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Abstract
The state-dependent impulsive dynamical system with boundary constraints is a kind
of special but common system in nature. But because of the complexity of the
geometry or topological structures of the impulsive surface, it is hard to determine
when an event or an impulsive surface is reached. Therefore, a general
state-dependent impulsive nonlinear dynamical system is rarely studied. This paper
presents a class of state-dependent impulsive dynamical systems with boundary
constraints. We obtain the existence and continuation of their viable solutions and
provide sufficient conditions for the existence and uniqueness of the viable solutions
to the system. Finally, two examples are given to illustrate the effectiveness of the
results.
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1 Introduction
The impulsive conditions are not only involved in ordinary differential equations, these
conditions may be involved in fractional differential equations as well as in partial differ-
ential equations [1, 2]. Impulsive differential equations (IDEs) are basic dynamical mod-
els to describe the dynamics of kinds of evolution processes which experience a change
of state suddenly, such as harvesting, vibro-impact, natural disasters. These processes are
subject to abrupt changes, which are also called perturbations. Since the duration of short-
term perturbations is negligible compared to the duration of an entire evolution [3–5],
such perturbations involved in the models are generally expressed in the form of im-
pulses. Impulsive differential equations play a very important role in the model construc-
tion and analysis of impulsive problems in electrical, mechanical, population dynamics,
industrial robotics, biotechnology, optimal control, pharmacokinetics, economic and so-
cial sciences, and so on [6, 7], and they have been extensively studied in the past several
years [8–12].

Impulsive differential systems have many kinds of different characteristics of impulsive
perturbations, and we usually study three kinds of impulsive differential systems: differ-
ential systems with fixed-time impulses, differential systems with variable-time impulses,
and differential systems with state-dependent impulses. Most of the previous papers [13–
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17] consider differential systems with fixed-time impulses or variable-time impulses and
discuss their basic qualitative problems, for example, the existence and uniqueness of the
solutions of systems, stability, synchronization, bifurcation, etc.

In reality, however, the state-dependent impulsive systems (the impulsive moments de-
pend on the state of the system) are more reasonable in modeling and control due to the
state-dependent impulsive control strategy being more economic, efficient, and practi-
cal. So far, the state-dependent impulsive systems have a number of applications espe-
cially in ecological models, mathematical biology, control theory, etc. In ecological mod-
els, the control strategies (by catching, spraying pesticide, or releasing the natural enemy)
are taken only when the number of species reaches a critical level, rather than the usual
fixed-time impulsive control strategy [18–24]. In particular, Tang et al. [18] studied the
existence and stability of positive order-k (k ≥ 1) periodic solutions of state-dependent
impulsive models by using the properties of the Lambert W function and Poincaré map.
Nie et al. [20] studied the existence and stability of positive order-1 or order-2 periodic
solution of an SIR epidemic model with state-dependent pulse vaccination. In Chap. 8 of
the book Principles of Discontinuous Dynamical Systems, Akhmet [24] studies discontin-
uous dynamical systems (DDS). The author mainly analyzes the dynamical properties of
the solution trajectory and vector field of autonomous equations with discontinuities and
studies the local existence, uniqueness, and extension by using the related properties of
discontinuous flows (DF). However, due to the complexity of the topological structure of
the impulsive hypersurface, the discontinuous dynamical systems this work considers are
almost a two-dimensional system, while the study about high dimensional autonomous
systems with discontinuous properties is still rare.

Motivated by the above discussions, this paper further studies the viability problem
of solutions for general state-dependent impulsive autonomous differential systems with
state constraints by combining the relevant research methods in the book Discontinuous
Dynamical Systems. For a prescribed open connected subset K (the viability constraints)
of a state space R

n, the aim of this paper is to obtain the solutions of differential systems
with state-dependent impulses to remain in the viability constraints K forever. That is to
say, when the trajectories of systems do not leave the viability constraintsK or do not reach
the boundary ∂K of K, the solutions of the systems are viable. If the trajectories of sys-
tems reach this boundary and leave the viability constraints K in finite time, the solutions
of systems will not be viable (or eventually die out) in the K. We take a reasonable control
strategy on the state of systems when the evolution of state x(t) reaches the boundary of
K, that is, when x(t) reaches M ⊂ ∂K at time tk(M), x(t) is reset to x(t+) = J(x(t–)). Un-
der this strategy, we consider state-dependent impulsive autonomous differential systems
with state constraints that are governed by the following:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = f (x), x(t) ∈K, a.e. t ≥ 0,

x(t+) = J(x(t–)), x(t–) ∈M⊂ ∂K, t ≥ 0,

x(t+
0 ) = x0, t0 ≥ 0,

(1.1)

where f : Rn →R
n is a sufficiently smooth vector field. For analytical simplification, with-

out loss of generality, we assume that every solution x(t) of (1.1) is right continuous,
x(t–) � limδ→0 x(t –δ), x(t+) � limδ→0 x(t +δ) = J(x(t–)) = x(t), x ∈M, and t is a moment of
discontinuity. K is regarded as the viability constraints, M⊂ ∂K is a smooth hypersurface
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in R
n ((n – 1)-dimensional submanifold contained in R

n) and is called the impulsive sur-
face. J : M → K is the jump operator for a function x(t). If x(t–) ∈ M, then for all t ≥ t0,
we have x(t+) = J(x(t–)). Denote N � J(M) ∈ K. If x(t+) ∈ N , then for any t ≤ t0, we have
x(t–) = J–1(x(t+)). x(t+

0 ) = x0 ∈K is an initial condition of (1.1). Here we can regard the ex-
istence and continuation problem of solutions for state-dependent impulsive autonomous
differential system (1.1) with state constraints as a viability problem [25–30].

The paper is structured as follows. Section 2 provides the necessary notations and defini-
tions. In Sect. 3, sufficient conditions for the existence and continuation of viable solution
of state-dependent impulsive autonomous differential system (1.1) with state constraints
are presented and proved. In Sect. 4, in order to illustrate our results, an example is deliv-
ered to illustrate the conclusion.

2 Preliminaries
This section introduces some relevant notations, assumptions, and definitions that are
necessary for developing the results of this paper. Let R denote the set of real num-
bers, let R+ be the set of all nonnegative real numbers, let Rn denote the n-dimensional
phase space, n ≥ 1. We write ‖ · ‖ for the Euclidean vector norm, that is, for a vector
x = (x1, x2, . . . , xn) ∈ R

n, ‖x‖ =
√

x2
1 + x2

2 + · · · + x2
n. Bε(α), α ∈ R

n, ε > 0, denote the open
ball centered at α with radius ε. 〈·, ·〉 is the standard inner product in R

n. For x ∈ R
n and

K ⊂R
n, let dK(x) denote the distance of the point x to the set K defined by

dK(x) = inf
y∈K

‖x – y‖.

Firstly, we consider the nonlinear dynamical system

ẋ(t) = f
(
x(t)

)
, x(t0) = x0, t ∈ R, (2.1)

f : Rn → R
n is Lipschitz continuous on R

n, and I is the maximal interval of existence for
the solution x(t) of (2.1). For all t ∈ R, let π : I ×R

n → R
n be the flow generated by (2.1),

where π is a continuous function, π (t0, x) = x, and π (s,π (t, x)) = π (t + s, x) for all x ∈ R
n,

and t, s ∈ I . We define the continuous function πx0 : R → R
n by πx0 (t) � π (t, x0), which is

called the nonlinear dynamical system (2.1) with initial condition x(t0) = x0. Note that we
use the notation πx0 , t ∈ R, and x(t), t ∈ I , interchangeably to denote the solution of (1.1)
with initial condition x(t+

0 ) = x0.
The positive orbit of (2.1) through the point x0 is given by

Π+(x0, t) �
{
π (t, x0)|π (t0, x0) = x0, t ≥ t0

}
.

We define

M+(x0) =
(⋃

t>t0

Π+(x0, t)
)

∩M

and the exit function (the resetting time) τ (x) : K → (t0, +∞], where τ (x) is defined as
follows. For a point (t̄, x̄) on the trajectory of (2.1), τ (x̄) = τ̂ > t̂ means that πx̄(τ̂ ) /∈ M for
t̄ < t < t̄ + τ̂ . This means that τ (x) is the time of the trajectory of (2.1) from the initialization
to the first intersection with the impulsive set (the resetting set) M.
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Remark 2.1 According to the definition of τ (·), we may know that τ (x) > 0 for x /∈M and
τ (x) = 0 for x ∈M. Furthermore, if M+(x) = ∅, then τ (x) = ∞.

The impulsive dynamical system (1.1) is called discontinuous dynamical system (DDS)
when M+(x0) 
= ∅ [24, 31, 32].

Definition 2.1 (Viable solution) A solution πx0 (t) of (2.1) on R+ with initial condition
x(0) = x0 ∈K is said to be viable in the viability constraints K ⊂R

n on R+ if, for every time
t ≥ 0, πx0 (t) ∈K.

It is apparent that DDS (1.1) is equal to the continuous-time dynamical system (2.1) if
M+(x0) = ∅. In this case, for every point x ∈M, we consider the Bouligand tangent cone

TK(x) :=
{

v ∈R
n
∣
∣
∣ lim

h→0+

1
h

dK(x + hv) = 0
}

. (2.2)

Condition (2.2) means that the vector field f is tangent to M. If f (x) ∈ TK(x) holds for all
x ∈ M, then all solutions πx(t) of (2.1) are viable in K (see [28, 29]). If f (x) /∈ TK(x), then
the trajectory Π+(x0, t) of (2.1) through x ∈M is, in some sense, transversal to M, hence
there exists at least one solution of (2.1) leaving the viability constraints K.

For state-dependent impulsive system (1.1), we make the following hypotheses.
(H1) M 
= ∅ and there exists a continuously differentiable function H : ∂K → R such

that the hypersurface M is defined by

M�
{

x ∈ ∂K|H(x) = 0 and ∇H(x) 
= 0
}

. (2.3)

(H2) J : M→N is a continuous differentiable function, and det[ ∂J(x)
∂x ] 
= 0 for x ∈M.

Assume that (H1) holds, then it follows from the implicit function theorem [33] that, for
every x ∈ M, there exist a number j and a function hx(x1, . . . , xj–1, xj+1, . . . , xn) such that
M is the graph of the function xj = hx(x1, . . . , xj–1, xj+1, . . . , xn) in the neighborhood of x.
Assume that (H2) holds, then it follows from the inverse function theorem [33] that there
exists a unique function J–1 : N →M such that (J–1 ◦ J)(x) = x and J–1(x) 
= x for all x ∈N .
Furthermore, if H̃(x) = H(J–1(x)) for any x ∈N , then N = {x ∈K|H̃(x) = 0}. It follows from
(2.3) that we can easily prove that ∇H̃(x) 
= 0 [24, 31]. Furthermore, we make the following
assumptions:

(H3) N ∩M = ∅, where N is the closure of N .
(H4) The vector field f (x) satisfies the following transversality condition: 〈∇H(x), f (x)〉 
=

0 for all x ∈M.
(H5) For x ∈N , 〈∇H̃(x), f (x)〉 
= 0.

Hypothesis (H3) ensures that when the trajectory of (1.1) meets the surface of M, it in-
stantaneously leaves M. This means that the points of M are isolated on every trajectory
of (1.1). If hypothesis (H4) holds, then M is said to be transversal to the vector field f ,
it is also called a cross section. In other words, the vector field f (x) is not tangent to the
surface M (see Fig. 1). Hypothesis (H5) implies that the hyperplane N is not tangent to
the solution of (1.1).

In order to define a solution of (1.1), we need the following definition.
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Figure 1 The geometric property of transversal map f

Definition 2.2 A function π̃x0 : [t0, tf ) →K, tf ∈ R∪ ∞, tf > t0, is a solution of (1.1) with
initial condition x(t+

0 ) = x0 ∈K if the following conditions are satisfied:
(i) π̃x0 (t) is right continuous on [t0, tf );

(ii) For every t ∈ [t0, tf ), left and right limits of π̃x0 (t) exist, denoted by
π̃–

x0 (t) � lims→t– π̃x0 (s) and π̃+
x0 (t) � lims→t+ π̃x0 (s);

(iii) There exists a closed discrete subset Ix0 ⊂ [t0, tf ) called impulsive times such that
(a) for t /∈ Ix0 , π̃x0 (t) is differentiable, dπ̃x0 (t)

dt = f (π̃x0 (t)), and π̃x0 (t) /∈M; (b) for
t ∈ Ix0 , π̃–

x0 (t) ∈M and π̃+
x0 (t) = J(π̃–

x0 (t)).

IfM+(x0) = ∅, then π̃x0 (t) = πx0 (t), that is, the trajectory Π̃+(x0, t) does not intersect with
impulse surface M, there is no impulsive effect. Thus, the trajectory Π̃+(x0, t) starting at
the initial point x0 ∈K will remain in the viability constraints K forever. Therefore, by the
existence and uniqueness theorem for ordinary differential equation, π̃x0 (t) exists and is
unique on an interval [0, tf ) as a viable solution of system (2.1).

However, if M+(x0) 
= ∅, then τ (x0) < +∞. Thus, there exists a smallest positive time
τ1 � τ (x0) such that x1 � πx0 (τ1) ∈ M and πx0 (t) /∈ M for t0 < t < τ1. Furthermore, x1 is
instantaneously transferred to x+

1 � J(x1). Then we define π̃x on [t0, t1] by

π̃x0 (t) =

⎧
⎨

⎩

πx0 (t), t0 ≤ t < t1,

x+
1 , t = t1,

where π̃x0 (0+) = x0 and t1 � τ1. Further, if M+(x+
1 ) = ∅, then we define π̃x0 (t) = πx+

1
(t – τ1)

for τ1 ≤ t < +∞ and τ (x+
1 ) = +∞. That is to say, the trajectory Π̃+(x0, t) starting at the initial

point x0 ∈ K meets the surface M only once and does not hit the surface M beyond the
time t = τ1. On the other hand, if M+(x+

1 ) 
= ∅, then there exists a smallest positive time
τ2 � τ (x+

1 ) such that x2 � πx+
1
(τ2) ∈ M and πx+

1
(t – τ1) /∈ M, for τ1 < t < τ1 + τ2. Moreover,

x2 jumps to point x+
2 � J(x2). Therefore, we define π̃x on [t1, t2] by

π̃x0 (t) =

⎧
⎨

⎩

πx+
1
(t – t1), t1 ≤ t < t2,

x+
2 , t = t2,
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Figure 2 The trajectory π̃x0 (t) of (1.1) with the initial condition x0 ∈ K

where t2 = τ1 + τ2. Repeating this process for x+
k , k = 2, 3, . . . , we can define π̃x0 on each

[tk , tk+1] by the following:

π̃x0 (t) =

⎧
⎨

⎩

πx+
k
(t – tk), tk ≤ t < tk+1,

x+
k+1, t = tk+1,

where tk =
∑k

i=1 τi, τi � τ (x+
i–1), t0 = 0, and x+

k � J(xk). Therefore, the solution π̃x0 (t) of
(1.1) is defined on the interval [t0, tk+1] (see Fig. 2). If M+(x+

k ) = ∅ for some k, then the
trajectory Π̃+(x0, t) of (1.1) with initial condition x(t+

0 ) = x0 ∈K will intersect the impulsive
set M finitely many times (k times) and will remain in the viability constraints K forever.
Then there exists a solution of (1.1), and π̃ : [τk , tf ) → K is a maximal solution of (2.1). If
M+(x+

k ) 
= ∅ for all k = 1, 2, . . . , then π̃x0 (t) is defined on the interval [t0, tf ). Furthermore,
a maximal interval of the existence of a solution does not exist since [t0, tf ) involves a
sequence {tk}∞k=1 of impulsive times, where tk =

∑∞
i=1 τi and limk→∞ = ∞.

Remark 2.2 Note that π̃x0 (tk) ∈ M, π̃x0 (t+
k ) ∈ N . Moreover, π̃x0 (tk) ∈ M for tk > t0 and

π̃x0 (tk) ∈N for tk > t0, where tk ∈ Ix0 .

For given x0 ∈K, the positive orbit of (1.1) with initial condition x(0+) = x0 ∈K is defined
by

Π̃+(x0, t) =
{
π̃x0 (t)|t ∈ [t0, tf )

}
.

We let tk denote the kth instant of time at which Π̃+(x0, t) intersects M, Ix0 is denoted by
{t1, t2, . . . , tk , . . .}, where t0 < t1 < t2 < · · · < tk < · · · and limk→∞ tk = ∞.
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Remark 2.3 If tf < ∞, then π̃x0 : [t0, tf ) →R
n is a maximal solution of (1.1), where Ix0 
= ∅,

π̃x0 : [max(Ix0 ), tf ) →R
n is a maximal solution of (1.1), and when I = ∅, π̃x0 : [t0, tf ) →R

n

is a maximal solution of (2.1). If tf = ∞, then the solution is obviously maximal.

We shall use PC([t0, tf ),Rn) to denote the class of piecewise continuous functions from
[t0, tf ) to R

n, with discontinuities of the first kind only at t = tk , k = 1, 2, . . . . Thus, π̃x0 (t) ∈
PC1([t0, tf ),Rn).

Now we give the Schauder fixed point theorem, the definitions of the impulsive viable
solution and continuation of the solution of (1.1).

Theorem 2.1 (Schauder fixed point theorem [33]) Let C ⊆R
n be a nonempty, convex, and

closed set, let f : C → C be continuous, and assume that f (C) is bounded. Show that there
exists x ∈ C such that f (x) = x.

Definition 2.3 (Impulsive viable solution) A solution π̃x0 (t) ∈PC1([t0, tf ),Rn) of (1.1) on
the interval [t0, tf ) with initial condition x(0+) = x0 is said to be viable in the viability con-
straints K ⊂R

n on [t0, tf ) if, for every time t ∈ [t0, tf )\Ix0 , π̃x0 (t) ∈K.

Definition 2.4 ([24]) A solution π̃x0 (t) of (1.1) is said to be continuable to a set U ∈R
n as

time decreases (increases) if there exists a time s ∈R such that s ≤ 0 (s ≥ 0) and π̃x0 (s) ∈ U .

In order to obtain the sufficient conditions of continuation of the solutions of (1.1), we
make the following hypotheses:

(H6) sup‖f (x)‖ < +∞ for all x ∈K.
(H7) (a) Every solution πx0 (t), x0 ∈K, of (2.1) is continuable to either ∞ or M as time

increases.
(b) Every solution πx0 (t), x0 ∈ K, of (2.1) is continuable to either –∞ or N as

time decreases.

3 Main results
In this section we prove the existence and continuation of solution of (1.1).

The following theorem gives sufficient conditions for the existence and uniqueness of
solutions of (1.1).

Theorem 3.1 If hypotheses (H1)–(H3) hold, then for every x0 ∈ K, there exist r < t0 and
s > t0 such that (1.1) has a unique viable solution x : [r, s] →K over the interval [r, s].

Proof According to the different position of the initial point x0, M and N , we consider
the following three cases:

(C1) If x0 /∈ M ∪ N , then this implies that there exists a constant α > 0 small enough
such that Bα(x0) ∩ (M∪N ) = ∅ and Bα(x0) ⊆K. Let
M � sup{‖f (x)‖ : x ∈ Bα(x0)}. Further, let ξ ,η > 0 be such that Mξ ≤ η ≤ ε, and let

Ω �
{

x(·) ∈ C[t0, s]|‖x – x0‖ ≤ α, x(t0) = x0, t ∈ [t0, s]
}

,
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where s � t0 + ξ . It is easy to see that Ω is a convex closed set and bounded. Let
G : C[t0, s] → C[t0, s] be given by

(Gx)(t) � x0 +
∫ t

t0

f
(
x(υ)

)
dυ, t ∈ [t0, s]. (3.1)

It follows that

∥
∥(Gx)(t) – x0

∥
∥ =

∥
∥
∥
∥

∫ t

t0

f
(
x(υ)

)
dυ

∥
∥
∥
∥

≤
∫ t

t0

∥
∥f

(
x(υ)

)∥
∥dυ

≤ M|t – t0|
≤ Mξ

≤ η, (3.2)

where t ∈ [t0, s], G(Ω) is bounded by (3.2). Furthermore, because f is continuous
on K, it follows that, for every ε > 0, there exists δ > 0 such that
supt0≤t≤s ‖x(t) – x̄(t)‖ < δ, we have

∥
∥(Gx)(t) – (Gx̄)(t)

∥
∥ =

∥
∥
∥
∥

∫ t

t0

[f
(
x(υ)

)
– f

(
x̄(υ)

)
dυ

∥
∥
∥
∥

≤
∫ t

t0

∥
∥f

(
x(υ)

)
– f

(
x̄(υ)

)∥
∥dυ

≤ ε(t – t0)

≤ εξ .

Therefore, by the Schauder fixed point theorem 2.1, we know that x(t) = (Gx)(t) is
a solution of (1.1) if and only if x(t) is a fixed point of G for all t ∈ [t0, s] (for more
details, see [33]). On the other hand, according to the uniqueness theorem of
nonlinear dynamical system (2.1), we obtain that system (1.1) has a unique
solution x : [t0, s] → R

n over the interval [t0, s].
(C2) If x0 ∈M, then for all t ≥ t0, we have x+

0 = J(x0) ∈N ∈K. It follows from
hypothesis (H3) that there exists a constant α > 0 such that Bα(x+

0 ) ∩M 
= ∅ and
Bα(x+

0 ) ⊆K. Hence, x(t) can be continued at the right. Similar to (C1), (1.1) has a
unique solution x : [t0, s] →R

n over the interval [t0, s]. Let us consider t ≤ t0 now.
It is easy to see that x–

0 = J–1(x+
0 ) ∈M. Hence, there exists a constant α > 0 such

that Bα(x+
0 ) ∩N 
= ∅ by hypothesis (H3), and x(t) can be proceeded at the left. This

means that there exists a constant ξ such that r � t0 – ξ . Similar to (C1), (1.1) has a
unique solution x : [r, t0] →R

n over the interval [r, t0]. Therefore, there exists a
unique solution x(t) of (1.1) on an interval (r, s).

(C3) If x0 ∈N , similar to cases (C1) or (C2).
Through the analyses above, we proved that (1.1) has a unique solution x : [r, s] →R

n over
the interval [r, s]. The proof is complete. �
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Remark 3.1 If hypotheses (H1)–(H5) hold, then every solution of (1.1) continuously de-
pends on the initial value x0 [24, 31].

Next, we discuss the continuation of the solution for (1.1). The following theorems prove
that every solution of (1.1) is a continuation to R.

Theorem 3.2 If hypotheses (H4), (H6), and (H7) hold, then every solution πx0 (t), x0 ∈ K
of (2.1) is continuable to R.

Proof Let π̃x0 (t) be a solution of system (2.1) starting from the initial point x0 ∈K at t = 0.
Since the solution πx0 (t) intersects the impulse surface M zero times or finitely many
times, or infinitely many times, thus, the relation of π̃x0 (t) and M is one of the following
three cases:

(i) If π̃x0 (t) does not intersect the impulse set M, then the solution π̃x0 (t) of system
(2.1) starting at the initial point x0 ∈K is free from the impulsive effects and
remains in the set K forever. It means that π̃x0 (t) is a nonlinear dynamical system
(2.1). According to hypotheses (H7), the solutions of (1.1) on the maximal interval
[t0, tf ) of existence are continuable to R.

(ii) If the solution of (2.1) intersects the impulse surface M at the time tk (i.e.,
π̃x0 (tk) ∈M) only finitely many times, where the impulse time sequence {tk} ∈R

satisfies –∞ < t1 < t2 < · · · < tk < +∞. Denote by tmin and tmax the minimal and
maximal elements of the sequence τi, respectively. For t ≥ tmax, the solution
π̃x0 (tmax) of system (2.1) is subjected by impulsive effect to jump to
x(t+

max) = J(x(t–
max)) ∈N , and the solution π̃x0 (t) = πx(t+

max)(t) of system (2.1), where
πx(t+

max)(t) is a solution of (2.1). By hypothesis (H7)(a), [t0, tf ) is continuable to
[t0,∞) for t ≤ tmin. Similarly, by hypothesis (H7)(b), [t0, tf ) is also continuable to
(–∞, t0].

(iii) The solution π̃x0 (t) of system (1.1) intersects the impulse surface M infinitely many
times. It is clear that the existence of τmin and τmax has the following three cases:
(a) The impulse time sequence {tk} has a maximal element tmax ∈ R, but tmin does

not exist. According to the proof of case (ii), we know π̃x0 (t) is continuable to
+∞ as t increases. Consider t to be decreasing. Integrating both sides of the
ordinary differential equation of system (2.1) that belongs to the interval
[tk , tk+1), we have

π̃x0

(
t+
k
)

= π̃x0

(
t–
k+1

)
+

∫ tk

tk+1

f
(
π̃x0 (θ )

)
dθ . (3.3)

From (H4) and (H6), we denote Q � supK ‖f (x)‖ and ρ � d(M,N ) > 0. Thus,
(3.3) implies that

ρ

Q
≤ (tk+1 – tk).

Therefore,

ρ

Q
(
k – k∗) ≥ tk – tk∗ , (3.4)
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where k∗ is fixed, k < k∗, and k, k∗ is the index of the impulse time sequence {tk}
and is fixed. From (3.4), this implies that tk → –∞ as k → –∞. According to
hypothesis (H7)(b), [t0, tf ) is continuable to (–∞, tmax). Thus, π̃x0 (t) is
continuable to –∞ as t decreases.

(b) The sequence {tk} has a minimal element tmin ∈R, but does not have a maximal
one. Then by the arguments of (ii) x(t) is continuable to –∞. It follows now that
we consider the continuation of x(t) with the increasing of time t. We have

π̃x0

(
t–
k+1

)
= π̃x0

(
t+
k
)

+
∫ tk+1

ti

f
(
π̃x0 (θ )

)
dθ .

Similarly, we have

ρ

Q
≤ tk+1 – τk ,

or

ρ

Q
(
k – k∗) ≤ tk – tk∗ , (3.5)

where k∗ is fixed, and k > k∗. From (3.5), we get tk → +∞ as k → +∞.
According to hypothesis (H7)(a), [t0, tf ) is continuable to [tmin,∞).

(c) The sequence {tk} has neither a minimal nor a maximal element. The proof of
this case is similar to that of (a) and (b). We obtain that π̃x0 (t) is continuable
to R.

According to the above discussion, we obtain that every solution π̃x0 (t) of (1.1) is con-
tinuable to R. This completes the proof. �

The main results claim that every viable solution of (1.1) is continuable to +∞ and –∞.
In other words, R is a maximal interval of existence of each solution π̃x0 (t), x0 ∈K of (1.1).
That is, π̃x0 (t) ∈PC(R).

4 Numerical examples
In this section, the validity of the results will be illustrated by two numerical examples.

Example 4.1 We revisit the following state-dependent impulsive autonomous differential
system with state constraints [31]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = –x – 3y

ẏ = 3x – y

}

(x, y) ∈K,

x+ = 2x

y+ = 2y

}

(x, y) ∈ M ⊂ ∂K,

(4.1)

where z = (x, y),

K =
{

(x, y) ∈ R
2|1 < x2 + y2 ≤ 4

}
and M =

{
(x, y) ∈R

2|x2 + y2 = 1
}

.
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It is easy to find that

f (z) = (–x – 3y, 3x – y), J(x) = (2x, 2y), N =
{

(x, y) ∈R
2|x2 + y2 = 4

}
,

H(x) = x2 + y2 – 1, H̃(x) = x2 + y2 – 4.

The viability constraints of system (4.1) are K = {(x, y) ∈ R
2|1 < x2 + y2 ≤ 4}, manifolds M

and N are boundaries of the set K, and circles with radii 1 and 2, respectively. It is easy to
know d(M,N ) = 1 > 0.

Let us check conditions (H1)–(H6). Clearly, K = {(x, y) ∈ R
2|1 < x2 + y2 ≤ 4} is a simply

connected open subset on R
n. Moreover,

∇H(x) = (2x, 2y) 
= 0.

So, (H1)–(H2) are satisfied. Moreover, f , J are continuously differentiable functions and

det

[
∂J(x)
∂x

]

=

∣
∣
∣
∣
∣

2 0
0 2

∣
∣
∣
∣
∣

= 0

for all x. Furthermore, for all x ∈M, we have

〈∇H(x), f (x)
〉
=

〈
(2x, 2y), (–x – 3y, 3x – y)

〉
= 2

(
–x2 – y2) = –2 
= 0,

and

〈∇H̃(x), f (x)
〉
=

〈
(2x, 2y), (–x – 3y, 3x – y)

〉
= 2

(
–x2 – y2) = –8 
= 0

for all x ∈ N . Thus, all conditions (H1)–(H6) are satisfied. It is easy to know from Theo-
rem 3.1 that solution of system (4.1) exists and is unique.

Next, let us consider the continuation of solution of system (4.1). The nonlinear dynam-
ical system in (4.1) is a linear dynamical system with constant coefficients. Furthermore,

∥
∥f (x)

∥
∥ =

√
(–x – 3y)2 + (3x – y)2 =

√

10
(
x2 + y2

)

and

sup
∥
∥f (x)

∥
∥ = 2

√
10 < ∞, x ∈K. (4.2)

We see that system (4.1) satisfies all the conditions of Theorem 3.2. Therefore, every so-
lution of system (4.1) is continuable on R.

The phase portrait of system (4.1) without impulsive effects is seen in Fig. 3(a). Fig-
ure 3(a) shows that the trajectories of system (4.1) without impulsive effect will leave K
and then trend to equilibrium (0, 0). From Fig. 3(b), we can easily find that the trajectory
of system (4.1) starting from the initial point (

√
2,

√
2) ∈ K will intersect with the curve

x2 + y2 = 1 infinitely many times due to impulsive effects and remain in K forever. That is
to say, we can make the solution of system (4.1) with boundary constraints remain in the
constraint domain K through the strategy of state-dependent impulsive control.
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(a) The vector fields of the system (4.1) without impulsive effects

(b) The trajectory of the system (4.1) with initial conditions (x0, y0) = (
√

2,
√

2)

Figure 3 The numerical simulation of system (4.1)

To further illustrate the significance of the study, we consider a specific biological model.

Example 4.2 Suppose that there are two species in an area with limited food resources.
x1(t) and x2(t) are the populations of the species at time t, respectively. Let x1 = x1(t) and
x2 = x2(t). Suppose that the species x2 has the negative effect on the species x1 and de-
creases the growth rate of the species x1, but the species x1 can increase the growth rate
of the species x2. The relations of two species can be described by the following system:

⎧
⎨

⎩

ẋ1 = –(x2 – a2) + ε(x1 – a1),

ẋ2 = x1 – a1,
(4.3)
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(a) The trajectories of the system (4.4) without impulsive effects

(b) The trajectory of the system (4.4) with state-dependent impulsive control

Figure 4 The numerical simulation of system (4.4), where a1 = a2 = 3, ε = 0.7, ρ1 = 2, ρ2 = 1

where ε > 0 represents the immigration rate of species x1 from the outside of the habitat,
a1, a2 are given positive constants. It is easy to know that the equilibrium point (a1, a2)
of system (4.3) is unstable focus or node for ε > 0 (see Fig. 4(a)). That is to say, x1 → +∞
and x2 → +∞ as t → ∞. However, the number of the two species will decrease or even
tend to extinction after the total population reaches a certain threshold because the food
is limited. In order to ensure the diversity of species, we should take some reasonable
control strategies. We assume that the threshold x2

1 +x2
2 = ρ2

1 , ρ1 > 0. When x1 and x2 satisfy
the threshold, some control strategies can be taken, and the population of two species
decreases to x2

1 + x2
2 = ρ2

2 , where ρ1 > ρ2 > 0 (ρ1 and ρ1 are constants). Therefore, we give
the following cylindrical dynamical system with state-dependent impulsive control and
state constraints:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = –(x2 – a2) + ε(x1 – a1)

ẋ2 = x1 – a1,

}

(x, y) ∈K,

�ρ = –ρ∗, (x, y) ∈ M ⊂ ∂K,

(4.4)
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where

K =
{

(x1, x2) ∈R
2
+|(x1 – a1)2 + (x2 – a2)2 < ρ2

1
}

,

�ρ = –ρ∗ = ρ2 – ρ1 =
√

(
x+

1 – a1
)2 +

(
x+

2 + a2
)2 –

√
(x1 – a1)2 + (x2 – a2)2,

∂K =
{

(x1, x2) ∈R
2
+|(x1 – a1)2 + (x2 – a2)2 = ρ2

1
}

,

and

M =
{

(x1, x2) ∈R
2
+|(x1 – a1)2 + (x2 – a2)2 = ρ2

1
}

.

It is easy to see that assumptions (H1)–(H6) are true. Let a1 = a2 = 3, ε = 0.7, ρ1 = 2,
ρ2 = 1. Figure 4(a) shows that the solution of system (4.4) starting from the initial value
(x10, x20) ∈ K will leave the viability constraints K. Figure 4(b) shows that the solution
of system (4.4) will eventually stay in the viability constraints K and tend to a periodic
solution.

5 Conclusion
The state-dependent impulsive autonomous differential system (1.1) with boundary con-
straints has been considered in this paper. The main purpose is to investigate the existence
and uniqueness of viable solutions of system (1.1). From Theorem 3.1, some sufficient con-
ditions on the existence of viable solutions of system (1.1) are provided. Furthermore, we
obtain sufficient conditions for the continuation of a viable solution of system (1.1) by
Theorem 3.2. Finally, two examples are given to illustrate the existence and continuation
of viable solutions of (1.1).
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