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Abstract
In this paper, we propose a fractional SIRS model with homogenous networks. The
disease-free equilibrium point E0 is locally and globally asymptotically stable for R0 < 1
(the disease always disappears), and endemic equilibrium point E1 is uniquely locally
and globally asymptotically stable, but E0 is unstable for R0 > 1 (the disease is
uniformly persistent). The main results are demonstrated by numerical simulation.
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1 Introduction
Spreading of infections has been studied by researchers who used mathematical model-
ing based on complex networks, which help us to understand the infections, to predict the
effect of those infections on our population, to prevent and control most dangerous infec-
tious diseases like HIV/AIDS, dengue fever, and H1N1 [1–3], and decide whether they
are epidemic or nonepidemic. Complex networks consist of nodes and links that connect
the nodes. We can represent each individual of the population, which is divided into three
categories (Susceptible “x”, infected “y”, and removed “z”) as nodes, and represent links as
social communication. The epidemic spreading process based on homogenous networks
is discussed in [4], and we can note that the main factor in homogenous network is the
average degree of nodes, which is the average contact between individuals in the popula-
tion.

In [5] the modified SIRS epidemic model is introduced, and the count in a nonlinear
term plays an important role in the calculation of reproductive ratio R0, which means that
the connection between individuals helps us to decide whether the disease is epidemic or
free in the population. In this paper, we introduce the SIRS model supported by fractional
differential equations.

It is commonly known that fractional-order systems are an extension of conventional
integer-order systems. However, it should be noted that they possess advantages over the
conventional integer-order systems, on which we base our work. Those advantages in-
clude having memory and hereditary properties that integer-order systems do not, which
are usually implemented by most biological systems. Another advantage is that fractional-
order systems have a more accurate description of population models than that of the
integer-order ones; they also better indicate relations between prey and predator species.
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Needless to mention a wide spread of applications of fractional-order derivatives to inter-
disciplinary fields. When it comes to memory and hereditary properties of materials or
processes, it is often well pointed out that fractional-order calculus is best suited to their
description. Such properties are all but neglected by the classical integer-order models.
Considering many intriguing results found while working on models of the dynamics of
population, they were found to be exclusive to integer-order differential equations [6, 7].

Mainly, a great recognition and credit earned by fractional-order differential equations,
as of late, has been based on the natural compatibility and better relation to systems with
memory, which is found in most biological systems. Not failing to mention their relation
to fractals, fractional-order systems are doubtlessly better related to them than integer-
order systems, and fractals being quite abundant in biological systems, it is needless to
further question the suitability of fractional-order systems to our work. Having recog-
nized the need to use fractional-order systems, many biological phenomena and inter-
disciplinary fields have been precisely and successfully described through models using
fractional-order systems. Due to the scarcity of theories needed to analyze the dynamics
of fractional-order systems, studies of stability of fractional-order population models can
only be the beginning of a vast and doubtlessly fruitful implementation [6, 7]. This study
is also motivated by Zika epidemic [8].

In the rest of the paper, we discuss the effect of fractional differential equations and the
role of networks, especially in local and global stability, and we finally support our work
by numerical results. Some integral and derivative basics of the fractional order and some
preliminary results are mentioned in Sect. 2. In Sect. 3, we give the model. In Sect. 4,
equilibria are calculated with studies on local stability. The global stability of equilibria is
studied in Sect. 5. In Sect. 6, we use a numerical method (Adams-type predictor–corrector
method) to solve our model in order to support the theoretical results. Finally, conclusions
are summarized in Sect. 7.

2 Preliminaries
First, we illustrate the definitions of the fractional-order integral, Caputo fractional deriva-
tive, and Mittag-Leffler function; see [9].

Definition 2.1 The fractional integral of order q ∈ R+ of the function g(t), t > 0, is defined
by

Iqg(t) =
∫ t

0

(t – s)q–1

Γ (q)
g(s) ds. (1)

Definition 2.2 The Caputo fractional derivative of order q > 0 of g(t), t > 0, is defined by

Dq
∗g(t) = In–qDng(t), (2)

where D = d/dt and n – 1 < q ≤ n, n ∈N.

For properties of fractional derivatives and integrals, see [9].
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Definition 2.3 The Mittag-Leffler function of parameter q > 0 is defined as

Eq(z) =
∞∑
j=0

zj

Γ (qj + 1)
. (3)

Let q ∈ (0, 1] and consider the system

Dq
∗y1(t) = g1(y1, y2, y3),

Dq
∗y2(t) = g2(y1, y2, y3), (4)

Dq
∗y3(t) = g3(y1, y2, y3),

y1(0) = yo1, y2(0) = yo2, and y3(0) = yo3. (5)

Definition 2.4 The constant (yeq
1 , yeq

2 , yeq
3 ) can only be an equilibrium point of the frac-

tional dynamic model (4) if and only if

gi
(
yeq

1 , yeq
2 , yeq

3
)

= 0, i = 1, 2, 3.

Theorem 2.1 The equilibrium points of system (4) are locally asymptotically stable (LAS)
if all eigenvalues ri of the Jacobian matrix evaluated at the equilibrium points

B =

⎡
⎢⎣

b11 b12 b13

b21 b22 b23

b31 b32 b33

⎤
⎥⎦ ,

bij =
∂gi

∂yj

∣∣∣∣
eq

, i, j = 1, 2, 3,

satisfy

∣∣arg(ri)
∣∣ >

qπ

2
, i = 1, 2, 3. (6)

Proof Refer to [10–13]. �

Figure 1 shows the condition of the stability of the fractional-order model with order α.
We use the following polynomial to obtain an equation for the eigenvalues of the equi-

librium point (yeq
1 , yeq

2 , yeq
3 ):

p(r) = r3 + b1r2 + b2r + b3 = 0, (7)

and its discriminant D(P) is given by

D(P) = –

∣∣∣∣∣∣∣∣∣∣∣∣

1 b1 b2 b3 0
0 1 b1 b2 b3

3 2b1 b2 0 0
0 3 2b1 b2 0
0 0 3 2b1 b2

∣∣∣∣∣∣∣∣∣∣∣∣
= 18b1b2b3 + (b1b2)2 – 4b3b3

1 – 4b3
2 – 27b2

3. (8)
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Figure 1 Stability region of the fractional-order system

Proposition 2.1 ([10]) The equilibrium point (yeq
1 , yeq

2 , yeq
3 ) of system (4) is locally asymp-

totically stable if one of the following conditions is satisfied:
(i) D(P) > 0, b1 > 0, b3 > 0, and b1b2 – b3 > 0.

(ii) D(P) < 0, b1 ≥ 0, b2 ≥ 0, b3 > 0, and q < 2/3.
(iii) D(P) < 0, b1 > 0, b2 > 0, b1b2 – b3 = 0, and for all q ∈ (0, 1).
(iv) The imperative condition is b3 > 0.

Now, consider the following autonomous system:

Dq
∗y(t) = g(y), q ∈ (0, 1). (9)

The following lemmas help us to prove the globally asymptotical stability (GAS) of equi-
librium points.

Lemma 2.2 (See [14]) Suppose D is a bounded closed set. Every solution of (9) starts from
a point in D and remains in D all the time. If ∃V (y) : D −→R with continuous first partial
derivatives satisfies following condition:

Dq
∗V |(9) ≤ 0.

Let E = {Dq
∗V |(9) = 0, y ∈ D}, and let M be the largest invariant set of E. Then every solution

y(t) originating in D tends to M as t → ∞. Particularly, if M = {0}, then y → 0 as t → ∞.

Lemma 2.3 (See [15]) Let y(t) ∈R
+ be a continuous and differentiable function. Then, for

any time instant t ≥ t0,

Dq
∗

[
y(t) – y∗ – y∗ ln

y(t)
y∗

]
≤

(
1 –

y∗

y(t)

)
Dq

∗y(t), y∗ ∈R
+,∀q ∈ (0, 1). (10)

3 SIRS epidemic model on homogenous networks with fractional order (FSIRS)
Let x(t) be the number of susceptible individuals, let y(t) represent the infected individuals,
and let z(t) represent the recovered or vaccinated individuals; all individuals are consid-
ered at time t [5].
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Figure 2 Flowchart of transmission of disease

The FSIRS model of homogenous networks is given by

Dq
∗x(t) = λ –

β〈k〉xy
x + y + z

+ γ z – (υ + μ)x,

Dq
∗y(t) =

β〈k〉xy
x + y + z

– (κ + μ + α)y, (11)

Dq
∗z(t) = κy – (μ + γ )z + υx,

where Dq
∗ is the Caputo derivative, 0 < q ≤ 1, and all the parameters μ, κ , λ, β , υ , γ , and α

are positive.
The parameter β represent the infection rate (the rate of susceptible individuals infected

due to contact with infected individuals), κ is the healing rate, and healed individuals be-
come susceptible at the rate γ . At the same time, υ represents the inoculation rate (suscep-
tible individuals acquiring immunity by drug). The constant λ is the change rate of suscep-
tibles due to birth and immigration, where μ is the death rate of population independently
of disease, and α is the death rate due to disease. Figure 2 describes the transmission of
disease.

Given that the network is homogenous, we assume that 〈k〉 is the average connection
between nodes in the network and that all nodes have unique degrees. Also, the infection
has a positive relation with population density [5].

We denote the total population as N = x + y + z.

Theorem 3.1 The closed set Ω = {(x, y, z) ∈ R
3
+ : x ≥ 0, y ≥ 0, z ≥ 0, x + y + z ≤ λ

μ
} is a

positive invariant set and global attracting set of system (11).

Proof Adding three classes of system (11), we get:

Dq
∗N = λ – μN – αy,

Dq
∗N ≤ λ – μN .

Applying the Laplace transform, we obtain:

N(t) ≤
(

–
λ

μ
+ N(0)

)
Eq

(
–μtq) +

λ

μ
,

where Eq(–μtq) is the Mittag-Leffer function of parameter q.
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Especially, if N(0) ≤ λ
μ

, then N(t) ≤ λ
μ

, since 0 ≤ Eq(–μtq) ≤ 1, so the closed set Ω is the
positive invariant set of system (11). Furthermore, since limt→∞ Eq(–μtq) = 0, it follows
that if N(0) > λ

μ
, then the solution φ(N(t)) of system (11) satisfies limt→∞ φ(N(t)) = λ

μ
.

Hence the closed set Ω attracts all the solutions in R
3
+, so that Ω is the global attracting

set of system (11). �

4 Equilibria and their local stability
The equilibrium points of system (11) are (x0, y0, z0) = ( λ(γ +μ)

μ(γ +μ+υ) , 0, λυ
μ(γ +μ+υ) ) and (x∗, y∗, z∗),

where

x∗ =
λρ(κ + γ + μ)

ρζ [μR0 + α(R0 – 1)] + β〈k〉μκ]
,

y∗ =
λρζ (R0 – 1)

ρζ [μR0 + α(R0 – 1)] + β〈k〉μκ]
,

z∗ =
κy∗ + υx∗

μ + γ
,

R0 =
β〈k〉(μ + γ )

(κ + α + μ)(μ + υ + γ )
,

ρ = (κ + α + μ),

ζ = (μ + υ + γ ).

Theorem 4.1
(i) System (11) has a unique disease-free equilibrium E0 = ( λ(γ +μ)

μ(γ +μ+υ) , 0, λυ
μ(γ +μ+υ) ) under

the condition R0 ≤ 1.
(ii) If R0 > 1, then E0 still exists, and system (11) has a unique endemic equilibrium

E1 = (x∗, y∗, z∗).

The local stability of E0 and E1 is studied in the following theorems.

Theorem 4.2 The disease-free equilibrium E0 is locally asymptotically stable if R0 < 1 and
is unstable whenever R0 > 1.

Proof Using the Jacobian matrix of system (11) at E0, we find that the eigenvalues are:

r1 = –μ < 0,

r2 = –(μ + γ + υ) < 0,

r3 = –(κ + μ + α)(1 – R0) < 0.

Hence E0 is locally asymptotically stable if R0 < 1. �

Now, to study the local stability of E1, we assume that R0 > 1. After evaluating the Jaco-
bian matrix of system (11) at E1, the characteristic polynomial is given by

r3 + a1r2 + a2r + a3 = 0, (12)
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where

a1 = γ + 2μ + υ + pw,

a2 = (p – τ )w2 + (γ p + κτ + pμ + τμ)w + γμ + μυ + μ2,

a3 =
[
p(γ + μ) – τ (μ + υ + γ )

]
w2 +

[
τ (μ + υ + γ )(μ + κ) – γ κp

]
w,

p =
y∗

x∗ , τ =
y∗

N∗ , N∗ = x∗ + y∗ + z∗, (p – τ ) > 0,

w = (α + μ + κ) =
β〈k〉x∗

N∗ .

It is obvious that a1, a2 > 0 and a3 = τ (μ + υ + γ )[α(R0 – 1) + μR0 + μκ〈k〉β
(α+μ+κ)(μ+υ+γ ) ] > 0 as

long as R0 > 1. Further, we have a1a2– a3 > 0.
So, the Routh–Hurwitz conditions are satisfied. Let D(p) denote the discriminant of

polynomial (12) given by (8); using Proposition 2.1, we obtain the following result.

Theorem 4.3 Assume that R0 > 1.
(i) If D(p) > 0, then E1 is locally asymptotically stable for all 0 < q ≤ 1.

(ii) If D(p) < 0 and q < 2/3, then E1 is locally asymptotically stable.

5 Global stability
The global stability of E0 and E1 are studied by using a Lyapunov function.

Theorem 5.1 If R0 < 1, then the disease-free equilibrium E0 is globally asymptotically sta-
ble.

Proof For system (11), consider the following Lyapunov function:

L0(t) = y.

On calculating Dq
∗L0, we get:

Dq
∗L0 = y

(
β〈k〉x

N
– ρ

)
,

Dq
∗L0 ≤ ρy

(
β〈k〉(γ + μ)
ρ(γ + μ + υ)

– 1
)

,

Dq
∗L0 ≤ ρy(R0 – 1).

Then

Dq
∗L0 ≤ 0 if R0 < 1.

Hence, if R0 < 1, then Dq
∗L0 ≤ 0. Furthermore, the largest invariant set of {(x, y, z) : Dq

∗L0 =
0} is the singleton {E0}. According to Lemma 2.2 and Theorem 4.2, E0 is globally asymp-
totically stable when R0 < 1, which implies that the disease will disappear regardless of the
initial density of the infected individuals. �
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Theorem 5.2 If R0 > 1, then E1 is globally asymptotically stable.

Proof Define the Lyapunov functional L1(t) as follows:

L1(t) = x∗Φ
(

x
x∗

)
+ y∗Φ

(
y
y∗

)
+ z∗Φ

(
z
z∗

)
,

where Φ(y) = y – 1 – ln(y), y > 0. It is obvious that Φ(y) > 0. �

Calculating Dq
∗L1 and using Lemma 2.3, we get:

Dq
∗L1 ≤

(
x – x∗

x

)
Dq

∗x +
(

y – y∗

y

)
Dq

∗y +
(

z – z∗

z

)
Dq

∗z,

where λ = β〈k〉x∗y∗
N∗ – γ z∗ + (υ + μ)x∗. Hence

Dq
∗L1 ≤ –(υ + μ)

(x – x∗)2

x
–

β〈k〉y∗

xN∗
(
x – x∗)2

+
β〈k〉(N – N∗)

NN∗
(
xy∗ – x∗y

)

–
(
z – z∗)(μ + γ ) +

(
z – z∗

z

)
(κy + υx) + γ

(
z – z∗)(x – x∗

x

)

≤ –(υ + μ)
(x – x∗)2

x
–

β〈k〉y∗

xN∗
(
x – x∗)2 –

β〈k〉xy∗

N∗ Φ

(
N∗

N

)

–
β〈k〉x∗y

N
Φ

(
N
N∗

)
– (κy + υx)Φ

(
z∗

z

)
– z∗

(
μ + γ

x∗

x

)
Φ

(
z
z∗

)
.

Hence Dq
∗L1 ≤ 0. Furthermore, the largest invariant set of {(x, y, z) : Dq

∗L1 = 0} is the sin-
gleton {E1}. According to Lemma 2.2 and Theorem 4.2, E1 is globally asymptotically stable,
which implies that the disease is still at an endemic level, and it does not depend on the ini-
tial density of the infected individuals. This result leads us to wonder how we can reduce
the basic reproduction number R0 to be less than one.

6 Numerical methods and results
The original problem (11) is equivalent to the following fractional integral equations:

x(t) = x(0) + Iq
[
λ –

β〈k〉xy
x + y + z

+ γ z – (υ + μ)x
]

,

y(t) = y(0) + Iq
[

β〈k〉xy
x + y + z

– (κ + μ + α)y
]

, (13)

z(t) = z(0) + Iq[κy – (μ + γ )z + υx
]
.

An Adams-type predictor–corrector method [16–18] is used for the numerical solution
of fractional integral equations.

x(t), y(t), and z(t) are displayed in Figs. 3–8. In each figure, three different values of
q = 1, 0.95, 0.90, as well as the parameters, are considered as in Table 1. In Figs. 3–5,
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Figure 3 Dynamic of x non endemic

Figure 4 Dynamic of y non endemic

we set υ = 0.3, and the initial conditions are (450, 550, 0). In this case, the value of R0

is R0 = 0.602236 < 1, which means that E0 = (251.87, 0, 748.13) is globally asymptotically
stable, albeit for a large number of infected individuals at the initial time, which means the
infection will die out in the population.

In Figs. 6–8, we set υ = 0.005, and the initial conditions are (800, 200, 0). In this case,
the value of R0 is R0 = 2.27827 > 1, which means that E0 = (952.83, 0, 47.1698) is unsta-
ble, and a unique endemic equilibrium point E1 = (386.518, 87.1414, 450.528) is globally
asymptotically stable, albeit for a small number of infected individuals at the initial time,
which means that the infection will persist in the population.
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Figure 5 Dynamic of z non endemic

Figure 6 Dynamic of x endemic

Now, we study Hepatitis B virus infection in China with clinal data [5] for the parameter
values of system (11) as in Table 2, with the initial conditions (4.0 × 108, 8.56 × 107, 6.54 ×
108).

The approximate solutions y(t) are displayed in Figs. 9–11 for q = 1, 0.99, 0.98 and υ =
0.2707, 0.5, 0.9, and we find that R0 < 1.

For υ = 0.2707, the data show that the estimate of the infected individuals in 2010 is
about 120361000 for q = 1, 120115900 for q = 0.99 and 119871900 for q = 0.98, which is
close to the real estimate of HBV-infected individuals 120 million in China in 2010 [19].
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Figure 7 Dynamic of y endemic

Figure 8 Dynamic of z endemic

Over a long period of time, numerical results predict that the ratio of the HBV-infected
individuals will decrease to 0.5% passing by different years for q = 1, 0.99, 0.98 as in Table 3.

The level represented is the same level of the HBV-infected population ratio in North-
ern America [20]. The relation between the vaccinated population and time is shown in
Tables 4 and 5 (if the percentage of (υ) of the immunized population changes to υ = 0.5
and υ = 0.9, then the required time to reduce to 0.5% HBV-infected population will de-
crease).
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Table 1 Parameter values for simulations

Parameter Value

〈k〉 6
κ 0.5
α 0.00087
γ 0.1
μ 0.001
β 0.2
λ 1

Table 2 Parameter values for simulations

Parameter Value

〈k〉 6
κ 0.073
μ 0.00714
β 0.13
α 0.0007
γ 0.01
λ 13,552,480

Figure 9 Dynamic of y non endemic (υ = 0.2707)

Consequently, we deduce that increasing the percentage (υ) of immunized population
plays an important role in controlling the HBV spread. Additionally, in the fractional-order
case, the peak of the infected individuals y(t) is lower, which gives more accurate results
resembling real data.

7 Conclusions
In this paper, the epidemic dynamics of fractional SIRS model on homogenous networks
is studied.

We show that when R0 < 1, the disease-free equilibrium point E0 is locally and globally
asymptotically stable, namely, the extinction of the disease will be achieved. When R0 > 1,
the endemic equilibrium point E1 is also locally and globally asymptotically stable, mean-
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Figure 10 Dynamic of y non endemic (υ = 0.5)

Figure 11 Dynamic of y non endemic (υ = 0.9)

ing that the disease will persist in the population. The theoretical analysis is supported
by numerical simulations. Numerical simulations show that the fractional-order case has
lower peak of the infection, and the obtained results better resemble real data.

We notice that the fractional mathematical modeling is in many cases a more power-
ful and accurate approach to epidemiological models, based on the better suitability to
fractional order that best corresponds to real data.
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Table 3 (υ = 0.2707)

q Year

1.0 2098
0.99 2103
0.98 2110

Table 4 (υ = 0.5)

q Year

1.0 2061
0.99 2064
0.98 2068

Table 5 (υ = 0.9)

q Year

1.0 2049
0.99 2051
0.98 2054
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