) +
N∑

n=1

EnDαnε(t) (1.5)

and used these models in analyzing viscoelastic damped structures. In 2017, the authors
proposed some new fractional calculus to model the rheological phenomena [14]. Many
research works about the applications of the viscoelastic models in mechanical systems
can be found in [33–39]. For example, the single degree of freedom oscillator with a spring-
pot [39] is in Fig. 1.

By virtue of the physical law, we assume that the restoring force of the spring Fs = –Kx(t)
(K > 0), and the springpot force Fp = –E0

CDαx(t) (E0 > 0). If there are only the three forces,
Fs, Fp, and the external force f (t), acting on the mass M, and applying the Newton second

Figure 1 The single degree of freedom oscillator
with a springpot
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law, the motion of the mass M along a straight line is described by

Mẍ(t) + E0
CDαx(t) + Kx(t) = f (t) (0 < α < 1). (1.6)

Therefore, the generalized B–T equation with the fractional order 0 < α < 2 has a signifi-
cant physical meaning in characterizing the viscoelastic materials and modeling the fluid
mechanical process.

Recently, the authors [40] proposed the numerical solution to the generalized B–T equa-
tion. In [41], the boundary value problem (BVP) of the generalized B–T equation with the
fractional order 1 < α < 2 was discussed. Besides, the paper [42] investigated the BVP of
the generalized B–T equation with fractional integral boundary conditions and the frac-
tional order 0 < α < 2. As for the analytical solution to the generalized B–T equation, there
are few of papers on it. Podlubny has presented the analytical solution to the general B–T
equation (where α = 3

2 ) with zero initial conditions by the Green function [1]. In [43], the
analytical solution to the general B–T equation (where α = 3

2 ) was presented for general
initial conditions. Motivated by the above articles, we devote this paper to discussing the
well-posed problems and the analytical solution of the generalized B–T equation with the
fractional order 0 < α < 2. A novel max-metric containing the Caputo derivative is con-
structed. Subsequently, in a metric space the existence of the initial value problem (IVP) is
discussed without using the completeness of the metric space. Furthermore, with Laplace
transform, the analytical solutions in terms of the Prabhakar function and the Wiman
function are obtained. Therefore, we expand the well-known results about the general
B–T equation. The remainder of our paper is arranged as follows. Section 2 collects some
basic definitions and results. In Sect. 3, the existence, uniqueness of the solution and the
analytical solutions of IVP (1.1)–(1.2) are derived. In the last section, two examples are
presented to demonstrate the validity of our main results.

2 Preliminaries
This section collects some basic definitions and necessary lemmas. Up to now, there
have been various definitions of fractional calculus, here we only present some of them;
for more definitions, one can refer to [1–5, 8]. In this paper we consider the Riemann–
Liouville fractional integral and the fractional derivative in the Caputo sense.

Definition 2.1 ([2]) The Riemann–Liouville fractional integral Iq
a+ of order q of a function

g(t) ∈ C[a, b] is defined as

(
I

q
a+g

)
(t) =

1
Γ (q)

∫ t

a
(t – ξ )q–1g(ξ ) dξ , (2.1)

where Re(q) > 0, and Γ (·) is the gamma function.

Definition 2.2 ([2]) The Caputo fractional derivative CDq
a+ of order q of a function g(t) ∈

Cn[a, b] is represented by

CDq
a+g(t) =

⎧⎨
⎩

1
Γ (n–q)

∫ t
0 (t – ξ )n–q–1g(n)(ξ ) dξ , if q /∈ N0,

g(n)(t), if q = n ∈ N0,
(2.2)

where g(n)(ξ ) = dn

dtn g(ξ ), Re(q) ≥ 0, n = [Re(q)] + 1, and N0 = {0, 1, . . .}.
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Definition 2.3 ([4]) The Caputo–Fabrizio–Caputo fractional derivative (CFC) is defined
as follows:

CFCDq
0+f (t) =

M(q)
n – q

∫ t

0
f (n)(ξ ) exp

[
–

q(t – ξ )
n – q

]
dξ , (2.3)

where n – 1 < q < n, and M(q) is a normalization function such that M(0) = M(1) = 1.

Definition 2.4 ([8]) The Atangana–Baleanu–Caputo fractional derivative (ABC) is de-
fined as follows:

ABCDq
0+f (t) =

M(q)
n – q

∫ t

0
f (n)(ξ )Eq

[
–

q(t – ξ )q

n – q

]
dξ , (2.4)

where n – 1 < q < n, and M(q) is a normalization function such that M(0) = M(1) = 1.

Lemma 2.5 ([2]) If y(x) ∈ Cn[a, b], then

(CDq
a+I

q
a+y

)
(x) = y(x) (2.5)

and

(
I

q
a+

CDq
a+y

)
(x) = y(x) –

n–1∑
k=0

y(k)(a)
k!

(x – a)k . (2.6)

Lemma 2.6 ([2]) The Laplace transform of the defined fractional derivative is

L
{CDq

0+f (t); s
}

= sqF(s) –
n–1∑
k=0

sq–k–1f (k)(0). (2.7)

Lemma 2.7 ([2]) Let q,λ ∈C, Re(q) > 0, and a ∈ R, then there holds

(CDq
a+Eq

(
λ(z – a)q))(t) = λEq

(
λ(t – a)q). (2.8)

Definition 2.8 ([44] Prabhakar’s function) The Prabhakar generalized Mittag-Leffler
function is defined as

Eρ
μ,ν(z) =

∞∑
k=0

(ρ)kzk

Γ (μk + ν)k!
, (2.9)

where μ,ν,ρ ∈C with Re(μ) > 0; (ρ)0 = 1, (ρ)k = Γ (ρ+k)
Γ (ρ) ; Γ (·) is the Euler gamma function.

For ρ = 1, it reduces to the Wiman function Eμ,ν(z) and it turns out to be the Mittag-
Leffler function Eμ(z) for ρ = 1, ν = 1. Indeed, E1

μ,ν(z) = Eμ,ν(z), E1
μ,1(z) = Eμ(z).

Lemma 2.9 ([44]) If μ,ν,ρ,λ ∈C; Re(μ) > 0, Re(ν) > 0, and Re(ρ) > 0, then for m ∈N,

L
{

zν–1Eρ
μ,ν

(±λzμ
)
; s

}
=

∫ ∞

0
e–szzν–1Eρ

μ,ν
(±λzμ

)
dz =

sμρ–ν

(sμ ∓ λ)ρ
, (2.10)

where (Re(s) > |λ| 1
μ ) and L{f (t); s} = F(s) is the Laplace transform of f (t).
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Lemma 2.10 ([1]) If μ,ν,λ ∈C, Re(μ) > 0, Re(ν) > 0, then for k ∈ N,

L
{

zμk+ν–1E(k)
μ,ν

(±λzμ
)
; s

}
=

k!sμ–ν

(sμ ∓ λ)k+1

(
Re(s) > |λ| 1

μ
)
, (2.11)

where

E(k)
μ,ν(z) =

dk

dzk Eμ,ν(z) =
∞∑
j=0

(j + k)!zj

j!Γ (μj + μk + ν)
. (2.12)

3 Main results
In this section, with a novel max-metric dλ, the well-posed problems for the solution of
IVP (1.1)–(1.2) are investigated. Then we present the analytical solution to the IVP in
terms of the Prabhakar function and the Wiman function, respectively. Throughout this
paper, the Caputo fractional derivative of the function x(t) is denoted by x(α)(t).

3.1 Existence and uniqueness
We firstly define a novel max-metric dλ containing x(α); secondly, we show that any two
solutions of IVP (1.1)–(1.2) are equivalent in the metric space (C2[0, T], dλ); and lastly we
demonstrate that a solution sequence {xi}∞i=1 of IVP (1.1)–(1.2) is a Cauchy sequence in the
metric space. Since in the real numbers every Cauchy sequence converges to some limit,
and the limit satisfies IVP (1.1)–(1.2), we derive the unique solution.

Rearranging IVP (1.1)–(1.2), we have

ẍ(t) = f (t) – bCDαx(t) – cx(t) = g
(
t, x(t), x(α)(t)

)
(0 < α < 2), (3.1)

x(0) = A, ẋ(0) = B, (3.2)

where g(t) is continuous if f (t) is. The following equations are equivalent to IVP (1.1)–(1.2)
for the same α.

Lemma 3.1 Let g(t, x(t), x(α)(t)) = f (t) – bCDαx(t) – cx(t), then IVP (1.1)–(1.2) is equivalent
to the following equations:

x(t) =
∫ t

0
(t – s)g

(
s, x(s), x(α)(s)

)
ds + Bt + A, t ∈ [0, T], (3.3)

for 0 < α ≤ 1,

x(α)(t) =
1

Γ (2 – α)

∫ t

0
(t – s)1–αg

(
s, x(s), x(α)(s)

)
ds +

Bt1–α

Γ (2 – α)
, t ∈ [0, T] (3.4)

and for 1 < α < 2,

x(α)(t) = I2–α ẍ =
1

Γ (2 – α)

∫ t

0
(t – s)1–αg

(
s, x(s), x(α)(s)

)
ds, t ∈ [0, T]. (3.5)

Proof Taking the Laplace transform of Eq. (3.1), we derive

X(s) = s–2G
(
s, x(s), x(α)(s)

)
+ s–2B + s–1A.
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According to the convolution property and the inverse Laplace transform, we obtain
Eq. (3.3). Taking the derivative with respect to t on both sides of Eq. (3.3) yields

ẋ(t) =
d
dt

∫ t

0
(t – s)g

(
s, x(s), x(α)(s)

)
ds + B

=
∫ t

0
g
(
s, x(s), x(α)(s)

)
ds + B. (3.6)

For 0 < α < 1 and all t ∈ [0, T], by virtue of the Caputo derivative Definition 2.2, we have

x(α)(t) = I1–α ẋ(t) =
1

Γ (1 – α)

∫ t

0
(t – s)–α

(∫ s

0
g
(
ξ , x(ξ ), x(α)(ξ )

)
dξ + B

)
ds.

By changing the order of integration in the iterated integrals, we obtain

x(α)(t) =
1

Γ (1 – α)

∫ t

0

(∫ t

ξ

(t – s)–α ds
)

g
(
ξ , x(ξ ), x(α)(ξ )

)
dξ +

B
Γ (1 – α)

∫ t

0
(t – s)–α ds

=
1

Γ (2 – α)

∫ t

0
(t – ξ )1–αg

(
ξ , x(ξ ), x(α)(ξ )

)
dξ +

Bt1–α

Γ (2 – α)

=
1

Γ (2 – α)

∫ t

0
(t – s)1–αg

(
s, x(s), x(α)(s)

)
ds +

Bt1–α

Γ (2 – α)
.

In addition, when α = 1, we can derive the result directly from Eq. (3.6), and it is contained
in Eq. (3.4) obviously.

For 1 < α < 2, with the Caputo derivative Definition 2.2 and Eq. (3.1), we have

x(α)(t) = I2–α ẍ =
1

Γ (2 – α)

∫ t

0
(t – s)1–αg

(
s, x(s), x(α)(s)

)
ds, t ∈ [0, T].

This completes the proof. �

Define and denote the block S := {(t, u, v) ∈ R3 : t ∈ [0, T], (u, v) ∈ R2}. Let the real-valued
function g : S → R be Lipschitz continuous with respect to u and v. Let μ > 0 and λ > 0 be
constants and X := C2([0, T]) be the set of 2 times continuously differentiable functions
on [0, T]. Consider the metric space (X, dλ) coupled with the novel max-metric:

dλ(x, y) := max
t∈[0,T]

|x(t) – y(t)|
Eμ(λtμ)

+ max
t∈[0,T]

|x(α)(t) – y(α)(t)|
Eμ(λtμ)

for ∀x, y ∈X. (3.7)

One can check that the space (X, dλ) is complete.

Theorem 3.2 If there exist two positive real constants L ≥ 0 and M ≥ 0 for all (t, ui, vi) ∈ S
(i = 1, 2) such that

∣∣g(t, u1, v1) – g(t, u2, v2)
∣∣ ≤ L|u1 – u2| + M|v1 – v2|, (3.8)

and max{L, M}T2

2 < 1, then IVP (3.1)–(3.2) has, at most, one solution x = x(t) defined on
[0, T].
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Proof Let the positive constants L, M be defined in Eq. (3.8), and define δ :=max{L, M}( T2

2 +
1
λ

). We can choose λ sufficiently large enough such that δ < 1. For any two solutions x, y
to IVP (1.1)–(1.2), we show x ≡ y in the metric space (X, dλ). With Eq. (3.3) and Eq. (3.8),
we derive

|x(t) – y(t)|
E2–α(λt2–α)

≤ 1
E2–α(λt2–α)

∫ t

0
(t – s)

∣∣g(
s, x(s), x(α)(s)

)
– g

(
s, y(s), y(α)(s)

)∣∣ds

≤ 1
E2–α(λt2–α)

∫ t

0
(t – s)

(
L
∣∣x(s) – y(s)

∣∣ + M
∣∣x(α)(s) – y(α)(s)

∣∣)ds

≤ max{L, M}
(

max
t∈[0,T]

|x(t) – y(t)|
E2–α(λt2–α)

+ max
t∈[0,T]

|x(α)(t) – y(α)(t)|
E2–α(λt2–α)

)∣∣∣∣
∫ t

0
(t – s) ds

∣∣∣∣
≤ max{L, M}T2

2
dλ(x, y).

Furthermore, for 0 < α < 2, from Lemma 3.1, we have

|x(α)(t) – y(α)(t)|
E2–α(λt2–α)

=
1

E2–α(λt2–α)
1

Γ (2 – α)

∫ t

0
(t

– s)1–α
∣∣g(

s, x(s), x(α)(s)
)

– g
(
s, y(s), y(α)(s)

)∣∣ds

≤ 1
E2–α(λt2–α)

1
Γ (2 – α)

∫ t

0
(t

– s)1–α

(
E2–α

(
λs2–α

)L|x(s) – y(s)| + M|x(α)(s) – y(α)(s)|
E2–α(λs2–α)

)
ds

≤ 1
E2–α(λt2–α)

max{L, M}dλ(x, y)
1

Γ (2 – α)

∫ t

0
(t – s)1–αE2–α

(
λs2–α

)
ds.

Applying Eq. (2.8) and Eq. (2.6), we have

|x(α)(t) – y(α)(t)|
E2–α(λt2–α)

≤ max{L, M}dλ(x, y) max
t∈[0,T]

{
1

E2–α(λt2–α)

(
I

2–α
0+

CD2–α
0+

E2–α(λt2–α)
λ

)}

≤ max{L, M}dλ(x, y) max
t∈[0,T]

{
1

E2–α(λt2–α)

(
E2–α(λt2–α)

λ
–

1
λ

)}

≤ max{L, M} 1
λ

dλ(x, y) max
t∈[0,T]

{
1 –

1
E2–α(λT2–α)

}
.

Since E2–α(λt2–α) with 2 – α > 0 is continuous and strictly increasing on [0, T], we derive

1
E2–α(λT2–α)

≤ 1
E2–α(λt2–α)

≤ 1 for all t ∈ [0, T].

So,

|x(α)(t) – y(α)(t)|
E2–α(λt2–α)

≤ max{L, M} 1
λ

dλ(x, y).
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Therefore, for any two solutions x, y to IVP (3.1)–(3.2), we have x, y ∈ (X, dλ) satisfy

dλ(x, y) ≤ max{L, M}
(

T2

2
+

1
λ

)
dλ(x, y) = δdλ(x, y),

which yields

(1 – δ)dλ(x, y) ≤ 0.

Since we can choose λ such that δ < 1, so dλ(x, y) = 0, yielding x ≡ y. Hence, IVP (3.1)–
(3.2) has, at the utmost, one solution. �

Theorem 3.3 Under the same conditions of Theorem 3.2, IVP (3.1)–(3.2) has a unique
solution defined on [0, T].

Proof Set a sequence of functions {xi}∞i=1 with x0 := Bt + A and

xk+1 :=
∫ t

0
(t – s)g

(
s, xk(s), x(α)

k (s)
)

ds + Bt + A (i = 1, 2, . . .). (3.9)

Firstly, we show {xi}∞i=1 is a Cauchy sequence on [0, T]. With Theorem 3.2, we have

dλ(xi+1, xi) ≤ δdλ(xi, xi–1) (i = 0, 1, 2, . . .).

We proceed using induction as follows:

dλ(xi+1, xi) ≤ δidλ(x1, x0) (i = 0, 1, 2, . . .),

where ∀λ > 0 is chosen in the above definition of dλ such that δ := max{L, M}( T2

2 +
1
λ

) < 1. Applying the triangle inequality, we can find large N ∈ N+ such that, for all nat-
ural numbers m > n > N and for ∀ε > 0,

dλ(xm, xn) ≤ dλ(xm, xm–1) + dλ(xm–1, xm–2) + · · · + dλ(xn+1, xn)

≤ (
δm–1 + δm–2 + · · · + δn)dλ(x1, x0)

<
δn

1 – δ
dλ(x1, x0) < ε.

This proves that {xi}∞i=1 is a Cauchy sequence. In the real numbers every Cauchy sequence
converges to some limit. Therefore, there is a continuously differentiable function x = x(t)
such that limi→∞ dλ(xi, x) = 0.

Secondly, the limit function x(t) satisfies

x(t) =
∫ t

0
(t – s)g

(
s, x(s), x(α)(s)

)
ds + Bt + A.

Hence, the limit function x(t) is a solution to IVP (3.1)–(3.2) on [0, T]. Combining with
Theorem 3.2, IVP (3.1)–(3.2) has a unique solution defined on [0, T]. �
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3.2 Analytical solutions
In this section, we present two equivalent analytical solutions to IVP (1.1)–(1.2).

Theorem 3.4 The general analytical solution of IVP (1.1)–(1.2), on the basis of the Prab-
hakar function, can be written, for 0 < α ≤ 1, as follows:

x(t) = A
∞∑

k=0

(–b)kt(2–α)kEk+1
2,(2–α)k+1

(
–ct2) + Ab

∞∑
k=0

(–b)kt(2–α)k–α+2Ek+1
2,(2–α)k–α+3

(
–ct2)

+ B
∞∑

k=0

(–b)kt(2–α)k+1Ek+1
2,(2–α)k+2

(
–ct2)

+
∞∑

k=0

(–b)k
∫ t

0
f (t – s)s(2–α)k+1Ek+1

2,(2–α)k+2
(
–cs2)ds (3.10)

and for 1 < α ≤ 2,

x(t) = A
∞∑

k=0

(–b)kt(2–α)kEk+1
2,(2–α)k+1

(
–ct2) + Ab

∞∑
k=0

(–b)kt(2–α)k–α+2Ek+1
2,(2–α)k–α+3

(
–ct2)

+ Bb
∞∑

k=0

(–b)kt(2–α)k–α+3Ek+1
2,(2–α)k–α+4

(
–ct2) + B

∞∑
k=0

(–b)kt(2–α)k+1Ek+1
2,(2–α)k+2

(
–ct2)

+
∞∑

k=0

(–b)k
∫ t

0
f (t – s)s(2–α)k+1Ek+1

2,(2–α)k+2
(
–cs2)ds. (3.11)

Proof According to Eq. (2.7), taking the Laplace transform of Eq. (1.1), we obtain

X(s) =
(
s2 + bsα + c

)–1[(s + bsα–1)A + B + F(s)
]
, for 0 < α ≤ 1,

X(s) =
(
s2 + bsα + c

)–1[(s + bsα–1)A +
(
1 + bsα–2)B + F(s)

]
for 1 < α < 2.

The following expression holds:

(
s2 + bsα + c

)–1 =
1

s2 + c

(
1 +

bsα

s2 + c

)–1

=
∞∑

k=0

(–b)k skα

(s2 + c)k+1 .

Applying the above formula, we have, for 0 < α ≤ 1,

X(s) = A
∞∑

k=0

(–b)k skα+1

(s2 + c)k+1 + Ab
∞∑

k=0

(–b)k s(k+1)α–1

(s2 + c)k+1

+ B
∞∑

k=0

(–b)k skα

(s2 + c)k+1 + F(s)
∞∑

k=0

(–b)k skα

(s2 + c)k+1 ,

and for 1 < α < 2,

X(s) = A
∞∑

k=0

(–b)k skα+1

(s2 + c)k+1 + Ab
∞∑

k=0

(–b)k s(k+1)α–1

(s2 + c)k+1 + Bb
∞∑

k=0

(–b)k s(k+1)α–2

(s2 + c)k+1

+ B
∞∑

k=0

(–b)k skα

(s2 + c)k+1 + F(s)
∞∑

k=0

(–b)k skα

(s2 + c)k+1 .
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Using the inverse Laplace transform of Eq. (2.10), the results are valid. �

Theorem 3.5 The general analytical solution of IVP (1.1)–(1.2), on the basis of the Wiman
function, can be built, for 0 < α ≤ 1, as follows:

x(t) = A
∞∑

k=0

(–c)k

k!
t2kE(k)

2–α,kα+1
(
–bt2–α

)
+ Ab

∞∑
k=0

(–c)k

k!
t2k–α+2E(k)

2–α,(k–1)α+3
(
–bt2–α

)

+ B
∞∑

k=0

(–c)k

k!
t2k+1E(k)

2–α,2+kα

(
–bt2–α

)

+
∞∑

k=0

(–c)k

k!

∫ t

0
f (t – s)s2k+1E(k)

2–α,2+kα

(
–bs2–α

)
ds, (3.12)

and for 1 < α < 2,

x(t) = A
∞∑

k=0

(–c)k

k!
t2kE(k)

2–α,kα+1
(
–bt2–α

)
+ Ab

∞∑
k=0

(–c)k

k!
t2k–α+2E(k)

2–α,(k–1)α+3
(
–bt2–α

)

+ Bb
∞∑

k=0

(–c)k

k!
t2k–α+3E(k)

2–α,(k–1)α+4
(
–bt2–α

)

+ B
∞∑

k=0

(–c)k

k!
t2k+1E(k)

2–α,2+kα

(
–bt2–α

)

+
∞∑

k=0

(–c)k

k!

∫ t

0
f (t – s)s2k+1E(k)

2–α,2+kα

(
–bs2–α

)
ds. (3.13)

Proof Similar to the above proof and with the following formula

(
s2 + bsα + c

)–1 =
s–α

s2–α + b

(
1 +

cs–α

s2–α + b

)–1

=
∞∑

k=0

(–c)k s–α(k+1)

(s2–α + b)k+1

and the inverse Laplace transform of Eq. (2.11), we can show that the results are valid. �

Remark 3.6 The solutions expand the well-known results. Under the same α, the above
two theorems are equivalent when one rewrites them in terms of the gamma function.
When the initial condition of IVP (1.1)–(1.2) is the zero initial condition (i.e., A = B = 0),
the solution has only one expression for α ∈ (0, 2). And for α = 3

2 , one can find that the
solution of IVP (1.1)–(1.2) with the zero-initial condition in Theorem 3.5 is identical with
the solution presented with the fractional Green function by Podlubny ([1], (8.26)).

4 Two illustrative examples
The following illustrative examples are given to show the validity of our results.

Example 4.1 Consider the initial value problem:

Fẍ(t) + Gx( 1
2 )(t) + Hx(t) = h(t), (4.1)

x(0) = 0, ẋ(0) = 0. (4.2)



Pang et al. Advances in Difference Equations        (2019) 2019:207 Page 11 of 13

Substituting the parameters α = 1
2 , b = G

F , c = H
F , f (t) = h(t)

F , A = B = 0 into Eq. (3.10) and
Eq. (3.12), respectively, we have the analytical solutions

x1(t) =
1
F

∞∑
k=0

(
–

G
F

)k ∫ t

0
h(t – s)

(
s1.5k+1Ek+1

2,1.5k+2

(
–

H
F

s2
))

ds (4.3)

and

x2(t) =
1
F

∞∑
k=0

(–1)k

k!

(
H
F

)k ∫ t

0
h(t – s)

(
s2k+1E(k)

1.5,2+0.5k

(
–

G
F

s1.5
))

ds. (4.4)

Rewriting them in terms of the gamma function with Eq. (2.9) and Eq. (2.12), we have

x1(t) =
1
F

∞∑
k=0

∞∑
j=0

(–1)k+j
(

G
F

)k(H
F

)j (k + j)!
k!j!

1
Γ (2j + 1.5k + 2)

∫ t

0
h(t – s)s2j+1.5k+1 ds

and

x2(t) =
1
F

∞∑
k=0

∞∑
j=0

(–1)k+j
(

H
F

)k(G
F

)j (k + j)!
k!j!

1
Γ (1.5j + 2k + 2)

∫ t

0
h(t – s)s1.5j+2k+1 ds.

It is obvious that x1(t) = x2(t), they are the equivalent analytical solutions to IVP (4.1)–
(4.2).

Example 4.2 Consider the initial value problem:

Fẍ(t) + Gx( 3
2 )(t) + Hx(t) = h(t), (4.5)

x(0) = 0, ẋ(0) = 0. (4.6)

Substituting the parameters α = 3
2 , b = G

F , c = H
F , f (t) = h(t)

F , A = B = 0 into Eq. (3.11) and
Eq. (3.13), respectively, we have the analytical solutions

x1(t) =
1
F

∞∑
k=0

(
–

G
F

)k ∫ t

0
h(t – s)

(
s0.5k+1Ek+1

2,0.5k+2

(
–

H
F

s2
))

ds (4.7)

and

x2(t) =
1
F

∞∑
k=0

(–1)k

k!

(
H
F

)k ∫ t

0
h(t – s)

(
s2k+1E(k)

0.5,2+1.5k

(
–

G
F

s0.5
))

ds. (4.8)

Rewriting them in terms of the gamma function with Eq. (2.9) and Eq. (2.12), we have

x1(t) =
1
F

∞∑
k=0

∞∑
j=0

(–1)k+j
(

G
F

)k(H
F

)j (k + j)!
k!j!

1
Γ (2j + 0.5k + 2)

∫ t

0
h(t – s)s2j+0.5k+1 ds

and

x2(t) =
1
F

∞∑
k=0

∞∑
j=0

(–1)k+j
(

H
F

)k(G
F

)j (k + j)!
k!j!

1
Γ (0.5j + 2k + 2)

∫ t

0
h(t – s)s0.5j+2k+1 ds.
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It is obvious that x1(t) = x2(t), they are the equivalent analytical solutions to IVP (4.5)–
(4.6).

Remark 4.3 The analytical solution (4.8) is identical to the solution (8.26) in [1].

5 Conclusion
In this paper, we investigate the generalized Bagley–Torvik equation with the fractional
order (0, 2), derive the existence and uniqueness of the solution and analytical solutions
of the initial value problem, and expand the well-known results about the general Bagley–
Torvik equation. Furthermore, two examples are presented to illustrate the validity of our
main results. For further research, it is interesting and challenging to discuss the finite-
time stability, robust stability, and the resonance of the generalized Bagley–Torvik equa-
tion.
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