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1 Introduction
It is commonly known that fractional differential equations (FDEs) are a generalization of
ordinary differential equations and integration of arbitrary (noninteger) orders. With the
help of fractional calculus, the natural phenomena and mathematical models in different
fields of science and engineering can be accurately described. FDEs have also plentiful
applications in such fields as chemistry, electrochemistry, biology, mechanics, polymer
rheology, economics, control theory, viscoelasticity and damping, blood flow phenomena,
biophysics, and so on (see [1, 2] and the references therein). Much important advances
have also been made in the theory of fractional calculus and fractional ordinary and partial
differential equations; for more detail on fractional calculus theory and applications, we
refer the reader to the monographs of Podlubny [3], Diethelm [1], Kilbas et al. [2], and
Zhou [4].

Applying various tools and techniques of nonlinear analysis as the fixed point theorems,
the coincidence degree theory, the monotone iterative methods, critical point theory, and
variational methods, many researchers have explored the existence and multiplicity of so-
lutions for nonlinear fractional initial and boundary value problems (see [5–28] and the
references therein), and coupled systems of nonlinear FDEs; see, for ecample, [13, 18, 19,
29–32]. Ahmad and Alsaedi [13] studied the following fractional differential system:

⎧
⎨

⎩

cDρ
T u(t) = f (t, cDαv(t)), u(k) = ηk , 0 < t < 1,

cDσ
T v(t) = g(t, cDβu(t)), u(k) = ξk , 0 < t < 1,
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where cD denotes the Caputo fractional derivative, ρ,σ ∈ (m–1, m), α,β ∈ (n–1, n), m, n ∈
N, ρ > α, σ > β , k = 0, 1, 2, . . . , m – 1, ρ,σ ,α,β /∈ N, and ηk , ξk are suitable real constants.
By applying the nonlinear alternative of Leray–Schauder theorem in a cone the existence
and uniqueness results for such coupled systems are obtained.

Based on variational methods and critical point theory, Jiao and Zhou [21] investigated
the existence of a weak solution to the following nonlinear FDEs:

⎧
⎨

⎩

tDα
T (0Dα

t u(t)) = ∇F(t, u(t)), a.e. t ∈ [0, T],

u(0) = u(T) = 0,

where α ∈ (0, 1], 0Dα
t and tDα

T are the left and right Riemann–Liouville fractional deriva-
tives, respectively. F : [0, T] × RN → R (N ≥ 1) is an appropriate given function, and
∇F(t, u) is the gradient of F at u.

Galewski and Molica Bisci [26] considered the following one-dimensional fractional
problem:

⎧
⎨

⎩

d
dt (0Dα–1

t (c
0Dα

t u(t)) – tDα–1
T (c

t Dα
T u(t))) + f (t, u(t)) = 0, a.e. t ∈ [0, T],

u(0) = u(T) = 0,

where α ∈ ( 1
2 , 1], cD denotes the Caputo fractional derivative, 0Dα–1

t and tDα–1
T are the

left and right Riemann–Liouville fractional derivatives of order α – 1, respectively. By
using variational methods the existence of at least one nontrivial solution for this one-
dimensional fractional problem has been obtained under an asymptotical behavior of the
nonlinear term at zero.

Bai [15] studied the multiplicity of weak solutions for the following perturbed nonlinear
FDEs:

⎧
⎨

⎩

tDα
T (0Dα

t u(t)) = λa(t)f (u(t)) + μg(t, u(t)), a.e. t ∈ [0, T],

u(0) = u(T) = 0,

where α ∈ (0, 1], 0Dα
t and tDα

T are the left and right Riemann–Liouville fractional deriva-
tives, respectively, λ, μ are nonnegative parameters, and f : R → R, g : [0, T]×R → R, and
a : [0, T] → R are continuous functions. By using a recent variational principle of Bonanno
and Molica Bisci [33], some sufficient criteria of the existence of infinitely many solutions
depending on the parameters λ and μ are established.

Zhao et al. [31] studied the existence of weak solutions for the following coupled non-
linear fractional differential system:

⎧
⎪⎪⎨

⎪⎪⎩

tDα
T (a(t)0Dα

t u(t)) = λFu(t, u(t), v(t)), 0 < t < T ,

tDβ

T (b(t)0Dβ
t v(t)) = λFv(t, u(t), v(t)), 0 < t < T ,

u(0) = u(T) = 0, v(0) = v(T) = 0,

where α,β ∈ (0, 1], λ is a nonnegative real parameter, Fu and Fv denote the partial deriva-
tives of F with respect to u, v, respectively, and F : [0, T]×R2 → R is a suitable given func-
tion such that F(·, x, y) is continuous in [0, T] for any (x, y) ∈ R2. By using a potent method
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due to Bonanno and Marano [34], some sufficient conditions for the existence of at least
three weak solutions on the parameter λ are obtained. For applications and examples of
fractional-order systems, we refer the reader to [35–38].

Motivated by the papers mentioned, in this paper, we are interested in the existence
results for the following perturbed fractional differential system:

⎧
⎪⎪⎨

⎪⎪⎩

tDα
T (a(t)0Dα

t u(t)) = λFu(t, u, v) + μGu(t, u, v) + h1(u), 0 < t < T ,

tDβ

T (b(t)0Dβ
t v(t)) = λFv(t, u, v) + μGv(t, u, v) + h2(v), 0 < t < T ,

u(0) = u(T) = 0, v(0) = v(T) = 0,

(Pλ,μ)

where λ, μ are positive real parameters, 0 < α,β ≤ 1, a, b ∈ L∞[0, T] with a0 :=
ess inf[0,T] a(t) > 0 and b0 := ess inf[0,T] b(t) > 0, 0Dγ

t and tDγ

T denote the left and right
Riemann–Liouville fractional derivatives of order γ , respectively. For convenience, we
list the following assumptions on F , G and h1, h2.

(F0) F : [0, T] × R2 → R is a function such that F(·, u, v) is continuous in [0, T] for any
(u, v) ∈ R2, F(t, ·, ·) is a C1 function in R2, and Fs is the partial derivative of F with
respect to s;

(G0) G : [0, T] × R2 → R is measurable with respect to t for every (u, v) ∈ R2,
continuously differentiable in R2 for a.e. t ∈ [0, T], and Gu, Gv denote the partial
derivatives of G that satisfy the following condition:

sup√
u2+v2≤ξ

max
{∣
∣Gu(·, u, v)

∣
∣,

∣
∣Gv(·, u, v)

∣
∣)
} ∈ L1([0, T]

)
for all ξ > 0; (1.1)

(H0) h1, h2 : R → R are Lipschitz continuous functions satisfying hi(0) = 0, i = 1, 2, with
Lipschitz constants L1, L2 ≥ 0, that is,

∣
∣hi(x1) – hi(x2)

∣
∣ ≤ Li|x1 – x2|, i = 1, 2, (1.2)

for all x1, x2 ∈ R.
In this paper, by defining an appropriate functional space and constructing the corre-

sponding variational framework, we employ a potent method due to Ricceri [39–41] to
deal with the system (Pλ,μ) and gain several new existence results for weak solutions in
terms of distinct values of the parameters λ, μ belonging to real intervals. It is worth re-
marking that we obtain the multiplicity results for two cases: where the primitive function
F of Fu and Fv is subquadratic and where it is asymptotically quadratic as |(u, v)| → ∞. In
addition, we assume that the primitive function G of Gu and Gv satisfies a general growth
condition allowing us to apply the variational method. We present two examples to illus-
trate the applicability of our main results.

2 Preliminaries and variational formulation
To apply critical point theory to investigate the existence of weak solutions for the system
(Pλ,μ), we recall some basic notations and lemmas and construct a variational framework.

Let X be a real Banach space, and let ΥX denote the class of all functionals Φ : X → R that
possess the following property: if {ωn} is a sequence in X converging weakly to ω ∈ X and
limn→∞ infΦ(ωn) ≤ Φ(ω), then {ωn} admits a subsequence converging strongly to ω. For
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example, if X is uniformly convex and φ : [0, +∞) → R is a continuous strictly increasing
function, then the functional ω → φ(‖ω‖) belongs to the class ΥX .

Theorem 2.1 (see [39]) Let X be a separable reflexive real Banach space, and let Φ :
X → R be a coercive sequentially weakly lower semicontinuous, C1 functional belonging
to ΥX , bounded on each bounded subset of X, with derivative admitting a continuous in-
verse on X∗. Let Ψ : X → R be a C1 functional with compact derivative. Assume that Φ has
a strict local minimum x0 with Φ(x0) = Ψ (x0) = 0. Finally, setting

δ1 = max

{

0, lim sup
‖x‖→+∞

Ψ (x)
Φ(x)

, lim sup
x→x0

Ψ (x)
Φ(x)

}

,

δ2 = sup
x∈Φ–1((0,+∞))

Ψ (x)
Φ(x)

,

we assume that δ1 < δ2.
Then, for each compact interval [a, b] ⊂ ( 1

δ2
, 1

δ1
) (with the conventions 1

0 = +∞ and 1
+∞ =

0), there exists � > 0 with the following property: for every λ ∈ [a, b] and every C1 functional
J : X → R with compact derivative, there exists μ∗ > 0 such that, for each μ ∈ [0,μ∗], the
equation

Φ ′(x) = λΨ ′(x) + μJ ′(x)

has at least three solutions in X with norms less than �.

We need the following two results of Ricceri to guarantee the existence of three solutions
for a given equation.

Theorem 2.2 (see [40]) Let X be a reflexive real Banach space, and let I ⊂ R be an interval.
Let Φ : X → R be a sequentially weakly lower semicontinuous, C1 functional bounded on
each bounded subset of X, with derivative admitting a continuous inverse on X∗. Let –Ψ :
X → R be a C1 functional with compact derivative. Assume that

lim‖x‖→+∞
(
Φ(x) – λΨ (x)

)
= +∞

for all λ ∈ I and that there exists ρ ∈ R such that

sup
λ∈I

inf
x∈X

(
Φ(x) + λ

(
ρ – Ψ (x)

))
< inf

x∈X
sup
λ∈I

(
Φ(x) + λ

(
ρ – Ψ (x)

))
.

Then there exist a nonempty open set Λ ⊂ I and a positive number � with the following
property: for every λ ∈ Λ and every C1 functional –J : X → R with compact derivative,
there exists μ∗ > 0 such that, for each μ ∈ [0,μ∗], the equation

Φ ′(x) – λΨ ′(x) – μJ ′(x) = 0

has at least three solutions in X with norms less than �.
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Proposition 2.3 (see [41]) Let X be a nonempty set, and let Φ , Ψ be real functions on X.
Assume that there are r > 0 and x0, x1 ∈ X such that

Φ(x0) = Ψ (x0) = 0, Φ(x1) > r, sup
x∈Φ–1((–∞,r)])

Ψ (x) < r
Ψ (x1)
Φ(x1)

.

Then for each ρ satisfying

sup
x∈Φ–1((–∞,r)])

Ψ (x) < ρ < r
Ψ (x1)
Φ(x1)

,

we have

sup
λ≥0

inf
x∈X

(
Φ(x) + λ

(
ρ – Ψ (x)

))
< inf

x∈X
sup
λ≥0

(
Φ(x) + λ

(
ρ – Ψ (x)

))
.

Let C∞
0 ([0, T], RN) be the set of all functions x ∈ C∞

0 ([0, T], RN) with x(0) = x(T) = 0 and
the norm

‖x‖∞ = max
[0,T]

∣
∣x(t)

∣
∣. (2.1)

Denote the norm of the space Lp([0, T], RN) for 1 ≤ p < ∞ by

‖x‖Lp =
(∫ T

0

∣
∣x(s)

∣
∣p ds

)1/p

.

The following lemma shows the boundedness of the Riemann–Liouville fractional integral
operators from the space Lp([0, T], RN) to the space Lp([0, T], RN), where 1 ≤ p < ∞.

Lemma 2.4 ([20]) Let 0 < α ≤ 1 and 1 ≤ p < ∞. Then, for any f ∈ Lp([0, T], RN),

∥
∥0D–α

ξ f
∥
∥

Lp([0,t]) ≤ tα

Γ (α + 1)
‖f ‖Lp([0,t]) for ξ ∈ [0, t], t ∈ [0, T],

where 0D–α
t is left Riemann–Liouville fractional integral of order α, and Γ is the gamma

function.

Definition 2.5 Let 0 < α ≤ 1. The fractional derivative space Eα
0 is defined by the closure

of C∞
0 ([0, T], R) with respect to the weighted norm

‖u‖α =
(∫ T

0
a(t)

∣
∣0Dα

t u(t)
∣
∣2 dt +

∫ T

0

∣
∣u(t)

∣
∣2 dt

)1/2

, ∀u ∈ Eα
0 . (2.2)

Clearly, Eα
0 is the space of functions u ∈ L2[0, T] having an α-order fractional derivative

0Dα
t u ∈ L2[0, T] and u(0) = u(T) = 0. From [20, Proposition 3.1] we know that, for 0 < α ≤

1, the space Eα
0 is a reflexive separable Banach space.

Lemma 2.6 ([31]) Let 0 < α ≤ 1. For any u ∈ Eα
0 , we have
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(i)

‖u‖L2 ≤ Tα

Γ (α + 1)√a0

(∫ T

0
a(t)

∣
∣0Dα

t u(t)
∣
∣2 dt

)1/2

; (2.3)

(ii) if α > 1
2 , then

‖u‖∞ ≤ Tα– 1
2

Γ (α)
√

a0(2α – 1)

(∫ T

0
a(t)

∣
∣0Dα

t u(t)
∣
∣2

)1/2

. (2.4)

By (2.3) we can take Eα
0 with the norm

‖u‖α =
(∫ T

0
a(t)

∣
∣0Dα

t u(t)
∣
∣2 dt

)1/2

, ∀u ∈ Eα
0 , (2.5)

in the following literature.

Similarly to [20, Proposition 3.3], the space Eα
0 (or Eβ

0 ) possesses the following property:

Lemma 2.7 Assume that 1
2 < α ≤ 1 and the sequence {un} converges weakly to u in Eα

0 :
uk ⇀ u in C([0, T], R), that is, ‖uk – u‖∞ → 0 as k → ∞.

We further denote by X the space Eα
0 × Eβ

0 , which is a reflexive Banach space endowed
with the norm

∥
∥(u, v)

∥
∥

X = ‖u‖α + ‖v‖β . (2.6)

Obviously, X is compactly embedded in C0([0, T], R) × C0([0, T], R).

Definition 2.8 By a weak solution of problem (Pλ,μ) we mean any (u, v) ∈ X such that

∫ T

0
a(t)0Dα

t u(t)0Dα
t x(t) dt +

∫ T

0
b(t)0Dβ

t v(t)0Dβ
t y(t) dt

–
∫ T

0
h1

(
u(t)

)
x(t) dt –

∫ T

0
h2

(
v(t)

)
y(t) dt

= λ

∫ T

0

(
Fu

(
t, u(t), v(t)

)
x(t) + Fv

(
t, u(t), v(t)

)
y(t)

)
dt

+ μ

∫ T

0

(
Gu

(
t, u(t), v(t)

)
x(t) + Gv

(
t, u(t), v(t)

)
y(t)

)
dt

for every (x, y) ∈ X.

To investigate problem (Pλ,μ), we define the functionals Φ ,Ψ , J : X → R by

Φ(u, v) :=
1
2
‖u‖2

α +
1
2
‖v‖2

β – H(u, v), (2.7)

Ψ (u, v) :=
∫ T

0
F
(
t, u(t), v(t)

)
dt, J(u, v) =

∫ T

0
G

(
t, u(t), v(t)

)
dt, (2.8)
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where

H(u, v) =
∫ T

0
H1

(
u(t)

)
dt +

∫ T

0
H2

(
v(t)

)
dt, Hi(z) =

∫ z

0
hi(s) ds, i = 1, 2. (2.9)

Clearly, Ψ and J are well-defined continuously Gâteaux-differentiable functional at any
(u, v) ∈ X, and their Gâteaux derivatives are

Ψ ′(u, v)(x, y) =
∫ T

0

(
Fu

(
t, u(t), v(t)

)
x(t) + Fv

(
t, u(t), v(t)

)
y(t)

)
dt,

J ′(u, v)(x, y) =
∫ T

0

(
Gu

(
t, u(t), v(t)

)
x(t) + Gv

(
t, u(t), v(t)

)
y(t)

)
dt,

respectively, for every (x, y) ∈ X.
For convenience, put

ρ := max

{

1 +
L1T2α

(Γ (α + 1))2a0
, 1 +

L2T2β

(Γ (β + 1))2b0

}

, (2.10)

κ := min

{

1 –
L1T2α

(Γ (α + 1))2a0
, 1 –

L2T2β

(Γ (β + 1))2b0

}

. (2.11)

We introduce the following hypothesis:
(H1) 1

2 < α, β ≤ 1 and κ > 0.

Lemma 2.9 The functional Φ is sequentially weakly lower semicontinuous and bounded
on X, and Φ ′ admits a continuous inverse on X∗.

Proof Let {(un, vn)} ⊂ X, (un, vn) ⇀ (u, v) in X. From Lemma 2.7, (un, vn) converges uni-
formly to (u, v) on [0, T], and limn→∞ inf‖(un, vn)‖X ≥ ‖(u, v)‖X . Thus

lim inf
n→∞ Φ(un, vn) = lim inf

n→∞

(
1
2
‖un‖2

α +
1
2
‖vn‖2

β

)

– lim
n→∞ H(un, vn)

≥ 1
2
‖u‖2

α +
1
2
‖v‖2

β – H(u, v) = Φ(u, v).

So Φ is a sequentially weakly lower semicontinuous functional.
Since h1, h2 are Lipschitz continuous and satisfy h1(0) = h2(0), we have |hi(s)| ≤ Li|s|,

i = 1, 2, for all s ∈ R. Moreover, let Ω be a bounded subset of X, that is, there is a constant
c > 0 such that ‖(u, v)‖X ≤ c for any (u, v) ∈ Ω . By (2.3) and Lemma 2.7 we have

Φ(u, v) ≤ 1
2
‖u‖2

α +
1
2
‖v‖2

β +
∣
∣
∣
∣

∫ T

0
H1

(
u(t)

)
dt

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ T

0
H2

(
v(t)

)
dt

∣
∣
∣
∣

≤ 1
2
‖u‖2

α +
1
2
‖v‖2

β +
L1

2

∫ T

0

∣
∣u(t)

∣
∣2 dt +

L2

2

∫ T

0

∣
∣v(t)

∣
∣2 dt

≤
(

1
2

+
L1T2α

2(Γ (α + 1))2a0

)

‖u‖2
α +

(
1
2

+
L2T2β

2(Γ (β + 1))2b0

)

‖v‖2
β
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≤ ρ

2
(‖u‖2

α + ‖v‖2
β

)

≤ ρc2

2
. (2.12)

Hence Φ is bounded on each bounded subset of X.
Next, we will show that Φ ′ : X → X∗ admits a Lipschitz continuous inverse. Obviously,

Φ ∈ C1(X, R) and

〈
Φ ′(u, v), (x, y)

〉
=

∫ T

0
a(t)0Dα

t u(t)0Dα
t x(t) dt +

∫ T

0
b(t)0Dβ

t v(t)0Dβ
t y(t) dt

–
∫ T

0
h1

(
u(t)

)
x(t) dt –

∫ T

0
h2

(
v(t)

)
y(t) dt

=
〈
Φ1(u), x

〉
+

〈
Φ2(v), y

〉
,

where

〈
Φ1(u), x

〉
=

∫ T

0
a(t)0Dα

t u(t)0Dα
t x(t) dt –

∫ T

0
h1

(
u(t)

)
x(t) dt, ∀x ∈ Eα

0 ,

〈
Φ2(v), y

〉
=

∫ T

0
b(t)0Dβ

t v(t)0Dβ
t y(t) dt –

∫ T

0
h2

(
v(t)

)
y(t) dt, ∀y ∈ Eβ

0 .

For any u, x ∈ Eα
0 , it follows from (1.2), (2.3), and (2.11) that

〈
Φ1(u) – Φ1(x), u – x

〉
=

∫ T

0
a(t)

(

0Dα
t
(
u(t) – x(t)

))2 dt

–
∫ T

0

(
h1

(
u(t)

)
– h1

(
x(t)

))(
u(t) – x(t)

)
dt

≥
∫ T

0
a(t)

(

0Dα
t
(
u(t) – x(t)

))2 dt – L1

∫ T

0

(
u(t) – x(t)

)2 dt

≥
(

1 –
L1T2α

(Γ (α + 1))2a0

)

‖u – x‖2
α ≥ κ‖u – x‖2

α .

Thus we deduce from the assumption κ > 0 that Φ1 is a uniformly monotone operator.
Similarly, it is easy to show that Φ2 is also a uniformly monotone operator. So Φ ′ is uni-
formly monotone.

For any (u, v) ∈ X \ {(0, 0)}, we have

〈Φ ′(u, v), (u, v)〉
‖(u, v)‖X

=
∫ T

0 (a(t)|0Dα
t u(t)|2 dt + b(t)|0Dβ

t u(t)|2) dt –
∫ T

0 (h1(u(t))u(t) + h2(v(t))v(t)) dt
‖u‖α + ‖v‖β

≥ κ(‖u‖2
α + ‖v‖2

β )
‖u‖α + ‖v‖β

,

which implies that

lim
‖(u,v)‖X→∞

〈Φ ′(u, v), (u, v)〉
‖(u, v)‖X

= +∞
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since limx+y→+∞ x2+y2

x+y = +∞, x, y ≥ 0. It follows from the Minty–Browder theorem [42,
Theorem 26.A] that Φ ′ is a Lipschitz continuous inverse on X∗. �

Lemma 2.10 The functionals Ψ and J are continuously Gâteaux differentiable in X, and
their derivatives Ψ ′, J ′ are compact.

Proof We claim that the functional Ψ is sequentially weakly upper semicontinuous and
Ψ ′ : X → X∗ is a compact operator. Indeed, for fixed (u, v) ∈ X, suppose that {(un, vn)} ⊂ X,
(un, vn) ⇀ (u, v) in X as n → +∞. Then (un, vn) converges uniformly to (u, v) on [0, T].
Hence

lim
n→+∞ supΨ (un, vn) ≤

∫ T

0
lim sup

n→+∞
F(t, un, vn) dt =

∫ T

0
F(t, u, v) dt = Ψ (u, v),

which yields that Ψ is sequentially weakly upper semicontinuous. On the other hand, tak-
ing into account that F(t, ·, ·) is a C1 function in R2 for all t ∈ [0, T], so it is continuous
in R2 for all t ∈ [0, T], and we have F(t, un, vn) → F(t, u, v) as n → +∞. By the Lebesgue
convergence theorem, Ψ ′(un, vn) → Ψ ′(u, v) strongly, which implies that Ψ ′ is strongly
continuous on X. Therefore Ψ ′ is a compact operator.

Analogously, we can deduce that J ′(u, v) is a compact operator for any (u, v) ∈ X. �

Similarly to the proof of [21, Theorem 5.1], we have the following:

Lemma 2.11 Let 1
2 < α, β ≤ 1 and (u, v) ∈ X. If (u, v) is a nontrivial weak solution of prob-

lem (Pλ,μ), then (u, v) is also a nontrivial solution of problem (Pλ,μ).

3 Main results and proof
In this section, we investigate the existence of at least three weak solutions for problem
(Pλ,μ). For the convenience of the reader, put

M = max

{
T2α–1

(Γ (α))2a0(2α – 1)
,

T2β–1

(Γ (β))2b0(2β – 1)

}

,

λ1 = inf

{‖u‖2
α + ‖v‖2

β + 2H(u, v)

2
∫ T

0 F(t, u, v) dt
, (u, v) ∈ X,

∫ T

0
F(t, u, v) dt > 0

}

,

λ2 =
(

max

{

0, lim sup
‖(u,v)‖X→+∞

2
∫ T

0 F(t, u, v) dt
‖u‖2

α + ‖v‖2
β – 2H(u, v)

,

lim sup
(u,v)→0

2
∫ T

0 F(t, u, v) dt
‖u‖2

α + ‖v‖2
β – 2H(u, v)

})–1

.

(3.1)

For a given constant ε ∈ (0, 1
2 ), set

A(α, ε) =
1

2ε2T2

{∫ T

0
a(t)t2(1–α) dt +

∫ T

εT
a(t)(t – εT)2(1–α) dt

+
∫ T

(1–ε)T
a(t)

(
t – (1 – ε)T

)2(1–α) dt – 2
∫ T

(1–ε)T
a(t)

(
t2 – (1 – ε)Tt

)1–α dt

– 2
∫ T

εT
a(t)

(
t2 – εTt

)1–α dt + 2
∫ T

(1–ε)T
a(t)

(
t2 – εTt + θ (1 – ε)T2)1–α dt

}
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and

B(β , ε) =
1

2ε2T2

{∫ T

0
b(t)t2(1–β) dt +

∫ T

εT
b(t)(t – εT)2(1–β) dt

+
∫ T

(1–ε)T
b(t)

(
t – (1 – ε)T

)2(1–β) dt – 2
∫ T

(1–ε)T
b(t)

(
t2 – (1 – ε)Tt

)1–β dt

– 2
∫ T

εT
b(t)

(
t2 – εTt

)1–β dt + 2
∫ T

(1–ε)T
b(t)

(
t2 – Tt + ε(1 – ε)T2)1–β dt

}

,

�1 := min
{

A(α, ε), B(β , ε)
}

, �2 := max
{

A(α, ε), B(β , ε)
}

.

For any d > 0, we denote by Ω(d) the set

{
(x, y) ∈ R2 : |x|2 + |y|2 ≤ d

}
. (3.2)

Theorem 3.1 Assume that (F0), (H0), and (H1) hold. Moreover, assume that there exist a
constant η ≥ 0 and a function ω̄ = (ω1,ω2) ∈ X such that

(B1)

max

{

lim sup
(u,v)→(0,0)

maxt∈[0,T] F(t, u, v)
|u|2 + |v|2 , lim sup

|(u,v)|→+∞
maxt∈[0,T] F(t, u, v)

|u|2 + |v|2
}

≤ η;

(B2)

2TMη

κ
<

∫ T
0 F(t,ω1(t),ω2(t)) dt
ρ(‖ω1‖2

α + ‖ω2‖2
β )

.

Then, for any compact interval [a1, a2] ⊂ (λ1,λ2), there exists a positive constant � with
the following property: for every λ ∈ [a1, a2] and for two Carathéodory functions Gu, Gv

satisfying (G0), there is δ > 0 such that, for each μ ∈ [0, δ), problem (Pλ,μ) has at least three
weak solutions with norms less than �.

Proof Our aim is to apply Theorem 2.1 to our problem (Pλ,μ) by taking X = Eα
0 × Eβ

0 en-
dowed with the norm ‖(u, v)‖X defined before. Obviously, X is a separable reflexive Ba-
nach space. It follows from Lemmas 2.9 and 2.10 that the functional Φ is sequentially
weakly lower semicontinuous, with continuous Gâteaux derivative, and bounded on each
bounded subset of X. Φ ′ admits a continuous inversem and Ψ and J are continuously
Gâteaux-differentiable functionals in X with compact derivatives.

It is easy to see that 1
2‖u‖2

α + 1
2‖v‖2

β belongs to ΥX (see the beginning of Sect. 2). Now
we prove that Φ(u, v) ∈ ΥX . Let {(un, vn)} ⊂ X, (un, vn) ⇀ (u, v) in X, and limn→∞ infΦ(un,
vn) ≤ Φ(u, v). By Lemma 2.7, (un, vn) converges uniformly to (u, v) on [0, T]. Thus there
exist constants c1, c2 > 0 such that ‖un‖∞ ≤ c1 and ‖vn‖∞ ≤ c2 for any n ∈ N. Then

∣
∣H1

(
un(t)

)
– H1

(
u(t)

)∣
∣ ≤ L1

∣
∣
∣
∣

∫ un(t)

u(t)
|s|ds

∣
∣
∣
∣ ≤ L1

2
(∣
∣un(t)

∣
∣2 +

∣
∣u(t)

∣
∣2) ≤ L1

2
(
c2

1 + ‖u‖2
∞

)

and

∣
∣H2

(
vn(t)

)
– H2

(
v(t)

)∣
∣ ≤ L2

∣
∣
∣
∣

∫ vn(t)

v(t)
|s|ds

∣
∣
∣
∣ ≤ L2

2
(∣
∣vn(t)

∣
∣2 +

∣
∣v(t)

∣
∣2) ≤ L2

2
(
c2

2 + ‖v‖2
∞

)
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for any n ∈ N and t ∈ [0, T]. Furthermore, H1(un(t)) → H1(u(t)) and H2(vn(t)) → H2(v(t))
at every t ∈ [0, T], and by the Lebesgue convergence theorem

H(un, vn) =
∫ T

0
H1

(
un(t)

)
dt +

∫ T

0
H2

(
vn(t)

)
dt

→
∫ T

0
H1

(
u(t)

)
dt +

∫ T

0
H2

(
v(t)

)
dt

= H(u, v),

which yields that lim infn→∞ H(un, vn) ≤ H(u, v). Thus, {(un, vn)} has a subsequence con-
verging strongly to (u, v). Therefore Φ ∈ ΥX .

Due to assumption (1.2), we infer that

Φ(u, v) ≥ 1
2
‖u‖2

α +
1
2
‖v‖2

β –
∣
∣
∣
∣

∫ T

0
H1

(
u(t)

)
dt

∣
∣
∣
∣ –

∣
∣
∣
∣

∫ T

0
H2

(
v(t)

)
dt

∣
∣
∣
∣

≥
(

1
2

–
L1T2α

2(Γ (α + 1))2a0

)

‖u‖2
α +

(
1
2

–
L2T2β

2(Γ (β + 1))2b0

)

‖v‖2
β

≥ κ

2
(‖u‖2

α + ‖v‖2
β

)
(3.3)

for all (u, v) ∈ X. So Φ is coercive and has a strict local minimum (u0, v0) = (0, 0) with
Φ(u0, v0) = Ψ (u0, v0) = 0.

Fix ε > 0. According to (B1), there exist σ1, σ2 with 0 < σ1 < σ2 such that

F(t, u, v) ≤ (η + ε)
(|u|2 + |v|2) (3.4)

for all t ∈ [0, T] and |(u, v)| ∈ ([0,σ1) ∪ (σ2, +∞)). In view of (F0), F(t, u, v) is bounded on
t ∈ [0, T] and |(u, v)| ∈ [σ1,σ2], so we can choose p1, p2 > 0 and τ1, τ2 > 2 such that

F(t, u, v) ≤ (η + ε)
(|u|2 + |v|2) + p1|u|τ1 + p2|v|τ2

for all t ∈ [0, T] and |(u, v)| ∈ [σ1,σ2]. So, from (2.9) we have

Ψ (u, v) ≤ (η + ε)
∫ T

0

(|u|2 + |v|2)dt +
∫ T

0

(
p1|u|τ1 + p2|v|τ2

)
dt

≤ (η + ε)TM
(‖u‖2

α + ‖v‖2
β

)
+ Tζ

(‖u‖τ1
α + ‖v‖τ2

β

)

for all (u, v) ∈ X, where

ζ = max

{

p1

(
Tα– 1

2

Γ (α)
√

a0(2α – 1)

)τ1

, p2

(
Tβ– 1

2

Γ (β)
√

b0(2β – 1)

)τ2}

.

Hence

lim sup
(u,v)→0

Ψ (u, v)
Φ(u, v)

≤ 2TM(η + ε)
κ

. (3.5)
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Furthermore, by (3.4) again, for any (u, v) ∈ X \ {(0, 0)}, we have

Ψ (u, v)
Φ(u, v)

=

∫

|(u,v)|≤σ2
F(t, u, v) dt

1
2‖u‖2

α + 1
2‖v‖2

β – H(u, v)
+

∫

|(u,v)|>σ2
F(t, u, v) dt

1
2‖u‖2

α + 1
2‖v‖2

β – H(u, v)

≤ 2T supt∈[0,T],|(u,v)|∈[0,σ2] F(t, u, v)
κ(‖u‖2

α + ‖v‖2
β )

+
2TM(η + ε)(‖u‖2

α + ‖v‖2
β )

κ(‖u‖2
α + ‖v‖2

β )

=
2T supt∈[0,T],|(u,v)|∈[0,σ2] F(t, u, v)

κ(‖u‖2
α + ‖v‖2

β )
+

2TM(η + ε)
κ

,

which implies that

lim
‖(u,v)‖X→+∞

Ψ (u, v)
Φ(u, v)

≤ 2TM(η + ε)
κ

. (3.6)

Since ε is arbitrary, combining with (3.5) and (3.6), we have

δ1 = max

{

0, lim
(u,v)→0

Ψ (u, v)
Φ(u, v)

, lim
‖(u,v)‖X→+∞

Ψ (u, v)
Φ(u, v)

}

≤ 2TMη

κ

and

δ2 = sup
(u,v)∈Φ–1((0,+∞))

Ψ (u, v)
Φ(u, v)

= sup
(u,v)∈X\{(0,0)}

Ψ (u, v)
Φ(u, v)

≥
∫ T

0 F(t,ω,ω2) dt
1
2‖ω1‖2

α + 1
2‖ω2‖2

β + H(ω1,ω2)

≥ 2
∫ T

0 F(t,ω,ω2) dt
ρ(‖ω1‖2

α + ‖ω2‖2
β )

>
2TMη

κ
≥ δ1.

Then, for each compact interval [a1, a2] ⊂ (λ1,λ2), there is � > 0 with the following prop-
erty: for all λ ∈ [a1, a2] and G ∈ (G0), there exists δ > 0 such that for μ ∈ [0, δ], problem
(Pλ,μ) has at least three weak solutions with norms less than �. �

Theorem 3.2 Assume that (F0), (H0), and (H1) hold and there exist l, q ∈ L1([0, T], R+),
three positive constants d, θ1, θ2, and constant vector c = (c1, c2) ∈ R2, c1, c2 > 0, with d <
2M�1(c2

1 + c2
2) and θ1, θ2 ∈ [0, 2), such that

(B3) F(t, u, v) ≥ 0 for all t ∈ [0, εT] ∪ [(1 – ε)T , T], |u| ≤ Γ (2 – α)c1, and
|v| ≤ Γ (2 – β)c2;

(B4) |F(t, u, v)| ≤ l(t)(|u|θ1 + |v|θ2 ) + q(t) for every (u, v) ∈ X and a.e. t ∈ [0, T];
(B5)

max
t∈[0,T],(u,v)∈Ω(d)

F(t, u, v) <
dκ

2MT
·
∫ (1–ε)T
εT F(t,Γ (2 – α)c1,Γ (2 – β)c2) dt

ρ�2(c2
1 + c2

2)
,

where Ω(d) = {(ξ ,η) ∈ R2 : |u|2 + |v|2 ≤ d}.
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Then there exist an open interval Λ ⊂ [0, +∞) and a positive constant � with the following
property: for every λ ∈ Λ and for two Carathéodory functions Gu, Gv satisfying (G0), there
is δ > 0 such that, for each μ ∈ [0, δ), problem (Pλ,μ) has at least three weak solutions with
norms less than �.

Proof For any λ ≥ 0 and (u, v) ∈ X, according to (3.3) and (B4), we have

Φ(u, v) – λΨ (u, v) =
1
2
‖u‖2

α +
1
2
‖v‖2

β – H(u, v) – λ

∫ T

0
F(t, u, v) dt

≥ 1
2
‖u‖2

α +
1
2
‖v‖2

β – H(u, v) – λ

∫ T

0
l(t)

(|u|θ1 + |v|θ2
)

dt

– λ

∫ T

0
q(t) dt

≥ κ

2
(‖u‖2

α + ‖v‖2
β

)
– λθ

∫ T

0
l(t) dt

(‖u‖θ1
α + ‖v‖θ2

β

)

– λ

∫ T

0
q(t) dt,

where

θ = max

{(
Tα– 1

2

Γ (α)
√

a0(2α – 1)

)θ1

,
(

Tβ– 1
2

Γ (β)
√

b0(2β – 1)

)θ2}

.

Since θ1, θ2 ∈ [0, 2), we have

lim
‖(u,v)‖X→+∞

(
Φ(u, v) – λΨ (u, v)

)
= +∞ for all λ ≥ 0.

For every r > 0, by the definition of Φ and (3.3) we have

Φ–1(]–∞, r]
)

:=
{

(u, v) ∈ X : Φ(u, v) ≤ r
}

⊆
{

(u, v) ∈ X : ‖u‖2
α + ‖v‖2

β ≤ 2r
κ

}

⊆
{

(u, v) ∈ X :
(Γ (α))2a0(2α – 1)

T2α–1 ‖u‖2
∞ +

(Γ (β))2b0(2β – 1)
T2β–1 ‖v‖2

∞ ≤ 2r
κ

}

⊆
{

(u, v) ∈ X :
∣
∣u(t)

∣
∣2 +

∣
∣v(t)

∣
∣2 ≤ 2Mr

κ
, for all t ∈ [0, T]

}

. (3.7)

Therefore

sup
(u,v)∈Φ–1(]–∞,r])

Ψ (u, v) ≤ max
(u,v)∈Ω( 2Mr

κ )
Ψ (u, v)

= max
(u,v)∈Ω( 2Mr

κ )

∫ T

0
F(t, u, v) dt

≤ T max
t∈[0,T],(u,v)∈Ω( 2Mr

κ )
F(t, u, v).
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Choose ω = (ω1(t),ω2(t)) with

ω1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Γ (2–α)c1
εT t, t ∈ [0, εT[,

Γ (2 – α)c1, t ∈ [εT , (1 – ε)T],
Γ (2–α)c1

εT (T – t), t ∈ ](1 – ε)T , T],

(3.8)

and

ω2(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Γ (2–β)c2
εT t, t ∈ [0, εT[,

Γ (2 – β)c2, t ∈ [εT , (1 – ε)T],
Γ (2–β)c2

εT (T – t), t ∈ ](1 – ε)T , T].

(3.9)

Clearly, ωi(0) = ωi(T) = 0 and ωi ∈ L2[0, T] for i = 1, 2. A direct calculation shows that

0Dα
t ω1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

c1
εT t1–α , t ∈ [0, εT[,
c1
εT (t1–α – (t – εT)1–α), t ∈ [εT , (1 – ε)T],
c1
εT (t1–α – (t – εT)1–α – (t – (1 – ε)T)1–α), t ∈ ](1 – ε)T , T],

and

0Dβ
t ω2(t) =

⎧
⎪⎪⎨

⎪⎪⎩

c2
εT t1–β , t ∈ [0, εT[,
c2
εT (t1–β – (t – εT)1–β ), t ∈ [εT , (1 – ε)T],
c2
εT (t1–β – (t – εT)1–β – (t – (1 – ε)T)1–β), t ∈ ](1 – ε)T , T].

Furthermore,

∫ T

0
a(t)

∣
∣0Dα

t ω1(t)
∣
∣2 dt

=
∫ εT

0
+

∫ (1–ε)T

εT
+

∫ T

(1–ε)T

(
a(t)

∣
∣0Dα

t ω1(t)
∣
∣2)dt

=
c2

1
ε2T2

{∫ T

0
a(t)t2(1–α) dt +

∫ T

εT
a(t)

(
t – (1 – ε)T

)2(1–α) dt

+
∫ T

(1–ε)T
a(t)

(
t – (1 – ε)T

)2(1–α) dt

– 2
∫ T

εT
a(t)

(
t2 – (1 – ε)Tt

)1–α dt – 2
∫ T

(1–ε)T
a(t)

(
t2 – (1 – ε)Tt

)1–α dt

+ 2
∫ T

(1–ε)T
a(t)

(
t2 – εTt + ε(1 – ε)T2t

)1–α dt
}

= 2c2
1A(α, ε)
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and
∫ T

0
b(t)

∣
∣0Dβ

t ω2(t)
∣
∣2 dt

=
∫ εT

0
+

∫ (1–ε)T

εT
+

∫ T

(1–ε)T

(
b(t)

∣
∣0Dβ

t ω2(t)
∣
∣2)dt

=
c2

2
ε2T2

{∫ T

0
b(t)t2(1–β) dt +

∫ T

εT
b(t)(t – εT)2(1–β) dt

+
∫ T

(1–ε)T
b(t)

(
t – (1 – ε)T

)2(1–β) dt

– 2
∫ T

εT
b(t)

(
t2 – εTt

)1–β dt – 2
∫ T

(1–ε)T
b(t)

(
t2 – (1 – ε)Tt

)1–β dt

+ 2
∫ T

(1–ε)T
a(t)

(
t2 – εTt + ε(1 – ε)T2t

)1–β dt
}

= 2c2
2B(β , ε).

Thus, ω = (ω1(t),ω2(t)) ∈ X, and

2�1
(
c2

1 + c2
2
) ≤ ‖ω1‖2

α + ‖ω2‖2
β ≤ 2�2

(
c2

1 + c2
2
)
.

Obviously, Φ(0, 0) = Ψ (0, 0) = 0. Choose r = κd
2M , where M is given in (3.1). From d <

2M�1(c2
1 + c2

2) and (3.7) we have

2Mr = κd < 2κM�1
(
c2

1 + c2
2
) ≤ 2MΦ(ω1,ω2),

which means that Φ(ω1,ω2) > r. According to (B3) and F(t, 0, 0) = 0, we have

∫ T

0
F(t,ω1,ω2) dt =

∫ εT

0
+

∫ (1–ε)T

εT
+

∫ T

(1–ε)T
F(t,ω1,ω2) dt ≥

∫ (1–ε)T

εT
F(t,ω1,ω2) dt.

So

r · Ψ (ω1,ω2)
Φ(ω1,ω2)

= r ·
∫ T

0 F(t,ω1,ω2) dt
1
2‖ω1‖2

α + 1
2‖ω2‖2

β – H(ω1,ω2)

≥ r ·
∫ (1–ε)T
εT F(t,Γ (2 – α)c1,Γ (2 – β)c2) dt

ρ�2(c2
1 + c2

2)

=
κd
2M

·
∫ (1–ε)T
εT F(t,Γ (2 – α)c1,Γ (2 – β)c2) dt

ρ�2(c2
1 + c2

2)

> T · max
t∈[0,T],(u,v)∈Ω(d)

F(t, u, v)

= T · max
t∈[0,T],(u,v)∈Ω( 2Mr

κ )
F(t, u, v) ≥ sup

(u,v)∈Φ–1(]–∞,r])
Ψ (u, v).

Thus we can fix ρ such that

sup
(u,v)∈Φ–1(]–∞,r])

Ψ (u, v) < ρ < r
Ψ (u, v)
Φ(u, v)

.
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By Proposition 2.3 we have

sup
λ≥0

inf
(u,v)∈X

(
Φ(u, v) + λ

(
ρ – Ψ (u, v)

))
< inf

(u,v)∈X
sup
λ≥0

(
Φ(u, v) + λ

(
ρ – Ψ (u, v)

))
.

So, according to Theorem 2.2, for each interval Λ ⊂ [0, +∞) and � > 0 we have: for any
λ ∈ Λ and G ∈ (G0), there exists δ > 0 such that, for every μ ∈ [0, δ], Φ ′(u, v) – λΨ ′(u, v) –
μJ ′(u, v) = 0 has at least three solutions in X with norms less than �. Therefore problem
(Pλ,μ) has at least three solutions in X with norms less than �. �

For the particular case of F(t, u, v) = ϕ(t)f (u, v), where ϕ(t) ∈ L1([0, T]; R) \ {0}, f (u, v) ∈
C1(R2, R), we can deduce the following two corollaries of Theorems 3.1 and 3.2, respec-
tively.

Corollary 3.3 Assume that (H0) and (H1) hold. Moreover, assume that there exist a con-
stant η ≥ 0 and a constant vector ω̄ = (ω1,ω2) ∈ R2 \ {(0, 0)} such that

(B1)′

max
t∈[0,T]

ϕ(t) · max

{

lim sup
(u,v)→0

f (u, v)
|u|2 + |v|2 , lim sup

|(u,v)|→+∞
f (u, v)

|u|2 + |v|2
}

≤ η;

(B2)′

2TMη

κ
<

f (ω1,ω2)
∫ T

0 ϕ(t) dt
ρ(‖ω1‖2

α + ‖ω2‖2
β )

.

Then, for each compact interval [a1, a2] ⊂ (λ1,λ2), there exists a positive constant � with
the following property: for every λ ∈ [a1, a2] and for two Carathéodory functions Gu, Gv

satisfying (G0), there exists δ > 0 such that, for each μ ∈ [0, δ), problem (Pλ,μ) has at least
three weak solutions with norms less than �.

Corollary 3.4 Assume that (H0) and (H1) hold and there exist five positive constants l0,
q0, d, θ1, θ2 and a constant vector c = (c1, c2) ∈ R2, c1, c2 > 0, with d < 2M�1(c2

1 + c2
2) and

θ1, θ2 ∈ [0, 2), such that
(B3)′ ϕ(t)f (u, v) ≥ 0 for all t ∈ [0, εT] ∪ [(1 – ε)T , T], |u| ≤ Γ (2 – α)c1 and |v| ≤ Γ (2 –

β)c2;
(B4)′ |f (u, v)| ≤ l0(|u|θ1 + |v|θ2 ) + q0 for every (u, v) ∈ X ;
(B5)′

max
(u,v)∈Ω(d)

f (u, v) <
dκ

2M‖ϕ‖L1
· f (Γ (2 – α)c1,Γ (2 – β)c2)

∫ (1–ε)T
εT ϕ(t) dt

ρ�2(c2
1 + c2

2)
,

where Ω(d) = {(u, v) ∈ R2 : |u|2 + |v|2 ≤ d}.
Then there exist an open interval Λ ⊂ [0, +∞) and a positive real number � with the fol-
lowing property: for every λ ∈ Λ and for two Carathéodory functions Gu, Gv satisfying (G0),
there exists δ > 0 such that, for each μ ∈ [0, δ), problem (Pλ,μ) has at least three weak solu-
tions with norms less than �.

Finally, we present two examples to illustrate our abstract results.



Zhao et al. Advances in Difference Equations        (2019) 2019:142 Page 17 of 20

Example 3.5 Consider the following fractional boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

tD0.6
2 ((1 + t) · 0D0.6

t u(t)) = λFu(t, u, v) + μGu(t, u, v) + h1(u), 0 < t < 2,

tD0.8
2 ( 1

3 · 0D0.8
t v(t)) = λFv(t, u, v) + μGv(t, u, v) + h2(v), 0 < t < 2,

u(0) = u(2) = 0, v(0) = v(2) = 0,

(3.10)

where T = 2, α = 0.6, β = 0.8, a(t) = 1 + t, b(t) = 1
3 , and h1(u) = 1

20 u, h2(v) = 1
30 sin v. More-

over, for all (t, u, v) ∈ [0, 2] × R2, put

F(t, u, v) = 10(1 – 2t)
(
u2 + v2)

(
1

ln(e + u2 + v2)
– 1

)

and

G(t, u, v) =
(
1 + t2)(|u| 5

4 + |v| 4
3
)
.

Obviously, h1, h2 : R → R are two Lipschitz continuous functions with the Lipschitz con-
stants L1 = 1

10 , L2 = 1
30 and h1(0) = h2(0) = 0; F(t, 0, 0) = G(t, 0, 0) = 0 for all t ∈ [0, 2], and

conditions (F0), (G0), and (H0) hold. By simple calculations we get

a0 = 1, b0 =
1
3

, ρ ≈ 1.3494, κ ≈ 0.6506, M ≈ 3.7271.

Taking η = 1
60 , we easily verify that (B1) is satisfied. Moreover, we have λ1 ≥ 1

229 and λ2 ≥
2.6184. In fact,

λ1 = inf
(u,v)∈X

‖u‖2
0.6 + ‖v‖2

0.8 + 2H(u, v)
20

∫ 2
0 (2t – 1) dt(u2 + v2)(1 – 1

ln(e+u2+v2) )

=
1

20
∫ 2

0 (2t – 1) dt
· inf

(u,v)∈X

‖u‖2
0.6 + ‖v‖2

0.8 + 2H(u, v)
(u2 + v2)(1 – 1

ln(e+u2+v2) )

≥ 1
40

· inf
(u,v)∈X

κ(‖u‖2
0.6 + ‖v‖2

0.8)
M(‖u‖2

0.6 + ‖v‖2
0.8)(1 – 1

ln(e+u2+v2) )

≥ 1
229

and λ2 ≥ κ
2TMη

≈ 2.6184. On the other hand, choosing ω1(t) = Γ (1.4)t(2 – t) and ω2(t) =
Γ (1.2)t(2 – t), we have ωi(0) = ωi(2) = 0, i = 1, 2, and

0D0.6
t ω1(t) = (2t)0.4 –

10
7

t1.4, 0D0.8
t ω2(t) = t0.2 –

5
3

t1.2.

Hence we have ‖ω1‖2
0.6 ≈ 3.8275, ‖ω2‖2

0.8 ≈ 1.0596, and

2TMη

κ
≈ 0.3819 <

∫ 2
0 F(t,ω1,ω2) dt

ρ(‖ω1‖2
0.6 + ‖ω2‖2

0.8)
≈ 0.7032,

which implies that condition (B2) holds. Hence, by Theorem 3.1, for any compact interval
[a1, a2] ⊂ ( 1

229 , 2.6184), there exist a positive constant � with the following property: for



Zhao et al. Advances in Difference Equations        (2019) 2019:142 Page 18 of 20

every λ ∈ [a1, a2], there exists δ > 0 such that, for each μ ∈ [0, δ), problem (3.10) has at
least three weak solutions with norms less than �.

Example 3.6 Consider the following fractional differential system:

⎧
⎪⎪⎨

⎪⎪⎩

tD0.75
1 ((2 + t) · 0D0.75

t u(t)) = λFu(t, u, v) + μGu(t, u, v) + h1(u), 0 < t < 1,

tD0.8
1 ((1 + t3) · 0D0.8

t v(t)) = λFv(t, u, v) + μGv(t, u, v) + h2(v), 0 < t < 1,

u(0) = u(1) = 0, v(0) = v(1) = 0,

(3.11)

where T = 1, α = 0.75, β = 0.8, a(t) = 2 + t, b(t) = 1 + t3, and h1(u) = 1
4 sin u, h2(v) = 1

18 v.
Moreover, for all (t, u, v) ∈ [0, 1] × R2, put F(t, u, v) = ϕ(t)(|u| 5

4 + |v| 4
3 ), where

ϕ(t) =

⎧
⎨

⎩

1
4 – t, t ∈ [0, 3

8 ],

– 1
2 + t, t ∈ [ 3

8 , 1],

and G(t, u, v) = t2(|u| 3
2 + |v| 6

5 ).
Obviously, h1, h2 : R → R are two Lipschitz continuous functions with the Lipschitz con-

stants L1 = 1
4 , L2 = 1

9 and h1(0) = h2(0) = 0; F(t, 0, 0) = G(t, 0, 0) = 0 for all t ∈ [0, 1]. By sim-
ple calculations we have that a0 = 2, b0 = 1, and

M ≈ 1.2302, κ ≈ 0.8520, ρ ≈ 1.1480.

Letting ε = 1
4 , we obtain P(α, ε) ≈ 7.9576 and Q(β , ε) ≈ 4.4641. Hence �1 = 4.4641 and

�2 = 7.9576. Take d = 1
2 , c1 = c2 = 1

6 , l0 = 1, q0 > 0, θ1 = 5
4 , and θ2 = 4

3 . Then all the condi-
tions in Corollary 3.4 are satisfied. In fact, conditions (B3)′ and (B4)′ hold, and by direct
computation we have

1
2

= d < 2M�1
(
c2

1 + c2
2
) ≈ 0.6102

and

max
(u,v)∈Ω( 1

2 )
f (u, v) ≈ 0.8147 <

8dκ

M‖ϕ‖L1
·

f (Γ (0.21),Γ (0.2))
∫ 3

4
1
4

ϕ(t) dt

ρ�2
≈ 1.8223,

which implies that condition (B3)′ holds. By Corollary 3.4 there exist an open interval
Λ ⊂ [0, +∞) and a positive constant � with the following property: for every λ ∈ Λ, there
exists δ > 0 such that, for each μ ∈ [0, δ), problem (3.11) has at least three weak solutions
with norms less than �.

4 Conclusion
In this paper, we investigated the existence of solutions for a class of fractional differential
system with two control parameters. By constructing a variational framework and using
some critical points in theorems of Ricceri, we obtained several new existence results for
at least three weak solutions in terms of different values of the two parameters λ, μ. It is
worth remarking that we suppose the primitive function G of Gu, Gv to satisfy a general



Zhao et al. Advances in Difference Equations        (2019) 2019:142 Page 19 of 20

growth condition allowing us to apply a variational method. In addition, we obtain the
multiplicity results for two cases: where the primitive function F of Fu, Fv is asymptotically
quadratic and where it is subquadratic as |(u, v)| → ∞.
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11. Fečkan, M., Zhou, Y., Wang, J.: On the concept and existence of solution for impulsive fractional differential equations.

Commun. Nonlinear Sci. Numer. Simul. 17, 3050–3060 (2012)
12. Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear

fractional differential equations and inclusions. Acta Appl. Math. 109, 973–1033 (2010)
13. Ahmad, B., Alsaedi, A.: Existence and uniqueness of solutions for coupled systems of higher-order nonlinear fraction

differential equations. Fixed Point Theory Appl. 2010, Article ID 364560 (2010)
14. Rodríguez-López, R., Tersian, S.: Multiple solutions to boundary value problem for impulsive fractional differential

equations. Fract. Calc. Appl. Anal. 17(4), 1016–1038 (2014)
15. Bai, C.: Infinitely many solutions for a perturbed nonlinear fractional boundary-value problem. Electron. J. Differ. Equ.

2013, 136 (2013)
16. Zhang, X., Liu, L., Wu, Y.: Variational structure and multiple solutions for a fractional advection–dispersion equation.

Comput. Math. Appl. 68, 1794–1805 (2014)
17. Cabada, A., Hamdi, Z.: Nonlinear fractional differential equations with integral boundary value conditions. Appl. Math.

Comput. 228, 251–257 (2014)
18. Bai, C., Fang, J.: The existence of a positive solution for a singular coupled system of nonlinear fractional differential

equations. Appl. Math. Comput. 150, 611–621 (2004)
19. Henderson, J., Luca, R.: Positive solutions for a system of nonlocal fractional boundary value problems. Fract. Calc.

Appl. Anal. 16(4), 985–1008 (2013)
20. Jiao, F., Zhou, Y.: Existence of solutions for a class of fractional boundary value problems via critical point theory.

Comput. Math. Appl. 62, 1181–1199 (2011)



Zhao et al. Advances in Difference Equations        (2019) 2019:142 Page 20 of 20

21. Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurc. Chaos
22, 1250086 (2012)

22. Sun, H., Zhang, Q.: Existence of solutions for a fractional boundary value problem via the mountain pass method and
an iterative technique. Comput. Math. Appl. 64, 3436–3443 (2012)

23. Klimek, M., Odzijewicz, T., Malinowska, A.B.: Variational methods for the fractional Sturm–Liouville problem. J. Math.
Anal. Appl. 416, 402–426 (2014)

24. Zhao, Y., Chen, H., Xu, C.: Nontrivial solutions for impulsive fractional differential equations via Morse theory. Appl.
Math. Comput. 307, 170–179 (2017)

25. Heidarkhani, S., Zhao, Y., Caristi, G., Afrouz, G.A., Moradi, S.: Infinitely many solutions for perturbed impulsive fractional
differential systems. Appl. Anal. 96(8), 1401–1424 (2017)

26. Galewski, M., Molica Bisci, G.: Existence results for one-dimensional fractional equations. Math. Methods Appl. Sci. 39,
1480–1492 (2016)

27. Nyamoradi, N., Rodríguez-López, R.: Multiplicity of solutions to fractional Hamiltonian systems with impulsive effects.
Chaos Solitons Fractals 102, 254–263 (2017)

28. Zhao, Y., Shi, X., Chen, H.: Multiplicity results for a class of fractional differential equations with impulse. Adv. Differ.
Equ. 2018, 341 (2018)

29. Ahmad, B., Nieto, J.J.: Existence results for a coupled system of nonlinear fractional differential equations with
three-point boundary conditions. Comput. Math. Appl. 58, 1838–1843 (2009)

30. Sun, S., Li, Q., Li, Y.: Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional
differential equations. Comput. Math. Appl. 64, 3310–3320 (2012)

31. Zhao, Y., Chen, H., Qin, B.: Multiple solutions for a coupled system of nonlinear fractional differential equations via
variational methods. Appl. Math. Comput. 257, 417–427 (2015)

32. Zhao, Y., Tang, L.: Multiplicity results for impulsive fractional differential equations with p-Laplacian via variational
methods. Bound. Value Probl. 2017, Article ID 123 (2017)

33. Bonanno, G., Molica Bisci, G.: Infinitely many solutions for a boundary value problems with discontinuous
nonlinearities. Bound. Value Probl. 2009, Article ID 670675 (2009)

34. Bonanno, G., Marano, S.A.: On the structure of the critical set of non-differentiable functions with a weak
compactness condition. Appl. Anal. 89, 1–10 (2010)

35. Vinagre, B.M., Monje, C., Calderon, A.: Fractional order systems and fractional order control actions. In: IEEE Conference
on Decision and Control, Las Vegas, NV, USA, pp. 2550–2554 (2002)

36. Poinot, T., Trigeassou, J.C.: Identification of fractional systems using an output-error technique. Nonlinear Dyn. 38,
133–154 (2004)

37. Qian, D., Li, C., Agarwal, R.P., Wong, P.J.Y.: Stability analysis of fractional differential system with Riemann–Liouville
derivative. Math. Comput. Model. 52, 862–874 (2010)

38. Atanackovic, T.M., Stankovic, B.: On a system of differential equations with fractional derivatives arising in rod theory.
J. Phys. A 37, 1241–1250 (2004)

39. Ricceri, B.: A further three critical points theorem. Nonlinear Anal. TMA 71, 4151–4157 (2009)
40. Ricceri, B.: A three critical points theorem revisited. Nonlinear Anal. TMA 70, 3084–3089 (2009)
41. Ricceri, B.: Existence of three solutions for a class of elliptic eigenvalue problem. Math. Comput. Model. 32, 1485–1494

(2000)
42. Zeidler, E.: Nonlinear Functional Analysis and Applications, vol. 2. Springer, Berlin (1990)


	Multiple positive solutions for perturbed nonlinear fractional differential system with two control parameters
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries and variational formulation
	Main results and proof
	Conclusion
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


