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1 Introduction

Discrete chaos has been of interest to researchers in science and engineering for decades
[1]. Over the years, many chaotic and hyperchaotic maps have been proposed in the lit-
erature [2]. These maps quickly found applications in encryption and secure communi-
cations once their synchronization became possible [3]. For instance, the class of three-
dimensional chaotic and hyperchaotic maps have been an interesting subject due to the
fact that such maps exhibit a rich chaotic behavior as demonstrated in numerous stud-
ies [4].

For a long time, the study and application of fractional calculus were limited to continu-
ous time [5-9]. Recently, researchers have diverted their attention to the discrete fractional
calculus and attempted to put together a complete theoretical framework for the subject.
The first definition of a fractional difference operator was made by Diaz and Olser in 1974
[10]. The interesting fact about this operator is that it is a generalization of the binomial
formula for the nth difference operator by means of the Gamma function. In 1989, Miller
and Ross defined the fractional order sum and difference operators [11]. Among the most
interesting and relevant works on discrete fractional calculus in the last decade are refer-
ences [12, 13]. In [14], the author discussed the discrete difference counterparts of con-
ventional Riemann and Caputo derivatives. Furthermore, some advances have been made
in fractional finite difference equations and fractional difference inclusions [15-22]. Re-
cent studies have examined the stability conditions for fractional discrete-time systems,
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including [23]. Another interesting study is [24], where the authors established and proved
a discrete fractional version of the well-known direct Lyapunov method. Some useful Lya-
punov functions for Riemann—-Liouville-like fractional difference equations can be looked
up in [25]. More stability results can be found in [26, 27].

Since the topic of discrete fractional calculus is still new, very few fractional order
chaotic maps have been proposed in the literature [28—32]. From what has been reported,
fractional chaotic maps are sensitive to variations in the fractional order in addition to
their natural sensitivity to variations in the initial conditions and parameters [33]. The few
studies that exist in the literature in relation to fractional chaotic maps seem to agree that
fractional chaotic maps exhibit richer dynamics compared to their integer counterparts
[34]. This makes them more suitable to applications requiring a higher entropy such as the
encryption of data and secure communications [35, 36]. To the best of our knowledge, the
study of bifurcations, chaos and control for three-dimensional fractional maps remains
to this day a new and mostly unexplored field [37]. This has motivated us to examine the
phenomenon and develop suitable control laws for stabilization and synchronization.

In this paper, we are particularly interested in a new three-dimensional generalized
Hénon map [38]. We aim to extend this map into the fractional case and investigate the re-
sulting system’s dynamics. We look at the bifurcation graphs and give rough experimental
bounds on the fractional order to separate between the asymptotically stable and chaotic
ranges. The main motivation behind this work is a desire to assess the benefits of the
fractional map. In this study, we are also interested in the control of this fractional map,
including stabilization and synchronization schemes. From these results we find that the
proposed three-dimensional fractional map has new interesting complex dynamical be-
haviors.

The rest of this paper is arranged as follows. Some of the necessary notations and sta-
bility theory are introduced in Sect. 2. Section 3 presents the proposed fractional map
and discusses its bifurcation plots and experimental bounds on the fractional order that
guarantee a chaotic behavior. Section 4 proposes a one-dimensional control law for the
stabilization of the proposed fractional map. In addition, Sect. 4 defines and proposes a
control law for the synchronization scheme. Finally, Sect. 5 summarizes the main findings
of the study and poses ideas for future work.

2 Basic concepts

In this section, we recall some of the necessary theory related to the subject of discrete-
time fractional calculus and stability of fractional-order maps. Throughout our work, we
will denote by ©AVX(¢) the v-Caputo type delta difference of a function X(¢) : N, — R
with N, ={a,a + 1,a + 2,...} [14], which is of the form

CAYX(t) = A;V ATX(2)

t—(n-v)

! > (t-s—1)" VAL (), (1)

- I'(n-v)

for v ¢ N being the fractional order, ¢ € N,,,_,, and n = [v] + 1. The vth fractional sum is
defined as [12]

t-v

v ]' v—
AVX(t T )Z(t—s 1)@V X(s), 2)
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with ¢ € N4, v > 0. The term £ denotes a decreasing function defined in terms of the
Gamma function I" as

W _ ri+1)

T I(t+l-v) ®)

The following theorems provide the basis for the numerical method and stability analysis
that we will require later on in the paper when dealing with the proposed fractional-order
discrete-time system.

Theorem 1 ([13]) For the fractional difference equation

CAZu(t) =f(t+v-Lut+v-1)),

(4)
AXu(a) = uy, n=[v]+1, k=0,1,...,n-1,
the equivalent discrete integral equation can be obtained as
1 t-v
u(t) = uo(t) + o Z(t —s+ DY Vf(s+v-Luls+v-1)), t€Ngy, (5)
where
n-1 (t _ a)(k) .

t) = ——A . 6
o (t) ZF(k+1) u(a) 6)

k=0

Theorem 2 ([39]) The zero equilibrium of the linear fractional-order discrete-time system
CAYX() = MX (¢t +v 1), ?)

where X(t) = (x1(£),...,%,(t))T, 0 < v < 1, M € R™" and Vt € N,,1_,, is asymptotically
stable if

argz| —m\" T
AE {ze C:lz| < <200s %) and |argz| > UT}, (8)
-v

for all the eigenvalues A of M.
3 Dynamics of fractional-order generalized Hénon map

We consider the new 3D generalized Hénon map proposed in [40]. The so-called three-
dimensional generalized Hénon map is of the form

x(n+1) = a—y*(n) + bz(n),
y(n + 1) = x(n), 9)
z(n + 1) = y(n),

where 4 and b are bifurcation parameters. This map exhibits chaos, for instance, when
(a,b) = (0.7281,0.5) and (x(0), ¥(0), z(0)) = (1,0,0), as demonstrated by the phase portraits



Jouini et al. Advances in Difference Equations (2019) 2019:122 Page 4 of 12

@) (b) (c)

Figure 1 Chaotic attractors of the map (9) in: (@) x—y plane (b) x-z plane (c) x-y-z space
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Figure 2 (a) Bifurcation diagram of the map (9); (b) largest Lyapunov exponent

shown in Fig. 1. It is always helpful to examine the bifurcation diagram corresponding
to a specific critical parameter in order to gain a comprehensive understanding of the
dynamics of a chaotic system, see Fig. 2.

The map (9) can be rewritten in the first difference order form given by

Ax(n) = a - y*(n) + bz(n) — x(n),
Ay(n) = x(n) — y(n), (10)
Az(n) = y(n) — z(n).

Introducing the Caputo-like delta difference defined in (1) leads to the fractional-order

map

CAVR(t) =a—y*(t—1+v) +bz(t -1+ v) —x(t—1+v),
CAYY(t) =x(t -1+ v) —y(t -1 + V), (11)
CA;’z(t) =y(t-1+v)—z(t-1+v),
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Figure 3 (a) Bifurcation of the fractional map (11) with fractional order v; (b) largest Lyapunov exponent with
fractional order v

where t € N,,1-,, 0 < v < 1 denotes the fractional order, and « is the starting point. The

discrete integral formula described in Theorem 1, gives us the equivalent system

x(t) = x(a)
+ ﬁ Y L E=s=DU D@y (s—1+v)
+bz(s—1+v)—x(s—1+v)), (12)

9(0) =y(@) + gy Yoot =5 = D V(s = 1+ v) = y(s - 1 +v)),
z(t) = z(a) + 1"(11)) Y E=s=1)P V(s -1+ v) —z(s - 1 +v)),

where ¢ € N,,;. Taking into account that (¢ —s — 1))~ = % is a discrete kernel

function, and with starting point a = 0, we end up with the numerical formulas

x(n) = 2(0) + 7o Sy Tt (@ =52 = 1) + bz — 1) - x(j - 1)),
§(n) = 3(0) + 7y L7 T (= 1) = y( = 1), (13)
z(n) = z(0) + ﬁ Z]n 1 p(n_jlj.llj) 0Gi-1)-z(i-1))

With the same initial conditions and the bifurcation parameter values adopted in Fig. 1
above, computer simulations were used to evaluate the numerical formulas (13) in order
to gain a perspective on the dynamics of the fractional map (11). The bifurcation dia-
gram and the corresponding largest Lyapunov exponent for v € [0.96, 1] are given in Fig. 3.
We set n = 700 and we plot only the last 200 iterations. The largest Lyapunov exponent
has been computed by using the Jacobian matrix algorithm proposed in [41]. Figures 3(a)
and 3(b) visualize how the fractional order v can make an effect on the system behav-
ior. First, we note that when 0 < v < 0.969 the fractional map diverges to infinity. On the
contrary, it can be observed that there are vertical lines with a positive largest Lyapunov
exponent when v € ]0.969,0.97[. In this case, the solution x(#) converges to a chaotic at-
tractor. From Figs. 3(a) and 3(b), we can see that there is transition from chaos to periodic
cycles, followed by a series of appearance and disappearance of chaos, meaning that the

largest Lyapunov exponent changes its values between negative and positive numbers as
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Figure 4 Bifurcation diagrams in the (g,x) plane for b= 0.5 when: (a) v = 0.987, (b) v = 0.975
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Figure 5 Periodic orbit obtained for n = 2000 and v = 0.975 in: (@) x-y plane; (b) x-z plane; (c) (x,y,2) space
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Figure 6 Chaotic attractor obtained for n = 2000 and v = 0.987 in: (a) x—y plane; (b) x—z plane; (c) (x,y,2)

space

v € [0.97,0.986]. Finally, when v € ]0.986, 1], the solution x(#) always settles into a strange
attractor.

In what follows, we illustrate the bifurcation diagrams for a € [0.3,0.8], see Fig. 4. To
provide these diagrams, we set # = 2000 and fix » = 0.5. Then we discard away the first
1700 results, and the last 300 points are displayed in Figs. 4(a) and 4(b), corresponding to
fractional order values v = 0.987 and v = 0.975, respectively. As a passes to the interval
[0.66,0.7885], periodic cycles and chaotic regions are apparent. However, when the value
of v is set to 0.975, one can see the jumping behavior from a chaotic set to 3 periodic

Page 6 of 12
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Figure 7 Chaotic attractor obtained for n = 2000 and v = 0.9695 in: (a) x-y plane; (b) x-z plane; (c) (x,y,2)
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Figure 8 Evolution of states of fractional map for v = 0.987

orbits that suddenly change into 3 small-sized attractors at 4 = 0.326. With the increase
of parameter a, the fractional map goes directly to a fully developed chaotic regime. It
is worth pointing out that the fractional map never produces the same largest Lyapunov
exponent twice, we deduce that each value of v has its own attractor.

In Fig. 5, an attractor which includes a periodic orbit is shown. Figures 6 and 7 show
chaotic attractors of the fractional map corresponding to v = 0.987 and v = 0.9695, respec-
tively. For completeness, Fig. 8 shows the states of the fractional map with 2000 iterations,
(a,b) = (0.7281,0.5), (x(0),¥(0),z(0)) = (1,0,0) and v = 0.987.

4 Control strategies

One of the important aspects in the study of chaotic systems is the development of control
strategies to achieve stabilization. Another interesting aspect is the synchronization of
one chaotic system to another. In this section, we introduce two control laws aimed at

stabilizing and synchronizing the proposed fractional map.

4.1 Stabilization
The aim of stabilizing the proposed map is to devise an adaptive control law such that all
of the system’s states are stabilized to 0. The following theorem presents our result.

Theorem 3 The fractional-order map (11) can be stabilized under the following one-

dimensional control law:

u(t) = —a + y(t) - bz(2). (14)

Page 7 of 12
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Proof The controlled fractional-order map (11) can be described as

CAX(t)=a—y*(t-1+v) +bz(t—1+v) —x(t — 1+ v) +u(t -1 +v),
CAYY(t) =x(t -1+ v) —y(t -1 + V), (15)
CAVZ(E) =y(t — 1+ V) —z(t - 1 + V).

Substituting the proposed control law (14) into (15) yields the simplified dynamics

CAYx(t) = —x(t - 1+ v),
CAVY(t) =x(t -1+ v) —y(t -1+ ), (16)
CAVZ(t) =y(t =1+ V) —z(t — 1 + V).

The error system (16) can be written in a compact form as

CAL (x(8), y(0),2(8)) " = Mx (x(t = 1+ v),y(t =1+ V), 2(t = 1+ v)), 17)
where
-1 0 0
M=|1 -1 o0]. (18)
0 1 -1

Our aim is to show that the zero equilibrium of (17) is asymptotically stable, which means
that the system states converge towards zero as time progresses. Asymptotic stability can
be established using the linearization method as described in Theorem 2. Now it is easy
to see that all the eigenvalues A;, Ap and A3 of the matrix M satisfy

uT largA;| = \" .
largh;|=m>— and |A|=1<|2c0s —— ], i=1,2,3.
2 2-v
From Theorem 2, it is evident that the zero solution of (17) is asymptotically stable and,
therefore, the fractional map (11) is stabilized. O

A numerical simulation was carried out to illustrate the result of Theorem 3. We chose
the parameters (a, b) = (0.7281,0.5), initial conditions (x(0), ¥(0),z(0)) = (1,0,0), and frac-
tional order v = 0.98. Assuming « = 0, the evolution of states towards zero is depicted in
Fig. 9, which confirms the theoretical control proposed in Theorem 3.

4.2 Synchronization

Synchronization refers to the addition of a set of control parameters to the controlled
chaotic system and adaptively updating the controls such that the states become synchro-
nized. As for the drive system, we select the 3D fractional map proposed in [42]. The drive
system is described as for £ € N,,;_,, by

CAYx,(t) = =%t + U = 1) = Bz(t +v = 1),
CAYY () = Bzm(t + U = 1) + % (t + U = 1) = (£ + v = 1), (19)
CAYZy(t) = 1+t + v = 1) =@z (£ + v = 1) =z, (£ + v = 1).
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Figure 9 The stabilized states and attractor of the fractional map (11)
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Figure 10 Chaotic behavior of the fractional map (19)

Subject to (¢, B) =(0.99, 0.2), a = 0 and v = 0.984, the fractional map (19) is chaotic as

shown in Fig. 10. Note that the subscript m in the states refers to the drive system.

Similarly, the subscript s is used to denote the states of the response system. The re-

sponse, thus, is given by

CAZxS(t) :a—ysz(t— 1+v)+bz(t—-1+v)—x(t—1+v)+u1(t—1+v),
CAYY (t) =ax5(t =1+ V) —ys(E =1+ V) + ua(t - 1 + V),
CAVZ(t) = ys(t — 1+ V) —z(t =1+ V) + uz(t — 1 + v),

where the functions u;(¢) for i = 1,2, 3, denote the synchronization controllers.
The error system corresponding to the synchronization strategy is defined as
e1 () = x(t) — % (2),
ex(t) = ys() = ym(2),

e3(£) = z5(£) — zm(2).

(20)

(21)

To realize complete synchronization between the drive system (19) and response system

(20), we discuss the asymptotical stability of zero solution of the error system given in (21).

Page 9 of 12
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That is, we find the controllers u; (), u2(¢) and u3(¢) such that the solution of the error
system (21) go to 0 as ¢ goes to +00. The following theorem presents the proposed control
law for this scheme of synchronization.

Theorem 4 Subject to

u1(t) = —a + y2(t) — bz,(t) — Bz (2),
uy(t) = Bzu(t), (22)
us(t) = 1 - az2,(8),

the drive system (19) and the response system (20) are synchronized.

Proof The error system (21) has the fractional Caputo differences

CAVei(t)=a—yX(t -1+ V) +bzs(t—1+v) —a(t -1+ V) + ug(t -1 +v)
+xut+v—-1)+ Bzt +v-1),

CAZez(t) =x(t—14+v)—yt-1+v)+u(t—1+v) 23)
-Bzut+v-1)—x,(t+v-1)+y,(t+v-1),

CAVes(t) = y5(t =1+ v) —z(t — 1+ v) + u3(t — 1 + v)

—1-yut+v=-1)+az2(t+v-1)+z,(t+v-1).
Substituting the control law (22) into (23) yields the reduced dynamics

CAVe(t) = —ei(t -1+ ),
CAVer(t)=e1(t—1+v)—ext—1+v), (24)

CAZeg(t) =—et—1+v)—e3(t—1+v).
The eigenvalues of the linear part of the system (24) satisfy the stability conditions

arg A;| —
|A;] < (2COSM

v v,
and |arg);|>—, i=1,2,3.
—-v 2

By means of Theorem 2, we know that the zero solution of (24) is globally asymptotically
stable and, consequently, the maps (19)—(20) are synchronized. O

The control laws stated in Theorem 4 are confirmed through numerical simulations.
Figure 11 depicts the time evolution of states of the drive and the response systems (19)—
(20) after control. The errors clearly converge towards zero, indicating that the described

synchronization is successful.

5 Conclusion

In this paper, we examined a new fractional-order discrete-time chaotic system. The pro-
posed map is thought of as a fractional extension of a new 3D generalized Hénon map.
Discrete fractional calculus was employed to analyze the dynamics of the new fractional
map. We also proposed a stabilizing strategy for the proposed fractional map. The sta-
bilization method is one-dimensional, meaning that we are only required to adaptively
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Figure 11 The time evolution of states of the drive and the response systems (19)-(20) after control

control one of the states in the system to guarantee convergence of all states towards zero.
Moreover, we propose a synchronization scheme whereby the proposed fractional map is
considered as a response and the drive is another 3D fractional map. Throughout the pa-
per, numerical solutions were presented to confirm the findings and verify the feasibility
of the proposed laws.

Our plan for future work includes an investigation of the applicability of the fractional
chaotic map proposed in this paper in encryption and secure communication. We will
consider different encryption algorithms and scenarios and will benchmark the results

against well known integer-order maps.
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