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Abstract
In this paper, we consider a delayed Hopfield two-neural system with a monotonic
activation function and find the periodic coexistence by bifurcation analysis. Firstly,
we obtain the pitchfork bifurcation of the trivial equilibrium employing the central
manifold and normal form methods. The neural system exhibits two pitchfork
bifurcations near the trivial equilibrium. Then, analyzing the characteristic equation of
the nontrivial equilibrium, we illustrate the saddle-node bifurcation of the nontrivial
equilibria. The system exhibits the multi-coexistences of the stable and unstable
equilibria. Further, we illustrate the plane regions of parameters having different
numbers of equilibria. To obtain a time delay in neural system dynamics, we present
the stability analysis and find the periodic orbit. The system exhibits stability
switching by the Hopf bifurcation curves. Finally, the dynamic behaviors near the
Hopf–Hopf bifurcation point are presented. The system exhibits coexistence of
multiple periodic orbits with different frequencies.
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1 Introduction
Hopfield neural network was firstly proposed by Hopfield in 1984 [1]. From then on, the
neural network systems have seen great development, both regarding their properties and
applications, such as in pattern recognition, signal processing, and associative memory [2,
3]. The dynamical property of a neural system received much attention, which focuses on
two main directions: establishing the stability conditions for equilibrium/periodic orbit
[4–6] and discovering the complex dynamical behaviors, such as quasi-periodic orbit [7],
chaos oscillation [8], and their coexistence [9, 10].

Bifurcation analysis is one of the most important tools to investigate the dynamic be-
haviors of a neural system. A bifurcation leads to a sudden topological change of system
behaviors [11]. When a neural system is used as an associated memory, the stable equi-
libria of the neural network correspond to the static retrievable memory. So far, many
scholars devoted their efforts to establish a neural network with coexisting multiple equi-
libria [12–14], which denotes the storage capacity of a neural system [15, 16]. For the
low-dimensional Hopfield neural network system, the existing dynamical analysis is fo-
cused on the local stability and Hopf bifurcation of the trivial equilibrium [17–19]. Re-
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cently, some codimension-two bifurcations, such as Bogdanov–Takens bifurcation [20,
21], pitchfork–Hopf bifurcation [22, 23], and Hopf–Hopf bifurcation [24, 25], were ap-
plied to investigate the neural system dynamics. In fact, it follows from the bifurcation
theory that codimension-two bifurcations may induce different coexistence near the bi-
furcation points. For example, the Bogdanov–Takens and pitchfork–Hopf bifurcations will
lead the system dynamics to the coexistence of an equilibrium and periodic orbit [26]. The
Hopf–Hopf bifurcation induces the multi-coexistence of periodic orbits.

Due to the complexity of global dynamics for all trajectories [27], there is very little re-
search on multiple equilibria and their stability in low-dimensional nonlinear systems.
In fact, the low-dimensional Hopfield neural system may exhibit the multi-coexistence
of equilibria and periodic orbits [28, 29]. Recently, Song et al. [30] employed the multi-
stage pitchfork bifurcations of trivial and nontrivial equilibrium to find the multiple coex-
istences of stable and unstable equilibria in the Wilson–Cowan coupled system, which is a
global dynamical analysis. When the activation function is defined as a non-monotonically
increasing function, the neural system illustrates the multiple equilibria [31]. Ma and Wu
[32] obtained a multi-coexistence of stable equilibrium in a two-dimensional neural sys-
tem with the Morita activation function [33], which is a non-monotonically increasing
function. However, to the best of our knowledge, there is no published report on the coex-
istence of multiple equilibria in the two-dimensional Hopfield neural system, and this mo-
tivates our present research. In this paper, the considered Hopfield neural system model
is described by the following equations:

⎧
⎨

⎩

ẋ1(t) = –x1(t) + γ f (x1(t – τs)) + a21f (x2(t – τ1)),

ẋ2(t) = –x2(t) + a12f (x1(t – τ1)) + γ f (x2(t – τs)),
(1.1)

where x1(t) and x2(t) describe the activities of neural populations at time t, γ denotes the
self-connection weights of the neural populations, a12 and a21 are the cross-interaction
weights, τ1 > 0 and τs > 0 are the coupled delays of cross- and self-interaction, the neu-
ral activation function is considered to be the hyperbolic tangent function f (x) = tanh(x),
which is a monotonic function.

The rest of the paper is organized as follows. In the next section, the pitchfork bifurca-
tions of the trivial equilibrium are analyzed employing the central manifold and normal
form. The Hopfield neural network system exhibits two pitchfork bifurcations near the
trivial equilibrium. In Sect. 3, the static bifurcation of the nontrivial equilibrium is inves-
tigated. The system has two saddle-node bifurcations of the nontrivial equilibria. It im-
plies that the system exhibits multiple coexistence of stable equilibria. By the bifurcation
curves, we give the detailed regions having different numbers of the system equilibria. In
Sect. 4, we will exhibit the stability analysis of the trivial equilibrium and find the periodic
orbit using the Hopf bifurcation. In Sect. 5, we will find the stability regions to illustrate
the stability switching by the Hopf bifurcation curves. Further, some Hopf–Hopf bifurca-
tion points are presented, which are the intersection points of the Hopf bifurcation curves.
The dynamic behaviors near these bifurcation points are illustrated. The system exhibits
periodic orbits with different frequencies and the periodic coexistence in the different
parameter regions near the bifurcation points. Conclusions and discussions are given in
Sect. 6.
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2 Pitchfork bifurcation of the trivial equilibrium
It is obvious that system (1.1) has the trivial equilibrium (x1, x2) = (0, 0). By letting ẋ1 = 0,
ẋ2 = 0 in system (1.1), we obtain that the nontrivial equilibrium (x10, x20) must fulfill x10 =
γ f (x10) + a21f (x20) and x20 = a12f (x10) + γ f (x20), which are independent of time delays τ1

and τs. In this section, we will describe the evolution process of the equilibria number
employing pitchfork bifurcation (a type of static bifurcation) of the trivial equilibrium.
Since time delay has no-impact on the number of system equilibria, we rewrite system
(1.1) as the following non-delayed system (i.e., τ1 = 0 and τs = 0), which is

⎧
⎨

⎩

ẋ1(t) = –x1(t) + γ f (x1(t)) + a21f (x2(t)),

ẋ2(t) = –x2(t) + a12f (x1(t)) + γ f (x2(t)).
(2.1)

The linearization of the system at the trivial equilibrium (0, 0) produces

⎧
⎨

⎩

ẋ1(t) = –x1(t) + γ x1(t) + a21x2(t),

ẋ2(t) = –x2(t) + a12x1(t) + γ x2(t).
(2.2)

The associated characteristic equation is

λ2 + (2 – 2γ )λ + γ 2 – 2γ – a12a21 + 1 = 0. (2.3)

System (2.1) undergoes a static bifurcation at the trivial equilibrium when the system
eigenvalue traverses the imaginary axis along the real axis. Letting λ = 0 in (2.3), one has

γ 2 – 2γ – a12a21 + 1 = 0. (2.4)

That is,

γ1 = 1 –
√

a12a21 and γ2 = 1 +
√

a12a21, (2.5)

where a12a21 > 0. It is a static bifurcation point of the trivial equilibrium. In what follows,
we will exhibit the corresponding normal form to show the bifurcation types (i.e., saddle-
node, pitchfork, or transcritical bifurcation) by the central manifold and normal form. The
result shows that the static bifurcations are all pitchfork bifurcations. This implies that
system (2.1) undergoes multiple pitchfork bifurcations at the trivial equilibrium. To this
end, letting γ = γ1 + ε, where ε is the unfolding parameter of the bifurcation parameter,
we have the following theorem.

Theorem 1 System (2.1) is reduced to the following normal form system near the bifurca-
tion point γ = γ1, which implies that system (2.1) undergoes a pitchfork bifurcation at the
trivial equilibrium with a21 �= a12. Moreover, the pitchfork bifurcation is supercritical for
a12a21 – a2

12 < 0, and subcritical for a12a21 – a2
12 > 0. The normal form is

⎧
⎨

⎩

ż1 = εz1 + (a21 – a12)z3
1/6a12 + · · · ,

ε̇ = 0.
(2.6)
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Proof Let γ = 1 – √a12a21. The characteristic equation is simplified to

P(λ) = (2
√

a12a21 + λ)λ = 0. (2.7)

The eigenvalues are

λ1 = 0, λ2 = –2
√

a12a21.

The corresponding eigenvectors are

v1 =

(√
a21/a12

1

)

, v2 =

(
–
√

a21/a12

1

)

. (2.8)

Substitute γ = γ1 +ε into (2.1), where ε is the unfolding parameter. Using Taylor expansion,
one has the following extended system:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = (γ1 + ε – 1)x1 + a21x2 – (γ1 + ε)x3
1/3 – a21x3

2/3 + · · · ,

ẋ2 = a12x1 + (γ1 + ε – 1)x2 – a12x3
1/3 – (γ1 + ε)x3

2/3 + · · · ,

ε̇ = 0.

(2.9)

Let

(
x1

x2

)

= T

(
z1

z2

)

, where T =

(√
a21/a12 –

√
a21/a12

1 1

)

.

System (2.9) can be transformed into the following standard form:

⎧
⎪⎪⎨

⎪⎪⎩

ż1 = 0z1 + εz1 + q1z3
1 + 3q1z2

1z2 + 3q1z1z2
2 + q1z3

2 + · · · ,

ż2 = λ2z2 + εz2 + q2z3
1 + q3z2

1z2 + q2z1z2
2 + q3z3

2 + · · · ,

ε̇ = 0,

(2.10)

where

q1 = (a21 – a12)/6a12, q2 = (a21 – a12 + 2a12
√

a12a21 – 2a21
√

a12a21)/6a12,

q3 = (a21 – a12 – 2a12
√

a12a21 – 2a21
√

a12a21)/6a12.

To reduce system (2.10) onto the center manifold, we assume the central manifold as

W c(0) =
{

(z1, z2, ε) ∈ R3 | z2 = h2(z1, ε), |z1| < δ1, |ε| < δ2, h2(0, 0) = 0, Dh2(0, 0) = 0
}

,

where

z2 = h2(z1, ε) = r1z2
1 + r2z1ε + r3ε

2 + · · · , (2.11)
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and δ1 and δ2 are sufficiently small. According to the center manifold theorem, the center
manifold must satisfy

Dh2(0z1 + f1) – λ2h2 – f2 = 0, (2.12)

where D is the differential operator, and
⎧
⎨

⎩

f1 = εz1 + q1z3
1 + 3q1z2

1z2 + 3q1z1z2
2 + q1z3

2 + · · · ,

f2 = εz2 + q2z3
1 + q3z2

1z2 + q2z1z2
2 + q3z3

2 + · · · .
(2.13)

Substituting (2.11) into (2.12) and setting the coefficients of the same powers to zero, the
coefficients of Eq. (2.11) can be obtained. So the vector field reduced into the center man-
ifold is exhibited as system (2.6). This completes the proof. �

Using the same computational process, we obtain the following theorem for the second
bifurcation point γ = γ2.

Theorem 2 System (2.1) can be reduced to the following normal form system near the bi-
furcation point γ = γ2, which implies that system (2.1) undergoes a pitchfork bifurcation at
the trivial equilibrium with a21 �= –a12. Moreover, the pitchfork bifurcation is supercritical
because of a12a21 + a2

12 > 0. The normal form is

⎧
⎨

⎩

ż1 = εz1 – (a12 + a21)z3
1/6a12 + · · · ,

ε̇ = 0.
(2.14)

It follows from Theorems 1 and 2 that system (2.1) has two pitchfork bifurcations
γ1 = 1 – √a12a21 and γ2 = 1 + √a12a21 when a12a21 > 0 is satisfied. That is to say, sys-
tem (2.1) exhibits multiple nontrivial equilibria employing the pitchfork bifurcation of the
trivial equilibrium. For example, choosing the system parameters as a12 = 1, a21 = 0.6, one
obtains the pitchfork bifurcations γ1 = 0.2254 and γ2 = 1.7746. Further, it follows from
Theorems 1 and 2 that a12a21 – a2

12 = –0.4 < 0 and a12a21 + a2
12 = 1.6 > 0, which implies

that the bifurcations are all supercritical. In fact, system (2.1) has the dynamic nullclines
x1 = γ f (x1) + a21f (x2) and x2 = a12f (x1) + γ f (x2), which are shown in Fig. 1(a) for the fixed
value γ = 0.1. There is a single trivial equilibrium. System (1.1) exhibits the first supercriti-
cal pitchfork bifurcation of the trivial equilibrium when γ = 0.2254. The single trivial equi-
librium evolves into three equilibria, one is the unstable trivial equilibrium and the others
are the stable nontrivial equilibria, as shown in Fig. 1(b) for the fixed value γ = 0.5. Fur-
ther increasing the system parameter γ , we reach and cross the critical value γ2 = 1.7746.
System (2.1) exhibits the second pitchfork bifurcation of the trivial equilibrium, as shown
in Figs. 1(c) and 1(d). This implies that the unstable trivial equilibrium bifurcates into two
unstable equilibria. At this time, system (2.1) exhibits one unstable trivial equilibrium, two
stable equilibria, and two unstable equilibria.

3 Saddle-node bifurcation of the nontrivial equilibrium
In the above-mentioned section, we obtained the multiple pitchfork bifurcations of the
trivial equilibrium employing the central manifold and normal form. System (2.1) pre-
sented multiple nontrivial equilibria. In what follows, we discuss the static bifurcation of
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Figure 1 System nullclines illustrate the equilibrium numbers with (a) γ = 0.1, (b) γ = 0.5, (c) γ = 1.6, and
(d) γ = 2.0 for the given parameter values a12 = 1, a21 = 0.6

the nontrivial equilibrium generated by the pitchfork bifurcation. To this end, suppose
(x10, x20) is a nontrivial equilibrium of system (2.1). By transforming u1(t) = x1(t) – x10,
u2(t) = x2(t) – x20, we have the corresponding linearization system

⎧
⎨

⎩

u̇1(t) = –u1(t) + γ Mu1(t) + a21Nu2(t),

u̇2(t) = –u2(t) + a12Mu1(t) + γ Nu2(t),
(3.1)

where M = 1 – tanh2(x10), N = 1 – tanh2(x20). The corresponding characteristic equation is

∣
∣
∣
∣
∣

λ + 1 – γ M –a21N
–a12M λ + 1 – γ N

∣
∣
∣
∣
∣

= 0, (3.2)

which is equivalent to

1 – γ M – γ N + γ 2MN – a12a21MN + (2 – γ M – γ N)λ + λ2 = 0. (3.3)

It follows from the bifurcation theory that system (2.1) has a static bifurcation at the non-
trivial equilibrium (x10, x20) if the following equation is valid:

L(γ ) = 1 – γ M – γ N + γ 2MN – a12a21MN = 0. (3.4)
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Figure 2 The parameter curves of L(γ ) illustrate the
static bifurcation point for the trivial equilibria (blue)
and nontrivial equilibrium (red) for the fixed
parameters a12 = 1, a21 = 0.6

Figure 3 Intersection points of the nullclines illustrate the saddle-node bifurcation of the nontrivial
equilibrium: (a) five equilibria for γ = 2.4 and (b) nine equilibria for γ = 2.6. The parameter values are given by
a12 = 1, a21 = 0.6

It should be noted that M and N depend on the system parameters γ , a12, and a21. So
Eq. (3.4) is a transcendental and complicated equation. The corresponding static bifurca-
tion point of the nontrivial equilibrium cannot be illustrated in a theoretical expression.
But for the given parameters, the bifurcation point can be obtained by some numerical
computations.

For example, as in the previous section, the system parameters are fixed as a12 = 1,
a21 = 0.6. There are five equilibria when γ crosses the second pitchfork bifurcation, i.e.,
γ > γ2 = 1.774. Figure 2 shows the parameter curves of L(γ ) given by (3.4). It follows that
L(γ ) = 0 has three roots γ1 = 0.2254, γ2 = 1.7746, and γ3 = 2.5765, where γ1 = 0.2254
and γ2 = 1.7746 are the static bifurcations of the trivial equilibrium. The third root of
Eq. (3.4) is the bifurcation point of the nontrivial equilibrium, that is, γ3 = 2.5765. To illus-
trate the bifurcation type of the nontrivial equilibrium, we exhibit the dynamic nullclines
x1 = γ f (x1) + a21f (x2) and x2 = a12f (x1) + γ f (x2) for the parameter values near the bifur-
cation point γ3 = 2.5765. It follows from Fig. 3 that the dynamic nullclines just have five
intersection points for γ = 2.4, which is generated by the multiple pitchfork bifurcation of
the trivial equilibrium, as shown in Fig. 3(a). However, there are nine intersection points
for γ = 2.6, as shown in Fig. 3(b). This implies that system (2.1) exhibits simultaneously
two saddle-node bifurcation of the nontrivial equilibrium. Two pairs of stable and un-
stable nontrivial equilibria will be generated. The result shows that system (2.1) exhibits
nine equilibria for γ > γ3, namely, one unstable trivial equilibrium, two unstable nontrivial
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Figure 4 The one-dimensional bifurcation diagrams
for the trivial equilibrium for the fixed system
parameters a12 = 1, a21 = 0.6

Figure 5 The multistage static bifurcation curves
divide the parameter (γ ,a21)-plane into the different
regions having the different numbers of equilibria for
a12 = 1

equilibria, and two stable nontrivial equilibria. The one-dimensional bifurcation diagram
with varying γ is exhibited in Fig. 4.

The parameter (γ , a21)-plane is divided into several different regions having different
numbers of system equilibria by the static bifurcation curves of trivial and nontrivial equi-
libria, as shown in Fig. 5 for a12 = 1 > 0. It should be noticed that similar results can be
obtained by numerical simulation for a12 = –1 < 0. The system has one, three, five, and
nine equilibria for the different regions of system parameters. In region D1, there is a sta-
ble trivial equilibrium shown as Fig. 1(a). If the system parameter passes through the first
pitchfork bifurcation curve γ = 1 – √a12a21 and enters into region D2, system (2.1) has
three equilibria (one unstable trivial equilibrium and a pair of stable nontrivial equilibria,
as shown in Figs. 1(b) and 1(c)) by the pitchfork bifurcation of the trivial equilibrium. Fur-
ther, the second pitchfork bifurcation curve of the trivial equilibrium is the region bound-
ary of three and five equilibria. When the system parameter passes through the curve
γ = 1 + √a12a21 and enters into region D3, a new pair of nontrivial equilibria will be ex-
hibited. System (2.1) presents five equilibria with one unstable trivial, a pair of stable and
a pair of unstable nontrivial equilibria, as shown in Figs. 1(d) and 3(a). In region D4, two
pairs of new nontrivial equilibria are presented when the parameter passes through the
saddle-node bifurcation of the nontrivial equilibrium. It implies that system (2.1) has nine
equilibria, namely, one unstable trivial equilibrium, two unstable nontrivial equilibria, and
four stable nontrivial equilibria, as shown in Fig. 3(b).

4 Stability analysis and Hopf bifurcation
In this section, we will exhibit the stability analysis of the trivial equilibrium and find the
periodic orbit using the Hopf bifurcation theory. To this end, we firstly obtain the lineariz-
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ing system at the trivial equilibrium, which is

⎧
⎨

⎩

ẋ1(t) = –x1(t) + γ x1(t – τs) + a21x2(t – τ1),

ẋ2(t) = –x2(t) + a12x1(t – τ1) + γ x2(t – τs).
(4.1)

The characteristic equation of system (4.1) is

1 – 2γ e–λτs + γ 2e–2λτs – a12a21e–2λτ1 +
(
2 – 2γ e–λτs

)
λ + λ2 = 0. (4.2)

System (1.1) has a stable equilibrium when all the eigenvalues of Eq. (4.2) have negative
real parts. To simplify, we show the stability conditions for system (1.1) with τs = 0, first.
That is,

1 – 2γ + γ 2 – a12a21e–2λτ1 + (2 – 2γ )λ + λ2 = 0. (4.3)

Supposing τ1 = 0 in Eq. (4.3) produces

1 – 2γ + γ 2 – a12a21 + (2 – 2γ )λ + λ2 = 0. (4.4)

By using the Routh–Hurwitz criterion, we obtain the basic (necessary and sufficient) con-
dition to assure that the trivial equilibrium of system (1.1) has local stability for τ1 = 0 and
τs = 0, which is

γ < 1, a12a21 < (γ – 1)2. (4.5)

If delay τ1 increases, the trivial equilibrium may lose its stability and evolve into an unstable
equilibrium. To obtain the critical values, letting Eq. (4.3) have the pure imaginary roots
λ = ±iν , ν > 0, one has

1 – 2γ + γ 2 – a12a21e–2iντ1 + (2 – 2γ )iν – ν2 = 0. (4.6)

Separating Eq. (4.6) into real and imaginary parts produces

⎧
⎨

⎩

1 – ν2 – 2γ + γ 2 – a12a21 cos 2ντ1 = 0,

2ν – 2νγ + a12a21 sin 2ντ1 = 0.
(4.7)

Eliminating τ1 from Eq. (4.7) by sin2 2ντ1 + cos2 2ντ1 = 1, one has

L(ν) =
(
ν2 + (γ – 1)2)2 – (a12a21)2 = 0. (4.8)

Based on the basic conditions (4.5), we have the root of Eq. (4.8) if a12a21 < –(γ –1)2, which
is

ν =
√

–a12a21 – (γ – 1)2. (4.9)
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Figure 6 The real parts of system eigenvalues with τ1 increasing: (a) γ = –0.5 and (b) γ = 0.5. The other
parameters are a12 = 1, a21 = –0.6, and τs = 0

Then Eq. (4.7) has the minimal value of the critical delay τ 0
1 = ϕ/2ν , where ϕ ∈ [0, 2π )

satisfies
⎧
⎨

⎩

1 – ν2 – 2γ + γ 2 – a12a21 cosϕ = 0,

2ν – 2νγ + a12a21 sinϕ = 0.

This implies that all the eigenvalues of Eq. (4.6) have negative real parts for any delay τ1

when γ < 1, |a12a21| < (γ – 1)2. The trivial equilibrium of system (1.1) presents the all-
delayed stability. However, when γ < 1, a12a21 < –(γ – 1)2, there exists a critical value τ 0

1 =
ϕ/2ν , where all the eigenvalues of Eq. (4.6) have negative real parts for the delay interval
τ1 ∈ (0, τ 0

1 ) and the least root with a positive part for τ1 ∈ (τ 0
1 , +∞). The trivial equilibrium

will change the local dynamics from stable to instable, which is called the delay-dependent
stability. The examples are illustrated in Fig. 6. It follows from Fig. 6(a) that all the eigen-
values have negative real parts for γ = –0.5 < 1, where 0.6 = |a12a21| < (γ – 1)2 = 2.25.
However, when we choose γ = 0.5 < 1, then –0.6 = a12a21 < –(γ – 1)2 = –0.025. It follows
from Eq. (4.9) that ν = 0.5916. There is a critical value of the delay τ 0

1 = ϕ/2ν . All the eigen-
values of Eq. (4.6) have negative real parts for the delay interval τ1 ∈ (0, τ 0

1 ) and the least
root with a positive part for τ1 ∈ (τ 0

1 , +∞).
Further, to analyze the effect of τ1 and τs on the stability of the trivial equilibrium in

system (1.1), we regard τs as the variable parameter for the chosen delay τ1. Supposing
λ = iω, ω > 0 is the root of the characteristic equation (4.2), we have

1 – 2γ e–iωτs + γ 2e–2iωτs – a12a21e–2iωτ1 +
(
2 – 2γ e–iωτs

)
iω – ω2 = 0. (4.10)

Multiplying by eiωτs in (4.10) and separating real and imaginary parts produces

⎧
⎨

⎩

–2γ + (1 + γ 2 – ω2) cosωτs – a12a21 cos(2ωτ1 – ωτs) – 2ω sinωτs = 0,

–2γω + 2ω cosωτs + a12a21 cos(2ωτ1 – ωτs) + (1 – γ 2 – ω2) sinωτs = 0.
(4.11)

Eliminating τs from (4.11), we have

cosωτs = k1(ω)/k3(ω), sinωτs = k2(ω)/k3(ω), (4.12)
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where

k1(ω) = 2γ (1 – γ 2 + ω2 – a12a21(cos 2ωτ1 – ω sin 2ωτ1),

k2(ω) = 2γ (γ 2ω – ω – ω3 – a12a21(ω cos 2ωτ1 + sin 2ωτ1),

k3(ω) = a2
12a2

21 – γ 4 +
(
1 + ω2)2 – 2a12a21

(
1 – ω2) cos 2ωτ1 + 4a12a21ω sin 2ωτ1.

Using cos2 ωτs + sin2 ωτs = 1, we have

K(ω) = k2
1(ω) + k2

2(ω) – k2
3(ω) = 0. (4.13)

In general, assume Eq. (4.13) exhibits positive roots ωi, i = 1, 2, . . . . Then Eq. (4.2) has crit-
ical values, namely,

τ i,j
s =

ϕi + 2jπ
ωi

, i = 1, 2, . . . ; j = 0, 1, 2, . . . , (4.14)

where ϕi ∈ [0, 2π ). Define

τ 0
s = min

{
τ i,0

s : i = 1, 2, . . .
}

. (4.15)

To ensure the Hopf bifurcation occurs, we find the transversality condition, i.e., the eigen-
value of Eq. (4.2) crosses the imaginary axis with a non-zero velocity. Differentiating λ with
respect to τs in Eq. (4.2), we have the crossing velocity

λ′(τs) =
γ e2λτ1λ(γ – eλτs (1 + λ))

e2λ(τ1+τs)(1 + λ) + a12a21e2λτsτ1 – e2λτ1γ 2τs + eλ(2τ1+τs)γ (–1 + τs + λτs)
. (4.16)

Based on the Hopf bifurcation theory, the following conclusion can be obtained under
the basic condition (4.5), i.e., γ < 1, a12a21 < (γ – 1)2. If there exists no positive root of
Eq. (4.13), all the eigenvalues of Eq. (4.2) exhibit negative real parts for τs ≥ 0. The trivial
equilibrium has the all-delayed stability. Further, if K(ω) = 0 has at least one positive root
among ωi, i = 1, 2, . . . , there is a critical delay τ 0

s , where all the eigenvalues exhibit negative
real parts for τs ∈ (0, τ 0

s ). The trivial equilibrium is asymptotically stable. Moreover, system
(1.1) exhibits a Hopf bifurcation at the trivial equilibrium for τs = τ 0

s if Re(λ′(τs)) �= 0 is
satisfied. A periodic orbit will be presented near the trivial equilibrium.

For example, if we choose the system parameters as a12 = 1, a21 = –0.6, and γ = 0.5, it
follows from a12a21 = –0.6 < 1 that system (1.1) has a single trivial equilibrium. Further,
K(ω) = 0 has no positive root for τ1 = 0.7 and positive ones for τ1 = 1.1. Employing the
above conclusion that the trivial equilibrium is all-delayed stable for τ1 = 0.7, the corre-
sponding time histories are illustrated in Figs. 7(a) and 7(b) with a small delay τs = 1 and
large delay τs = 9. All trajectories evolve into the trivial equilibrium. However, when τ1

increases to 1.1, K(ω) = 0 produces the positive roots. The minimum delay of the Hopf bi-
furcation is τ 0

s = 7.1957 by using Eq. (4.14). It implies that the trivial equilibrium is locally
stable for τs ∈ (0, 7.1957), as shown in Fig. 8(a) with the fixed delay τs = 1. Further, system
(1.1) undergoes a Hopf bifurcation when τs goes through the critical value τ 0

s = 7.1957.
The system dynamics near the trivial equilibrium will lose its stability and enter a stable
periodic orbit, as shown in Fig. 8(b) for the fixed delay τs = 9.
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Figure 7 Time histories of system (1.1) with (a) τs = 1 and (b) τs = 9 for the fixed parameters a12 = 1,
a21 = –0.6, γ = 0.5, and τ1 = 0.7

Figure 8 Time histories of system (1.1) with (a) τs = 1 and (b) τs = 9 for the fixed parameters a12 = 1,
a21 = –0.6, γ = 0.5, and τ1 = 1.1

5 Hopf–Hopf bifurcation and periodic coexistence
It follows from the above section that system (1.1) produces the Hopf bifurcation at the
trivial equilibrium if equation K(ω) = 0 has a positive root, which implies that the sys-
tem dynamical behavior enters into a stable periodic orbit. In fact, the multiple roots of
K(ω) = 0 will lead the system dynamics into stability switching. At this time, the system
dynamics will lose and then regain its stability with the increasing delay. In this section,
we will find the stability regions to illustrate the stability switching by the Hopf bifurca-
tion curves. Further, some Hopf–Hopf bifurcation points will be presented by exhibiting
the intersection points of the Hopf bifurcation curves. The dynamic behaviors near these
bifurcation points will be shown. The system will exhibit the periodic orbits with different
frequencies and the periodic coexistence in the different regions.

To this end, suppose K(ω) = 0 has two positive roots ω1 and ω2, where ω1 > ω2 > 0. Then
two sequences of critical values of delay are given by

τ
j
1 = (ϕ1 + 2jπ )/2ω1, j = 0, 1, 2, . . . , (5.1)
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where ϕ1 ∈ [0, 2π ) satisfies

cosϕ1 = k1(ω1)/k3(ω1), sinϕ1 = k2(ω1)/k3(ω1),

and

τ
j
2 = (ϕ2 + 2jπ )/2ω2, j = 0, 1, 2, . . . , (5.2)

where ϕ2 ∈ [0, 2π ) satisfies

cosϕ2 = k1(ω2)/k3(ω2), sinϕ2 = k2(ω2)/k3(ω2).

Moreover, the transversality condition of Hopf bifurcation can be exhibited by substitut-
ing ω1 and ω2 into Eq. (4.16) for the critical delayed values τ

j
1 and τ

j
2, j = 0, 1, 2, . . . . How-

ever, due to the high order of Eq. (4.13), the detailed expression of positive roots cannot
be obtained, which is dependent on the values of system parameters a12, a21, and γ . But
it can be easily computed numerically. So, in the following section, we choose the sys-
tem parameters as a12 = 1, a21 = –3, and γ = 1 and have two positive roots ω1 and ω2 in
Eq. (4.13). The critical value of delay τs for the fixed system parameters can be obtained by
(5.1) and (5.2) numerically. Similar results can be illustrated for different values of system
parameters when Eq. (4.13) has two positive roots ω1 and ω2.

For example, choosing τ1 = 0.01, one has the first and second frequencies, where
ω1 = 1.5051 and ω2 = 1.9921. Using Eqs. (5.1) and (5.2), two sequences of critical
values, i.e., τ

j
1 and τ

j
2, are obtained, that is, τ

j
1 = 0.1520, 4.3269, 8.5017, . . . and τ

j
2 =

3.0218, 6.1758, 9.3298, . . . . The dynamic behavior near the trivial equilibrium exhibits a
periodic orbit by the Hopf bifurcation if τs ∈ (0, 0.1520). The time history of the periodic
orbit is illustrated in Fig. 9(a) with τs = 0.1. With delay increasing and crossing the critical
value τ 0

1 = 0.1520, the trivial equilibrium retrieves its stability by the reverse Hopf bifurca-
tion. The system exhibits a stable equilibrium, as shown in Fig. 9(b) for τs = 1. Moreover,
the dynamics of the trivial equilibrium loses its stability when crossing the second critical
value τ 0

2 = 3.0218. The time history is illustrated in Fig. 9(c) for the fixed delay τs = 3.5.
Then the trivial equilibrium will recover its stability, as shown in Fig. 9(d) with τs = 5. In
such a way, the dynamic behavior near the trivial equilibrium multi-switches its stability
when the delay is varied. It is called the dynamical stability switching.

For each fixed delay τ1, using Eqs. (5.1) and (5.2), the critical values of τs, i.e., τ
j
1 and τ

j
2,

j = 0, 1, 2, . . . , are obtained, as shown in Fig. 10 for the system parameters a12 = 1, a21 = –3,
and γ = 1. That is, we obtain the Hopf bifurcation curve. It divides the (τ1, τs)-plane into
several different regions, where the trivial equilibrium is stable/unstable. So, the dynamic
behavior of the trivial equilibrium exhibits the delay-dependent and delay-independent
stability. Further, the Hopf bifurcation curves obtained from τ 1

1 and τ 1
2 have the first inter-

section point labeled as (τ ∗
1 , τ ∗

s ) = (0.0451, 5.215), where the maximum real part eigenval-
ues are two pairs of pure imaginary values with ω1 = 1.2915 and ω2 = 2.2934. This implies
that the intersection point is a Hopf–Hopf bifurcation. It follows from the bifurcation
theory that the Hopf–Hopf bifurcation will induce the coexistence of two periodic orbits
with different frequencies in some parameter regions. The dynamical classification near
the Hopf–Hopf bifurcation point is shown in Fig. 11(a). The detailed parameter regions
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Figure 9 Time histories with increasing delay τs for (a) τs = 0.1, (b) τs = 1, (c) τs = 3.5, and (d) τs = 5 and the
fixed parameters a12 = 1, a21 = –3, γ = 1, as well as τ1 = 0.01

Figure 10 Hopf bifurcation curves in (τ1,τs)-plane
illustrates the Hopf–Hopf bifurcation points (labeled as
HH) for the fixed parameters a12 = 1, a21 = –3, and
γ = 1, where S means stable equilibrium

near these bifurcation points can be theoretically presented by the Hopf–Hopf bifurcation
normal form. It is a complicated but standard method, which can be applied step by step.
In this section, to make it easy to understand, we avoid the boring derivation step and il-
lustrate some numerical simulations to verify the dynamical behaviors. Some Hopf–Hopf
bifurcation points and the corresponding frequencies are shown in Table 1.

As in the section above, for the fixed parameters a12 = 1, a21 = –3, and γ = 1, the first
Hopf–Hopf bifurcation point is (τ ∗

1 , τ ∗
s ) = (0.0451, 5.215) which is enlarged in Fig. 11(b).

System delayed-parameters are chosen to illustrate the different phase portraits near the
Hopf–Hopf bifurcation point. The numerical simulations agree well with the dynamical
classification. Firstly, we choose the delay τ1 as 0.02. The system dynamics are illustrated
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Table 1 The first few points of the Hopf–Hopf bifurcation and the roots of (4.13)

(τ ∗
1 ,τ

∗
s ) ω1 ω2

(0.0451, 5.215) 1.2915 2.2934
(0.017, 8.9124) 1.6342 1.8357
(0.00899, 12.5791) 1.516 1.978

Figure 11 (a) Classification and bifurcation sets of the Hopf–Hopf bifurcation, (b) several fixed parameter
values near the first Hopf–Hopf bifurcation point for numerical simulations

Figure 12 Phase portraits near the Hopf–Hopf bifurcation point (τ ∗
1 ,τ

∗
s ) = (0.0451, 5.215) for the delay (τ1,τs)

chosen as (a) (0.02, 4), (b) (0.02, 5), (c) (0.02, 6), (d) (0.16, 5.5), (e) (0.16, 6), and (f) (0.16, 6.9) with the fixed
parameters k1 = 1, k2 = 0.6, c1 = 0.8

for the different delay τs = 4, 5, 6, as shown in Figs. 12(a)–(c). The periodic orbit with the
first frequency ω1 (Fig. 12(a)) will evolve into the stable trivial equilibrium (Fig. 12(b))
by the reverse Hopf bifurcation. If the delay crosses through the second Hopf bifurcation
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Figure 13 The one-dimensional bifurcation diagrams show (a) stability switching along Line 1 and
(b) periodic coexistence along Line 2 with a12 = 1, a21 = –3, and γ = 1

curve, the stable trivial equilibrium loses its stability and enters into the other stable peri-
odic orbit, as shown in Fig. 12(c).

On the other hand, we focus on the complex region and choose the delay parameters
labeled as P4, P5, and P6, as shown in Fig. 11(b). The neural system exhibits periodic
coexistence due to the different frequencies. In fact, the periodic orbit with frequency
ω1 will be maintained when the delay crosses through the Hopf bifurcation curve, as
shown in Fig. 12(d) for (τ1, τs) = (0.16, 5.5). Further, when the delay parameters are fixed as
(τ1, τs) = (0.16, 6.9), the neural system exhibits the periodic orbit with another frequency
ω2, as shown in Fig. 12(f ). However, in the evolution process from one periodic orbit to
another, the system exhibits the coexistence with two different periodic orbits having dif-
ferent frequencies. The phase portraits are shown in Fig. 12(e) for the different initial val-
ues. The delay parameters are fixed as (τ1, τs) = (0.16, 6) labeled as P5 in Fig. 11(b). In short,
numerical simulations are in good agreement with the dynamic classification and bifurca-
tion sets near the Hopf–Hopf bifurcation point. The one-parameter bifurcation diagrams
with delay varying are shown in Fig.13.

6 Conclusion
Time delay in nonlinear systems has been recognized as an important factor affecting
various dynamics [34, 35]. Multistability is one of the most interesting properties in dy-
namic systems. The long-term behaviors of system trajectories with multistability are eas-
ily influenced by the external perturbations. A slight change of a system parameter will
induce system dynamics switching from one steady-state to another [36, 37]. In this pa-
per, we illustrated a multi-equilibria coexistence in a delayed Hopfield two-neural system
with monotonic activation function. The results have shown that the neural system has
two pitchfork bifurcations of the trivial equilibrium. Further, analyzing the characteristic
equation of the nontrivial equilibrium generated by the pitchfork bifurcation of the trivial
equilibrium, we illustrated the saddle-node bifurcation of the nontrivial equilibria. The
system exhibits the multi-coexistences of the stable and unstable equilibria employing the
multistage static bifurcations. By the static bifurcation curves of the trivial and nontrivial
equilibria, we presented the detailed regions having different numbers of system equilibria
in the parameter plane. Then, we proposed the stability analysis and exhibited the peri-
odic orbit using the Hopf bifurcation. The stability regions have been shown by the Hopf
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bifurcation curves. The dynamic behaviors near the Hopf–Hopf bifurcation points have
been presented. The system has exhibited the coexistence of the periodic orbits with the
different frequencies near the bifurcation points.
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