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Abstract
In this paper, bifurcation analysis of a discrete Hindmarsh–Rose model is carried out in
the plane. This paper shows that the model undergoes a flip bifurcation, a
Neimark–Sacker bifurcation, and 1 : 2 resonance which includes a pitchfork
bifurcation, a Neimark–Sacker bifurcation, and a heteroclinic bifurcation. The sufficient
conditions of existence of the fixed points and their stability are first derived. The flip
bifurcation and Neimark–Sacker bifurcation are analyzed by using the inner product
method and normal form theory. The conditions for the occurrence of 1 : 2 resonance
are also presented. Furthermore, the sufficient conditions of pitchfork,
Neimark–Sacker, and heteroclinic bifurcations are derived and expressed by implicit
functions. The numerical analysis shows us consistence with the theoretical results
and exhibits interesting dynamics, especially symmetric and invariant closed orbits.
The dynamics observed in this paper can be used to mimic the dynamical behaviors
of one single neuron and design a humanoid locomotion model for applications in
bio-engineering and so on.
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1 Introduction
In 1952, Hodgkin and Huxley constructed the so-called Hodgkin–Huxley mathematical
model to mimic the neural activities of the squid giant [1]. Despite the excellent ability in
the description of neural activities, the model is so complex that many applied mathemati-
cians and neuroscientists simplified the model through reducing the number of variables
and constants. For one single neuron, FitzHugh [2] and Nagumo et al. [3] introduced the
following simplified version of the Hodgkin–Huxley equations, which only contains two
variables:

⎧
⎨

⎩

dx
dt = α(y – f (x) + I),
dy
dt = β(g(x) – y),

(1)

where x is the membrane potential, y is a recovery variable, and I is the stimulus inten-
sity. Based on model (1), Hindmarsh and Rose [4, 5] introduced two- or three-dimensional
neural models which provide a more realistic description of firing. To describe three fun-
damental activities of a single neuron, such as the quiescence, (irregular) spiking, and
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(irregular) bursting, some different versions of Hindmarsh–Rose type model have been
introduced from different viewpoints. The dynamical behaviors and the related applica-
tions have been investigated by many researchers from different academic backgrounds.
Zhang et al. [6] discussed the key properties of Hindmarsh–Rose model and designed a
new kind of central pattern generator, which can be used to construct a humanoid locomo-
tion model and mimic the dynamics of a functional electrical walking system. Hindmarsh–
Rose-like electronic oscillator was used to construct a capacitive microelectromechanical
system by Domguia et al. [7], and the transfer of different electronic signal meant occur-
rence and transition between quiescence, spiking, and bursting oscillation. Furthermore,
this can give us some insights into bio-engineering, such as artificial heart.

During the last ten years, many researchers have studied the complex dynamics of a
Hindmarsh–Rose-type system with the help of bifurcation theory. Wu et al. [8] discussed
the bifurcation pictures of a kind of the modified Hindmarsh–Rose model as one or two
parameters vary. Period-adding bifurcation, period-doubling bifurcation, and intermittent
chaotic phenomena were computed numerically and plotted to be observed clearly. When
parameters vary, the bifurcation occurs and the behaviors of neurons are explained. Yu
and Cao [9] presented the existence of one-parameter bifurcations of three-dimensional
discrete Hindmarsh–Rose, and numerical simulations were given to illustrate the bifur-
cation analysis. One can find more information on bifurcations of the Hindmarsh–Rose-
type model in [10–18] and on related one(two)-parameter bifurcation theory in [19–27].
Herein, we discuss the following revised model [28] in 2007:

⎧
⎨

⎩

dx
dt = c(x – x3

3 – y + I),
dy
dt = x2+dx–by+a

c ,
(2)

where parameters a, b, c, and d are positive. Numerical bifurcation studies for model (2)
were presented along with physiological simulations. They discussed some bifurcation
structures such as fold bifurcations for equilibria and limit cycle, Hopf bifurcations, cusp
bifurcations, and Bogdanov–Takens bifurcations for equilibria. These results show the
complex and interesting dynamics included in model (2). In [29], the author analyzed the
stability of the equilibria and examined the bifurcation scenarios qualitatively. The exis-
tence and the critical normal form of Hopf bifurcation and two of its degenerate cases
were computed, and numerical analysis for the conditions was provided to illustrate the
theoretical results. Heidarpur et al. proposed a piecewise linear version of model (2) and
the relations between them were analyzed by using digital implementation in [30]. Mean-
while, there has been an increasing interest in investigating the dynamics of discrete-time
models [19–21, 23–25, 27].

We apply the Euler method to model (2) and obtain the following map:

(
x
y

)

�→
(

x + δc(x – x3

3 – y + I)
y – δ

c (x2 + dx – by + a)

)

, (3)

where δ is a positive step size. In our paper, we use the inner product method to compute
the critical normal form of two kinds of one-parameter bifurcations and the generate case,
1 : 2 resonance, at fixed points of map (3).
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The rest of this paper is presented as follows. In Sect. 2, the number and stability of fixed
points for map (3) are computed. In Sect. 3, we provide sufficient conditions for flip bifur-
cation and Neimark–Sacker bifurcation at the fixed points of map (3). In Sect. 4, the step
sizes δ and d are chosen as free parameters to explore the local dynamics induced by 1 : 2
resonance, and we present the sufficient conditions for 1 : 2 resonance at the fixed points
of map (3). In Sect. 5, numerical analysis is provided to illustrate the theoretical results,
and complex dynamics are observed, especially period-doubling phenomena, symmetric
closed circle, and heteroclinic structure. Finally, conclusions are summarized in Sect. 6.

2 Existence and stability of fixed points of map (3)
The fixed points of map (3) satisfy the following equations:

⎧
⎨

⎩

x – x3

3 – y + I = 0,

x2 + dx – by + a = 0.
(4)

After variable replacements, we get the following conditions for E(x, y) as a fixed point of
map (3):

F(x) =
b
3

x3 + x2 + (d – b)x + a – bI = 0, (5)

and

y = x –
x3

3
+ I. (6)

The effect of I is reflected through parameters a and b [28], and we suppose that I = 0
in this paper. Then equations (5) and (6) become

F(x) =
b
3

x3 + x2 + (d – b)x + a = 0 (7)

and

y = x –
x3

3
.

It is clear that F(x) of equation (7) is a smooth function, and calculus on monotonicity is
used to investigate the existence of solutions of (7). The following results can be got [29].

Lemma 2.1 Define D = 1 + b2 – bd, xl = –1–
√

D
b , and xr = –1+

√
D

b , then:
(i) If D ≤ 0, there exists a unique fixed point E11(x∗

11, y∗
11) for map (3), where x∗

11 < 0;
(ii) If D > 0 and F(xl)F(xr) > 0, there exists a unique fixed point E11(x∗

11, y∗
11) for map (3),

where x∗
11 < xl < 0 (resp., xr < x∗

11 < 0) when b ≥ d (resp., b < d);
(iii) If D > 0 and F(xl)F(xr) = 0, there exist two fixed points E21(x∗

21, y∗
21) and E22(x∗

22, y∗
22)

for map (3), where x∗
21 = xl < xr < x∗

22 < 0 (resp., x∗
21 < xl < 0 < x∗

22 = xr) when b ≥ d
(resp., b < d);

(iv) If D > 0 and F(xl)F(xr) < 0, there exist three fixed points E31(x∗
31, y∗

31), E32(x∗
32, y∗

32),
and E33(x∗

33, y∗
33) for map (3), where x∗

31 < xl < x∗
32 < xr < x∗

33 < 0 (resp.,
x∗

31 < xl < 0 < x∗
32 < xr < x∗

33) when b ≥ d (resp., b < d).
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Figure 1 Solution curves in (x,d, F(x)) space

In Fig. 1, the distribution of solution is plotted in a three-dimensional space to illustrate
the properties discussed in Lemma 2.1.

Now we construct the following Jacobian matrix to investigate the stability of the fixed
point E∗(x∗, y∗) of map (3), which can be denoted as one of the above six fixed points listed
in Lemma 2.1:

A
(
δ, d, x∗, y∗) =

(
1 + δc(1 – x∗2) –δc

δ
c (2x∗ + d) 1 – δb

c

)

, (8)

and the corresponding characteristic equation can be written as

λ2 – (2 + Gδ)λ +
(
1 + Gδ + Hδ2) = 0,

where

G = c – cx∗2 –
b
c

, H = bx∗2 + 2x∗ + d – b.

Using the corresponding discussions in [31–33], we obtain four different stability kinds
of E∗(x∗, y∗).

Lemma 2.2 Let E∗(x∗, y∗) be the fixed point of map (3),
(i) it is a sink if one of the following conditions holds:

(i1) H > 0, –2
√

H ≤ G < 0, and δ < – G
H ;

(i2) H > 0, G < –2
√

H , and 0 < δ < –G–
√

G2–4H
H ;

(ii) it is a source if one of the following conditions holds:
(ii1) H > 0, –2

√
H ≤ G < 0, and δ > – G

H ;
(ii2) H > 0, G < –2

√
H , and δ > –G+

√
G2–4H
H ;

(ii3) H > 0 and G ≥ 0;
(iii) it is a saddle if the following condition holds:

G < –2
√

H and
–G –

√
G2 – 4H

H
< δ <

–G +
√

G2 – 4H
H

;

(iv) it is non-hyperbolic if one of the following conditions holds:
(iv1) H > 0, G < –2

√
H , δ = –G±√

G2–4H
H , and δ �= – 2

G , – 4
G ;
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(iv2) H > 0, –2
√

H ≤ G < 0, and δ = – G
H ;

(iv3) H > 0, G < 0, δ = – 4
G , and G2 = 4H .

Only three critical cases of (iv1), (iv2), and (iv3) in Lemma 2.2 are investigated in this
paper. Here, we define the following bifurcation sets F1, F2, and F3:

F1 =
{

(a, b, c, d, δ) : δ =
–G ± √

G2 – 4H
H

, H > 0, G < –2
√

H , δ, a, b, c, d > 0
}

,

F2 =
{

(a, b, c, d, δ) : δ = –
G
H

, H > 0, –2
√

H ≤ G < 0, δ, a, b, c, d > 0
}

,

and

F3 =
{

(a, b, c, d, δ) : δ = –
4
G

, d =
(

G
2

+
b
c

)2

– 2x∗, δ, a, b, c, d > 0
}

,

at which there exist eigenvalues with modulus 1. In this paper, we pay more attention to
the local dynamics in the neighborhood of F1(2,3) for map (3). It is easy to find that the
conditions of included in F1(2,3) can be satisfied at E11, E31, E32, and E33. At E21 and E22,
H may be equal to 0. In the following, bifurcation analysis is presented for E11. Similar
discussions can be undertaken at E31, E32, and E33.

Let x̆ = x – x11 and y̆ = y – y11, then we transform E11(x11, y11) to the origin and map (3)
can be transformed as

(
x̆
y̆

)

�→
(

(1 + δc(1 – x11
2))x̆ – δcy̆ – δcx11x̆2 – δc

3 x̆3

δ
c (2x11 + d)x̆ + (1 – δb

c )y̆ + δ
c x̆2

)

. (9)

We denote the nonlinear term of map (9) as F(X) (XT = (x̆, y̆)) and its Taylor expansion
near the origin can be written as

F(X) =
1
2

B(X, X) +
1
6

C(X, X, X),

where B(X, X) and C(X, X, X) are multilinear functions. It follows that

B(x, y) =
2∑

j,k=1

∂2F(ξ , δ)
∂ξj∂ξk

∣
∣
∣
∣
ξ=0

xjyk

=

(
–2δcx11

2δ
c

)

x1y1,

C(x, y, u) =
2∑

j,k,l=1

∂3F(ξ , δ)
∂ξj∂ξk∂ξl

∣
∣
∣
∣
ξ=0

xjykul

=

(
–2δc

0

)

x1y1u1.

3 Flip bifurcation and Neimark–Sacker bifurcation
In this section, only δ is chosen as a bifurcation parameter to carry out bifurcation analysis
at E11(x11, y11).
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When (a, b, c, d, δ) ∈ F1, we discuss a possible flip bifurcation at the fixed point E11(x11,
y11) of map (3). Here, we first require that δ = –G±√

G2–4H
H := δ1 (G2 > 4H), that is, there

exists an eigenvalue λ1 = –1. And |λ2| = |3 + Gδ1| �= 1 would be satisfied if Gδ1 �= –2, –4.
There exist p, q ∈ R

2 such that A(δ1, d, x11, y11)q = –q and AT (δ1, d, x11, y11)p = –p. After
calculation, p, q can be chosen as

q ∼
(

–2 +
δ1b
c

,
δ1

c
(2x11 + d)

)T

,

p ∼
(

–2 +
δ1b
c

, –δ1c
)T

.

After normalizing p with respect to q, we have

q =
(

–2 +
δ1b
c

,
δ1

c
(2x11 + d)

)T

,

p = γ

(

–2 +
δ1b
c

, –δ1c
)T

,

where

1
γ

=
(

2 –
δ1b
c

)2

– δ1
2(2x11 + d).

After a series of transformations similarly introduced in [34], we transform map (9) to
the following normal form on the center manifold at δ = δ1:

ξ �→ –ξ + c̃(δ1)ξ 3 + O
(
ξ 4),

where

c̃(δ1) =
1
6
〈
p, C(q, q, q)

〉
–

1
2
〈
p, B

(
q,

(
A(δ1) – I2

)–1B(q, q)
)〉

,

which determines the stability of the newborn period-doubling orbits and I2 is a 2 × 2
identity matrix.

Using the corresponding theorems in [34–38], we obtain the following conclusions.

Theorem 3.1 If G2 > 4H , Gδ1 �= –2, –4, and c̃(δ1) �= 0, then a flip bifurcation occurs at
E11(x11, y11) of map (3) when δ = δ1. Further, if c̃(δ1) < 0 (resp., c̃(δ1) > 0), then the bifurcation
is subcritical (resp., supercritical), that is, the newborn period-two cycles are stable (resp.,
unstable).

In Sect. 5, some parameter values will be chosen from F1 to show the cascade of period-
doubling. The stability of fixed point changes and orbits with different periods emerge as
δ varies (see Figs. 2–3).

Next, the Neimark–Sacker bifurcation of map (3) at E11(x11, y11) is discussed if H > 0,
–2

√
H ≤ G < 0, and δ2 = – G

H .
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.

Figure 2 (a) Bifurcation diagram of map (3) in (δ, x) plane for a = 2, b = 2, c = 1, d = 2, the initial value is
(–2.14737621, 1.16253284). (b) Maximum Lyapunov exponents corresponding to (a)

Figure 3 Phase portraits for various values of δ corresponding to Fig. 2(a)
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To investigate the local dynamics near the origin of map (3), we construct the following
characteristic equation:

λ2 + p(δ)λ + q(δ) = 0,

where

p(δ) = –2 – Gδ,

q(δ) = 1 + Gδ + Hδ2.

Then

∣
∣λ(δ)

∣
∣ =

√
q(δ), l =

d|λ|
dδ

∣
∣
∣
∣
δ=δ2

= –
G
2

> 0.

In addition, |λ(δ2)| = 1 and we need p(δ2) �= 0, 1, that means

Gδ2 �= –2, –3,

then λn(δ2) �= 1, n = 1, 2, 3, 4. Here, A(δ2) is used as the short form of A(δ2, d, x11, y11). Let
p, q ∈C

2 such that

A(δ2)q = λ(δ2)q, A(δ2)q̄ = λ(δ2)q̄,

and

AT (δ2)p = λ(δ2)p, AT (δ2)p̄ = λ(δ2)p̄.

It is easy to get

q ∼
(

1 +
δ2b
c

– λ(δ2), –δ2(2x11 + d)
)T

,

p ∼
(

1 +
δ2b
c

– λ(δ2), –δ2c
)T

.

After normalizing, we have

q =
(

1 +
δ2b
c

– λ(δ2), –δ2(2x11 + d)
)T

,

p = γ̆

(

1 +
δ2b
c

– λ(δ2), –δ2c
)T

,

where

1
γ̆

=
(

1 +
δ2b
c

– λ(δ2)
)2

+ δ2
2c(2x11 + d).
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After a series of transformations similarly introduced in [34], we can transform map (9)
to the normal form on the center manifold at δ = δ2 as follows:

z �→ eiθ (δ2)z
(
1 + d1|z|2

)
+ O

(|z|4),

where eiθ (δ2) = λ(δ2), z ∈ Z
2 and the real number d̃(δ2) = Re d1 is given by the following

formula:

d̃(δ2) =
1
2

Re
{

e–iθ (δ2)[〈p, C(q, q, q̄)
〉
+ 2

〈
p, B

(
q,

(
I2 – A(δ2)

)–1B(q, q̄)
)〉

+
〈
p, B

(
q̄,

(
e2iθ (δ2)I2 – A(δ2)

)–1B(q, q)
)〉]}

,

which determines whether the bifurcating closed invariant curve is attracting or repelling.
Using the corresponding theorems in [34–38], we obtain the following conclusions.

Theorem 3.2 If the conditions Gδ2 �= –2, –3 hold and d̃(δ2) �= 0, then a Neimark–Sacker bi-
furcation occurs at E11(x11, y11) of map (3) when δ = δ2. Further, the sign of d̃(δ2) decides the
stability of a bifurcating closed invariant curve. If d̃(δ2) < 0 (resp., > 0), then the bifurcating
closed invariant curve is attracting (resp., repelling) for δ > δ2 (resp., < δ2).

In Sect. 5, parameters (a, b, c, d, δ2) ∈ F2 are chosen to illustrate the way of how a fixed
point changes to a closed invariant curve through Neimark–Sacker bifurcation for map
(3) in Figs. 4–5.

4 Bifurcation with 1 : 2 resonance
In this section, δ and d are chosen as free parameters to carry out bifurcation analysis at
1 : 2 resonance point. Note that the Jacobian matrix for (a, b, c, d, δ) = (a, b, c, d∗, δ∗) ∈ F3 at
E11(x11, y11) is

A
(
δ∗, d∗, x11, y11

)
=

(
–3 – 4b

Gc
4c
G

– 4
Gc ( G

2 + b
c )2 1 + 4b

Gc

)

=: A
(
δ∗, d∗).

We can always select two linearly independent eigenvectors pi ∈ R
2 of A(δ∗, d∗) such

that

A
(
δ∗, d∗)p1 = –p1, A

(
δ∗, d∗)p2 = –p2 + p1,

and similarly adjoint eigenvectors qi ∈R
2 of the transposed matrix of AT (δ∗, d∗)

AT(
δ∗, d∗)q1 = –q1, AT(

δ∗, d∗)q2 = –q2 + q1,

so that 〈p1, q2〉 = 〈p2, q1〉 = 1 and 〈p1, q1〉 = 〈p2, q2〉 = 0.
Herein, the following eigenvectors are chosen to transform map (9) to the 1 : 2 resonance

normal form at (δ, d) = (δ∗, d∗):

p1 =

(
2c2

Gc+2b
1

)

, p2 =

(
– Gc3

(Gc+2b)2

0

)

,
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Figure 4 (a) Bifurcation diagram of map (3) in (δ, x) plane for a = 2, b = 2, c = 1, d = 5.71441. The initial value is
(–0.8, –1). (b) Local amplification corresponding to (a) for δ ∈ [0.455, 0.463]. (c) Maximum Lyapunov exponents
corresponding to (a). (d) Local amplification corresponding to (c)

q1 =

(
– Gc+2b

2c2

1

)

, q2 =

(
0

Gc+2b
2c2

)

.

After a series of transformations which can be constructed similar to those in [34], we
can transform map (9) to the following normal form at (δ, d) = (δ∗, d∗):

(
ξ1

ξ2

)

�→
(

–1 1
β1 –1 + β2

)(
ξ1

ξ2

)

+

(
0

C̃(β)ξ 3
1 + D̃(β)ξ 2

1 ξ 1
2

)

+ O
(|z|4),

where β = (β1,β2)T , β1(2) = β1(2)(δ, d), which can be defined as follows:

β1(δ, d) = b10(δ, d) + a01(δ, d)b10(δ, d) – a10(δ, d)b01(δ, d),

β2(δ, d) = a10(δ, d) + b01(δ, d)

and

a01(δ, d) =
〈
q2,

[
A(δ, d) – A

(
δ∗, d∗)], p1

〉
, a10(δ, d) =

〈
q2,

[
A(δ, d) – A

(
δ∗, d∗)], p2

〉
,

b01(δ, d) =
〈
q1,

[
A(δ, d) – A

(
δ∗, d∗)], p1

〉
, b10(δ, d) =

〈
q1,

[
A(δ, d) – A

(
δ∗, d∗)], p2

〉
.
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Figure 5 Phase portraits for various values of δ corresponding to Fig. 4

Using the algorithms constructed in [34], we get the two critical normal form coefficients

C1
(
β
(
δ∗, d∗)) = 4C̃

(
β
(
δ∗, d∗))

and

D1
(
β
(
δ∗, d∗)) = –2D̃

(
β
(
δ∗, d∗)) – 6C̃

(
β
(
δ∗, d∗));

C̃
(
β
(
δ∗, d∗)) =

1
6
〈
p1, C(q0, q0, q0) + 3B

(
q0,

(
I2 – A

(
δ∗, d∗))–1B(q0, q0)

)〉
,

and

D̃
(
β
(
δ∗, d∗)) =

1
2
[〈

p1, 2B(q0, h11) + B(q1, h20) + C(q0, q0, q1)
〉

+
〈
p0, 3B(q0, h20) + C(q0, q0, q0)

〉]
,
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which determines the direction of bifurcation of a closed invariant curve and

h20 = –
(
A

(
δ∗, d∗) – I2

)–1B(q0, q0),

h11 = –
(
A

(
δ∗, d∗) – I2

)–1[B(q0, q1) –
(
A

(
δ∗, d∗) – I2

)–1B(q0, q0)
]
.

From the related theorems in [34, 36], we obtain three kinds of one-parameter bifurca-
tions emanated from the origin of map (9) and compute the representation for δ∗ and d∗.

Theorem 4.1 If C1(δ∗, d∗) �= 0 and D1(δ∗, d∗) �= 0, then there exist three different kinds of
bifurcation curves for map (3):

(a) Pitchfork bifurcation occurs on the curve PF = {(β1,β2) : β1 = 0};
(b) Neimark–Sacker bifurcation occurs on the curve

H = {(β1,β2) : β1 = –β2 + O(|β1| + |β2|)2,β1 < 0};
(c) Heteroclinic bifurcation occurs on the curve

HL = {(β1,β2) : β1 = – 5
3β2 + O(|β1| + |β2|)2,β1 < 0}.

In Sect. 5 we will choose (a, b, c, d, δ) ∈ F3 to illustrate the dynamics in the neighbor-
hood of 1 : 2 resonance point, which implies that there exist a flip bifurcation curve and a
Neimark–Sacker bifurcation curve which intersect at 1 : 2 resonance point.

5 Numerical analysis
In this section, numerical analysis is carried out with MATLAB to illustrate the qualitative
behaviors described in the above lemmas and theorems for map (3).

When a = 2, b = 2, c = 1, and d = 2, there are D = 1 > 0 and F(–1)F(0) = 14
3 > 0. From

the second case of Lemma 2.1, there exists a unique fixed point (–2.149376214918635,
1.161532841710343) for map (3). When δ = δ1, the flip bifurcation occurs at
(–2.149376214918635, 1.161532841710343) with c̃(δ1) = –0.5451227. As δ increases, then
the fixed point (–2.149376214918635, 1.161532841710343) of map (3) will lose its stabil-
ity, two fixed points could bifurcate from it, and eventually period-doubling phenomena
occur. Bifurcation diagrams presented in Fig. 2(a) show us the bifurcating process and the
cascade of period-doubling emerges for some values of δ. For clarity, some typical phase
portraits are plotted in Fig. 3. For δ ∈ (0.5, 0.6783), we observe period-2n, 5n (n = 1, 2, 4)
orbits. When δ = 0.67, the chaotic phenomena occur. In Fig. 2(b) we calculated maxi-
mum Lyapunov exponents to illustrate the stability of the fixed points. When δ lies in a
small neighborhood of 0.67, the corresponding exponents are positive, which implies the
occurrence of the chaotic phenomena [39, 40].

When a = 2, b = 2, c = 1, d = 5.71441, there is D = –6.42882 < 0. From the first case of
Lemma 2.1, we obtain a unique fixed point (–0.596089234530279, –0.525487953584638)
for map (3). When δ ≈ 0.41923114, the Neimark–Sacker bifurcation emerges from
(–0.596089234530279, –0.525487953584638) and its eigenvalues are λ1,2 ≈
0.715903334775152±0.698199409379453i. For δ = 0.41923114, there are |λ| = 1, l = d|λ|

dδ
=

0.677661187761447 > 0, and d̃(δ2) = –0.01226361 < 0. It provides a case study for Theo-
rem 3.2.

Bifurcation diagrams presented in Figs. 4(a) and (b) show us the bifurcating process and
the emergence of a closed invariant curve. As the parameter δ varies, the stability of the
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fixed point changes and is eventually enclosed by a closed invariant curve. From Figs. 4(b),
there exist “period bubbling” phenomena when δ ∈ (0.4615, 0.4625) [41].

As in the flip bifurcation case, the maximum Lyapunov exponents were also computed
and plotted in Figs. 4(c) and (d) that show the occurrence of periodic orbits, critical bifur-
cation sets, and chaotic region as δ varies.

The selected phase portraits are disposed, they illustrate the process of the Neimark–
Sacker bifurcation, that is, a unique closed invariant curve bifurcates from the stable
fixed point (–0.596089234530279, –0.525487953584638) and encloses it in Fig. 5. When
δ = 0.4457, the closed invariant curve changes to a period-7 orbit, and “period bubbling”
phenomena occur. From Fig. 5 we see that there exist period-7n, 19n (n = 1, 2) orbits,
quasi-period orbits, and chaotic sets.

When a = 2, b = 2, c = 1, d = 3.20745, there is D = –1.4149 < 0. From the first case
of Lemma 2.1, we get a unique fixed point (–1.5664125, –0.28527086) for map (3). Af-
ter computation, we obtain that the eigenvalues of A(δ∗, d∗, –1.5664125, –0.28527086)
are λ1,2 = –1 when δ∗ = 1.1581956 and d∗ = 3.20745 with C1 = –4.540894 �= 0 and
D1 = –4.028139 �= 0. The fixed point (–1.5664125, –0.28527086) is a 1 : 2 resonance
point from Theorem 4.1. Furthermore, the condition C1 = –4.540894 < 0 implies that
there exists a period-2 closed invariant curve bifurcating from fixed points of map (3).
Since C1 and D1 are negative, the bifurcation pictures in the small neighborhood of
(–1.5664125, –0.28527086) are qualitatively the same as Fig. 9.10 given in Chap. 9 of [34].

Bifurcation continuations of 1 : 2 resonance point are carried out by using MatcontM,
and bifurcation distribution near the resonance point is plotted in Fig. 6. From Fig. 6, a
flip curve and a Neimark–Sacker curve are plotted in different colors and intersect at 1 : 2
resonance point.

When a = 2, b = 2, c = 1, and δ, d vary near (1.1581956, 3.20745), three-dimensional
bifurcation diagrams for map (3) are presented in Fig. 7(a). The corresponding maxi-
mum Lyapunov exponents are calculated and disposed in Fig. 7(b), especially the three-
dimensional figure is projected on the parametric plane, see Fig. 7(c), to show the occur-
rence of the chaos and periodic oscillations near the fixed point (–1.5664125, –0.28527086)
clearly. Related phase portraits are plotted in Fig. 9, too.

To further illustrate the local dynamics of a 1 : 2 resonance point, we consider the fol-
lowing cases. When a = 2, b = 2, c = 1, d = 3.204, and 1.1 ≤ δ < 1.8, there exist pitch-
fork bifurcation phenomena near (–1.5664125, –0.28527086) for map (3). Bifurcation di-
agrams and the corresponding maximum Lyapunov exponents are calculated and plotted

Figure 6 Bifurcation distribution near 1 : 2
resonance point in (δ,d) plane and Neimark–Sacker
(resp., flip) bifurcation curve in magenta (resp., blue)
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Figure 7 (a) Bifurcation diagram of map (3) in (δ,d, x) space for a = 2, b = 2, c = 1, the initial value is
(–2.14737621, 1.16253284). (b) Three-dimensional maximum Lyapunov exponents corresponding to (a).
(c) Two-dimensional maximum Lyapunov exponents corresponding to (a)

Figure 8 (a) Bifurcation diagram of map (3) in (δ, x) plane for a = 2, b = 2, c = 1, d = 3.204, the initial value is
(–2.14737621, 1.16253284). (b) Maximum Lyapunov exponents corresponding to (a). (c) Bifurcation diagram
of map (3) in (δ, x) plane for a = 2, b = 3, c = 0.8, d = 3.208. The initial value is (–2.14737621, 1.16253284).
(d) Maximum Lyapunov exponents corresponding to (c)

in Figs. 8(a)–(b). Related phase portraits are plotted in Fig. 9. When a = 2, b = 2, c = 1,
d = 3.208, and 1.1 ≤ δ < 1.8, there exist Neimark–Sacker bifurcation phenomena near
(–1.565598214673778, –0.286453450549223) for map (3). Bifurcation diagrams and the
corresponding maximum Lyapunov exponents are calculated and plotted in Figs. 8(c)–
(d).

Figure 9 shows the phase portraits of map (3) corresponding to Figs. 7–8. From Fig. 9, we
can see that the fixed point (–1.5664125, –0.28527086) becomes two fixed points through
pitchfork bifurcation, and these two fixed points change to two stable closed invariant
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Figure 9 Phase portraits for various values of (δ,d) corresponding to Figs. 7–8

curves. Furthermore, as the parameters (δ, d) vary, the distance between them becomes
smaller and smaller, merges into one stable invariant curve, and eventually leads to chaos.

6 Conclusion
In this paper, we explored three kinds of bifurcations at the fixed points of map (3) and
showed that the discrete model could undergo two kinds of one-parameter bifurcations
and 1 : 2 resonance which includes a pitchfork bifurcation, a Neimark–Sacker bifurcation,
and a heteroclinic bifurcation. Moreover, the conditions of two kinds of one-parameter
bifurcations are derived by using the inner product method and normal form method.
We computed the sufficient conditions for the occurrence of 1 : 2 resonance and provided
the representation for a pitchfork bifurcation curve, a Neimark–Sacker bifurcation curve,
and a heteroclinic bifurcation curve. From the presented phase portraits, periodic orbits,
quasi-periodic orbits, and chaotic phenomena emerge, which implies that the state vari-
ables x and y can coexist in the stable periodic orbits and invariant curve or behave chaotic.
These show that more complex dynamics, such as much richer orbits of different patterns,
are observed than in the continuous version.

Especially, as the generate case of flip and Neimark–Sacker bifurcation, we pay more
attention to the 1 : 2 resonance. When the 1 : 2 resonance of a dynamical system occurs,
there exists at least a heteroclinic orbit which arises from invariant curves with double
period in the phase space, see Fig. 9. As one of global bifurcations, the occurrence of het-
eroclinic bifurcation implies that interactions between different activities would be more
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complex. Here, only the sufficient conditions of a heteroclinic bifurcation are computed,
and we leave further analysis for future work. Phase portraits show us some symmetric
phenomena, in fact the normal form of 1 : 2 resonance is Z2 symmetric, that is, the map
is invariant under the rotation P (P2 = I2) through the angle π .
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