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1 Introduction
Fractional calculus is a generalization of ordinary differentiation and integration to ar-
bitrary noninteger order. Applications of fractional differential equations can be found
in various fields of science and engineering. Indeed, there are numerous applications
in viscoelasticity, electrochemistry, control, porous media, electromagnetism, and so on
[23, 26, 28, 30]. Recent developments of fractional differential and integral equations are
given in [1–3, 36–40].

Many authors have studied the existence of solutions of fractional boundary value prob-
lems under various boundary conditions and by different approaches. We refer the readers
to the papers [4, 5, 7, 16, 17, 19, 22, 24, 29, 33] and references therein.

In recent years, hybrid fractional differential equations have achieved a great deal of in-
terest and attention of several researchers. For some developments on the existence results
for hybrid fractional differential equations, we refer to [6, 8–15, 20, 21, 25, 27, 31, 32, 34,
35] and es references therein.

This paper deals with the existence and uniqueness of solutions for boundary-value
problem of the fractional differential equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cDα
0+ [ x(t)–f (t,x(t))

g(t,x(t)) ] = h(t, x(t)), 1 < α ≤ 2, t ∈ J = [0, T],

a1[ x(t)–f (t,x(t))
g(t,x(t)) ]t=0 + b1[ x(t)–f (t,x(t))

g(t,x(t)) ]t=T = λ1,

a2
cDβ

0+ [ x(t)–f (t,x(t))
g(t,x(t)) ]t=η + b2

cDβ

0+ [ x(t)–f (t,x(t))
g(t,x(t)) ]t=T = λ2, 0 < η < T ,

(1.1)

where cDα
0+ and cDβ

0+ denote the Caputo fractional derivatives of orders α and β , respec-
tively, 0 < β ≤ 1, ai, bi, ci, i = 1, 2, are real constants such that a1 + b1 �= 0, a2η

1–β + b2T1–β �=
0, g ∈ C(J ×R,R \ {0}), and f , h ∈ C(J ×R,R).
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This paper can be considered as a generalization of [19]. For example, if we choose
f (t, x(t)) = 0 and g(t, x(t)) = 1 as constant functions, then our problem (1.1) reduces to
the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

cDα
0+ x(t) = h(t, x(t)), 1 < α ≤ 2, t ∈ J = [0, T],

a1x(0) + b1x(T) = λ1,

a2
cDβ

0+ x(η) + b2
cDβ

0+ x(T) = λ2, 0 < η < T .

(1.2)

The paper is organized as follows. In Sect. 2, we introduce some notations, definitions.
and lemmas. Then, in Sect. 3, we prove existence results for problems (1.1) by employing
the hybrid fixed point theorem for three operators in a in Banach algebra due to Dhage.
Finally, we illustrate the obtained results by an example.

2 Preliminaries
In this section, we recall some basic definitions of fractional calculus [23, 30] and present
some auxiliary lemmas.

Definition 2.1 The Riemann–Liouville fractional integral of order α > 0 for a continuous
function f : [0,∞) → R is defined as

Iα
0+ f (t) =

1
Γ (α)

∫ t

0
(t – s)α–1f (s) ds, α > 0,

where Γ is the Euler gamma function.

Definition 2.2 Let α > 0 and n = [α] + 1. If f ∈ Cn([a, b]), then the Caputo fractional
derivative of order α defined by

cDα
0+ f (t) =

1
Γ (n – α)

∫ t

0
(t – s)n–α–1f (n)(s) ds

exists almost everywhere on [a, b] ([α] is the integer part of α).

Lemma 2.3 Let α > β > 0 and f ∈ L1([a, b]). Then for all t ∈ [a, b], we have:
• Iα

0+ Iβ

0+ f (t) = Iα+β

0+ f (t),
• cDα

0+ Iα
0+ f (t) = f (t),

• cDβ

0+ Iα
0+ f (t) = Iα–β

0+ f (t).

Lemma 2.4 Let α > 0. Then the differential equation

(cDα
0+ f

)
(t) = 0

has a solution

f (t) =
m–1∑

j=0

cjtj, cj ∈ R, j = 0, . . . , m – 1,

where m – 1 < α < m.
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Lemma 2.5 Let α > 0. Then

Iα
0+

(cDα
0+ f (t)

)
= f (t) +

m–1∑

j=0

cjtj

for some cj ∈R, j = 0, 1, 2, . . . , m – 1, where m = [α] + 1.

Define the supremum norm ‖ · ‖ in E = C(J ,R) by

‖x‖ = sup
t∈J

∣
∣x(t)

∣
∣

and the multiplication in E by

(xy)(t) = x(t)y(t).

Clearly, E is a Banach algebra with respect to the supremum norm and multiplication in
it.

To prove the existence result for the nonlocal boundary value problem (1.1), we will use
the following hybrid fixed point theorem for three operators in a Banach algebra E due to
Dhage [18].

Lemma 2.6 Let S be a closed convex bounded nonempty subset of a Banach algebra E, and
let A, C : E −→ E and B : S −→ E be three operators such that:

(a) A and C are Lipschitzian with a Lipschitz constants δ and ρ , respectively;
(b) B is compact and continuous;
(c) x = AxBy + Cx ⇒ x ∈ S for all y ∈ S,
(d) δM + ρ < 1, where M = ‖B(S)‖.

Then the operator equation AxBx + Cx = x has a solution in S.

3 Main results
In this section, we prove the existence results for the boundary value problems for hybrid
differential equations with fractional order on the closed bounded interval J = [0, T].

Lemma 3.1 Let h be continuous function on J := [0, T]. Then the solution of the boundary
value problem

cDα
0+

[
x(t) – f (t, x(t))

g(t, x(t))

]

= h(t), t ∈ J , 1 < α ≤ 2, (3.1)

with boundary conditions

a1

[
x(t) – f (t, x(t))

g(t, x(t))

]

t=0
+ b1

[
x(t) – f (t, x(t))

g(t, x(t))

]

t=T
= λ1,

a2
cDβ

0+

[
x(t) – f (t, x(t))

g(t, x(t))

]

t=η

+ b2
cDβ

0+

[
x(t) – f (t, x(t))

g(t, x(t))

]

t=T
= λ2, 0 < η < T ,

(3.2)
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satisfies the equation

x(t) = g
(
t, x(t)

)
[

Iα
0+ h(t) –

b1

a1 + b1
Iα

0+ h(T) +
λ1

a1 + b1

+
(b1T – (a1 + b1)t)Γ (2 – β)(a2Iα–β

0+ h(η) + b2Iα–β

0+ h(T) – λ2)
(a1 + b1)(a2η1–β + b2T1–β )

]

+ f
(
t, x(t)

)
. (3.3)

Proof Applying the Riemann–Liouville fractional integral operator of order α to both
sides of (3.1) and using Lemma 2.5, we have

x(t) – f (t, x(t))
g(t, x(t))

= Iα
0+ h(t) – c0 – c1t, c0, c1 ∈R. (3.4)

Consequently, the general solution of (3.1) is

x(t) = g
(
t, x(t)

)(
Iα

0+ y(t) – c0 – c1t
)

+ f
(
t, x(t)

)
c0, c1 ∈R. (3.5)

Applying the boundary conditions (3.2) in (3.4), we find that

–a1c0 + b1
(
Iα

0+ h(T) – c0 – c1T
)

= λ1,

a2Iα–β

0+ h(η) + b2Iα–β

0+ h(T) –
a2η

1–β + b2T1–β

Γ (2 – β)
c1 = λ2.

Therefore we have

c0 = –
b1TΓ (2 – β)(a2Iα–β

0+ h(η) + b2Iα–β

0+ h(T) – λ2)
(a1 + b1)(a2η1–β + b2T1–β)

+
b1

a1 + b1
Iα

0+ h(T) –
λ1

a1 + b1
,

c1 =
Γ (2 – β)(a2Iα–β

0+ h(η) + b2Iα–β

0+ h(T) – λ2)
a2η1–β + b2T1–β

.

Substituting the values of c0, c1 into (3.5), we get (3.3). �

Now we list the following hypotheses.
(H1) The functions g : J ×R −→R \ {0} and h, f : J ×R −→R are continuous.
(H2) There exist two positive functions φ0, φ1 with bounds ‖φ0‖ and ‖φ0‖, respectively,

such that

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ φ0(t)|x – y| (3.6)

and

∣
∣g(t, x) – g(t, y)

∣
∣ ≤ φ1(t)|x – y|, (3.7)

for all (t, x, y) ∈ J ×R×R.
(H3) There exist a function p ∈ L∞(J ,R+) and a continuous nondecreasing function

ψ : [0,∞) −→ (0,∞) such that

∣
∣h(t, x)

∣
∣ ≤ p(t)ψ

(|x|) (3.8)

for all t ∈ J and x ∈R.
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(H4) There exists r > 0 such that

r ≥ g0Λ + f0

1 – ‖φ0‖Λ – ‖φ1‖ (3.9)

and

‖φ0‖Λ + ‖φ1‖ < 1, (3.10)

where f0 = supt∈J |f (t, 0)|, g0 = supt∈J |g(t, 0)|, and

Λ = ψ(r)‖p‖
(

Tα

Γ (α + 1)
+

|b1|Tα

|a1 + b1|Γ (α + 1)

+
(|b1|T + (|a1| + |b1|)T)Γ (2 – β)

|a1 + b1||a2η1–β + b2T1–β |Γ (α – β + 1)

× ((|a2|ηα–β + |b2|Tα–β
)

+ |λ2|
)

+
|λ1|

|a1 + b1|
)

. (3.11)

Theorem 3.2 Assume that conditions (H1)–(H4) hold. Then problem (1.1) has at least one
solution defined on J .

Proof Define the set

S =
{

x ∈ E : ‖x‖E ≤ r
}

.

Clearly, S is a closed convex bounded subset of the Banach space E. By Lemma 3.1 the
boundary value problem (1.1) is equivalent to the equation

x(t) = f
(
t, x(t)

)
+ g

(
t, x(t)

)
[

Iα
0+ h

(
s, x(s)

)
(t) –

b1

a1 + b1
Iα

0+ h
(
s, x(s)

)
(T)

+
λ1

a1 + b1
+

(b1T – (a1 + b1)t)Γ (2 – β)
(a1 + b1)(a2η1–β + b2T1–β )

× (
a2Iα–β

0+ h
(
s, x(s)

)
(η) + b2Iα–β

0+ h
(
s, x(s)

)
(T) – λ2

)
]

, t ∈ J . (3.12)

Define three operators A, C : E −→ E and B : S −→ E by

Ax(t) = g
(
t, x(t)

)
, t ∈ J ,

Bx(t) = Iα
0+ h

(
s, x(s)

)
(t) –

b1

a1 + b1
Iα

0+ h
(
s, x(s)

)
(T) +

(b1T – (a1 + b1)t)Γ (2 – β)
(a1 + b1)(a2η1–β + b2T1–β )

× (
a2Iα–β

0+ h
(
s, x(s)

)
(η) + b2Iα–β

0+ h
(
s, x(s)

)
(T) – λ2

)
+

λ1

a1 + b1
, t ∈ J ,

and

Cx(t) = f
(
t, x(t)

)
, t ∈ J .

Then the integral equation (3.12) can be written in the operator form as

x(t) = Ax(t)Bx(t) + Cx(t), t ∈ J .
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We will show that the operators A, B, and C satisfy all the conditions of Lemma 2.6. This
will be achieved in the following series of steps.

Step 1: First, we show that A and C are Lipschitzian on E. Let x, y ∈ E. Then by (H2), for
t ∈ J , we have

∣
∣Ax(t) – Ay(t)

∣
∣ =

∣
∣g

(
t, x(t)

)
– g

(
t, y(t)

)∣
∣ ≤ φ0(t)

∣
∣x(t) – y(t)

∣
∣

for all t ∈ J . Taking the supremum over t, we obtain

‖Ax – Ay‖ ≤ ‖φ0‖‖x – y‖

for all x, y ∈ E. Therefore A is Lipschitzian on E with Lipschitz constant ‖φ0‖.
Now, for C : E −→ E, x, y ∈ E, we have

∣
∣Cx(t) – Cy(t)

∣
∣ =

∣
∣f

(
t, x(t)

)
– f

(
t, y(t)

)∣
∣ ≤ φ1(t)

∣
∣x(t) – y(t)

∣
∣

for all t ∈ J . Taking the supremum over t, we obtain

‖Cx – Cy‖ ≤ ‖φ1‖‖x – y‖.

Hence C : E −→ E is Lipschitzian on E with Lipschitz constant ‖φ1‖.
Step 2: We show that B is is a completely continuous operator from S into E. First, we

show that B is continuous on S. Let {xn} be a sequence in S converging to a point x ∈ S.
Then by the Lebesgue dominated convergence theorem we have

lim
n→∞

Bxn(t) =
1

Γ (α)
lim

n→∞

∫ t

0
(t – s)α–1h

(
s, xn(s)

)
ds

–
b1

(a1 + b1)Γ (α)
lim

n→∞

∫ T

0
(T – s)α–1h

(
s, xn(s)

)
ds

+
(b1T – (a1 + b1)t)Γ (2 – β)

(a1 + b1)(a2η1–β + b2T1–β )Γ (α – β)

×
(

a2 lim
n→∞

∫ η

0
(η – s)α–β–1h

(
s, xn(s)

)
ds

+ b2 lim
n→∞

∫ T

0
(T – s)α–β–1h

(
s, xn(s)

)
ds – λ2

)

+
λ1

a1 + b1

=
1

Γ (α)

∫ t

0
(t – s)α–1 lim

n→∞
h
(
s, xn(s)

)
ds

–
b1

(a1 + b1)Γ (α)

∫ T

0
(T – s)α–1 lim

n→∞
h
(
s, xn(s)

)
ds

+
(b1T – (a1 + b1)t)Γ (2 – β)

(a1 + b1)(a2η1–β + b2T1–β )Γ (α – β)

×
(

a2

∫ η

0
(η – s)α–β–1 lim

n→∞
h
(
s, xn(s)

)
ds

+ b2

∫ T

0
(T – s)α–β–1 lim

n→∞
h
(
s, xn(s)

)
ds – λ2

)

+
λ1

a1 + b1
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= Iα
0+ h

(
t, x(t)

)
–

b1

a1 + b1
Iα

0+ h
(
T , x(T)

)
+

λ1

a1 + b1

+
(b1T – (a1 + b1)t)Γ (2 – β)

(a1 + b1)(a2η1–β + b2T1–β )Γ (α – β)

× (
a2Iα–β

0+ h
(
η, x(η)

)
+ b2Iα–β

0+ h
(
T , x(T)

)
– λ2

)

= Bx(t)

for all t ∈ J . This shows that B is a continuous operator on S.
Next, we will prove that the set B(S) is a uniformly bounded in S. For any x ∈ S, we have

∣
∣Bx(t)

∣
∣ ≤ 1

Γ (α)

∫ t

0
(t – s)α–1∣∣h

(
s, x(s)

)∣
∣ds

+
|b1|

|a1 + b1|Γ (α)

∫ T

0
(T – s)α–1∣∣h

(
s, x(s)

)∣
∣ds

+
(|b1|T + (|a1| + |b1|)T)Γ (2 – β)

|a1 + b1||a2η1–β + b2T1–β |Γ (α – β)

(

|a2|
∫ η

0
(η – s)α–β–1∣∣h

(
s, x(s)

)∣
∣ds

+ |b2|
∫ T

0
(T – s)α–β–1∣∣h

(
s, x(s)

)∣
∣ds + |λ2|

)

+
|λ1|

|a1 + b1| .

Using (3.8), we can write

∣
∣Bx(t)

∣
∣ ≤ 1

Γ (α)

∫ t

0
(t – s)α–1ψ(r)p(s) ds +

|b1|
|a1 + b1|Γ (α)

∫ T

0
(T – s)α–1ψ(r)p(s) ds

+
(|b1|T + (|a1| + |b1|)T)Γ (2 – β)

|a1 + b1||a2η1–β + b2T1–β |Γ (α – β)

(

|a2|
∫ η

0
(η – s)α–β–1ψ(r)p(s) ds

+ |b2|
∫ T

0
(T – s)α–β–1ψ(r)p(s) ds + |λ2|

)

+
|λ1|

|a1 + b1|

≤ ψ(r)‖p‖
(

Tα

Γ (α + 1)
+

|b1|Tα

|a1 + b1|Γ (α + 1)

)

+
(|b1|T + (|a1| + |b1|)T)Γ (2 – β)

|a1 + b1||a2η1–β + b2T1–β |Γ (α – β + 1)
(|a2|ηα–β + |b2|Tα–β

)

+
(|b1|T + (|a1| + |b1|)T)Γ (2 – β)

|a1 + b1||a2η1–β + b2T1–β |Γ (α – β + 1)
|λ2| +

|λ1|
|a1 + b1| .

Thus ‖Bx‖ ≤ Λ for all x ∈ S with Λ given in (3.11). This shows that B is uniformly bounded
on S.

Now, we will show that B(S) is an equicontinuous set in E.
Let t1, t2 ∈ J . Then for any x ∈ S, by (3.8) we get

∣
∣Bx(t2) – Bx(t1)

∣
∣ ≤ ψ(r)‖p‖

Γ (α)

∫ t1

0

(
(t2 – s)α–1 – (t1 – s)α–1)ds

+
ψ(r)‖p‖
Γ (α)

∫ t2

t1

(t2 – s)α–1 ds +
|λ2|a1 + b1||t1 – t2|

|a1 + b1||a2η1–β + b2T1–β |Γ (α – β)
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+
|a1 + b1||t1 – t2|ψ(r)‖p‖

|a1 + b1||a2η1–β + b2T1–β |Γ (α – β)

(

|a2|
∫ η

0
(η – s)α–β–1 ds

+ |b2|
∫ T

0
(T – s)α–β–1 ds

)

. (3.13)

Obviously, the right-hand side of inequality (3.13) tends to zero independently of x ∈ S
as t2 → t1. As a consequence of the Ascoli–Arzelà theorem, B is a completely continuous
operator on S.

Step 3: Hypothesis (c) of Lemma 2.6 is satisfied.
Let x ∈ E and y ∈ S be arbitrary elements such that x = AxBy + Cx. Then we have

∣
∣x(t)

∣
∣ ≤ ∣

∣Ax(t)
∣
∣
∣
∣By(t)

∣
∣ +

∣
∣Cx(t)

∣
∣

≤ ∣
∣g

(
t, x(t)

)∣
∣

{
1

Γ (α)

∫ t

0
(t – s)α–1∣∣h

(
s, y(s)

)∣
∣ds

+
|b1|

|a1 + b1|Γ (α)

∫ T

0
(T – s)α–1∣∣h

(
s, y(s)

)∣
∣ds

+
(|b1|T + (|a1| + |b1|)T)Γ (2 – β)

|a1 + b1||a2η1–β + b2T1–β |Γ (α – β)

(

|a2|
∫ η

0
(η – s)α–β–1∣∣h

(
s, y(s)

)∣
∣ds

+ |b2|
∫ T

0
(T – s)α–β–1∣∣h

(
s, y(s)

)∣
∣ds + |λ2|

)

+
|λ1|

|a1 + b1|
}

+
∣
∣f

(
t, x(t)

)∣
∣

≤ (∣
∣g

(
t, x(t)

)
– g(t, 0)

∣
∣ +

∣
∣g(t, 0)

∣
∣
)
{

1
Γ (α)

∫ t

0
(t – s)α–1ψ(r)p(s) ds

+
|b1|

|a1 + b1|Γ (α)

∫ T

0
(T – s)α–1ψ(r)p(s) ds

+
(|b1|T + (|a1| + |b1|)T)Γ (2 – β)

|a1 + b1||a2η1–β + b2T1–β |Γ (α – β)

(

|a2|
∫ η

0
(η – s)α–β–1ψ(r)p(s) ds

+ |b2|
∫ T

0
(T – s)α–β–1ψ(r)p(s) ds + |λ2|

)

+
|λ1|

|a1 + b1|
}

+
∣
∣f

(
t, x(t)

)
– f (t, 0))

∣
∣ +

∣
∣f (t, 0)

∣
∣

≤ (‖φ0‖
∣
∣x(t)

∣
∣ + g0

)
Λ + ‖φ1‖

∣
∣x(t)

∣
∣ + f0.

Thus

∣
∣x(t)

∣
∣ ≤ g0Λ + f0

1 – ‖φ0‖Λ – ‖φ1‖ .

Taking the supremum over t, we get

‖x‖ ≤ g0Λ + f0

1 – ‖φ0‖Λ – ‖φ1‖ ≤ r.

Step 4: Finally, we show that δM + ρ < 1, that is, (d) of Lemma 2.6 holds.
Since

M = ‖B(S)‖ = sup
x∈S

{
sup
t∈J

∣
∣Bx(t)

∣
∣
}

≤ Λ,
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we have

‖φ0‖M + ‖φ1‖ ≤ ‖φ0‖Λ + ‖φ1‖ < 1

with δ = ‖φ0‖ and ρ = ‖φ1‖ Thus all the conditions of Lemma 2.6 are satisfied, and hence
the operator equation x = AxBx + Cx has a solution in S. As a result, problem (1.1) has a
solution on J . �

Example 3.3 Let us consider the following boundary value problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cD
3
2
0+ [ x(t)–f (t,x(t))

g(t,x(t)) ] = e–2t√
(9+t) sin x(t), t ∈ J = [0, 1],

[ x(t)–f (t,x(t))
g(t,x(t)) ]t=0 + 2[ x(t)–f (t,x(t))

g(t,x(t)) ]t=1 = 1
2 ,

3 cD
1
2
0+ [ x(t)–f (t,x(t))

g(t,x(t)) ]t= 1
2

+ 0.25 cD
1
2
0+ [ x(t)–f (t,x(t))

g(t,x(t)) ]t=1 = 1.

(3.14)

We take

α =
3
2

, β =
1
2

, a1 = 1, a2 = 3, λ1 =
1
2

,

b1 = 2, b2 =
1
4

, λ2 = 1, η =
1
2

, T = 1,

f
(
t, x(t)

)
=

t2

100

(
1
2
(
x(t) +

√
x2 + 1

)
+ e–t

)

,

g
(
t, x(t)

)
=

√
πe–2π t cos(π t)
(7π + 15et)2

x(t)
1 + x(t)

+
t

10
,

h
(
t, x(t)

)
=

e–2t
√

(9 + t)
sin x(t).

We can show that

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ t2

100
|x – y|,

∣
∣g(t, x) – g(t, y)

∣
∣ ≤

√
πe–2π t

(7π + 15et)2 |x – y|,
∣
∣h(t, x)

∣
∣ ≤ p(t)ψ

(|x|),

where

ψ
(|x|) = |x|, p(t) = e–2t .

Hence we have

φ0(t) =
t2

100
, φ1(t) =

√
πe–2π t

(7π + 15et)2 .

Then

‖φ0‖ =
1

100
, ‖φ1‖ =

√
π

(7π + 15)2 , ‖p‖ = 1,
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and

f0 = sup
t∈J

∣
∣f (t, 0)

∣
∣ =

1
100

, g0 = sup
t∈J

∣
∣g(t, 0)

∣
∣ =

1
10

.

Using the Matlab program, it follows by (3.9) and (3.10) that the constant r satisfies the
inequality 0.0146 < r < 21.8589. As all the conditions of Theorem 3.2 are satisfied, problem
(3.14) has at least one solution on J .

4 Concluding remarks
In this paper, we have provided some sufficient conditions guaranteeing the existence of
solutions for a class of hybrid fractional differential equations involving fractional Caputo
derivative of order 1 < α ≤ 2. Our results rely on a hybrid fixed point theorem for a sum
of three operators due to Dhage. Our results extend and complete those in the literature.
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