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Abstract
In this paper, we study the Legendre spectral element method for solving the
sine-Gordon equation in one dimension. Firstly, we discretize the equation by
Legendre spectral element in space and then discretize the time by the second-order
leap-frog method. We study the stability and convergence of the method and show
the convergence of our method. Finally, we show the results with numerical
examples.
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1 Introduction
A spectral element method combines the high accuracy of spectral methods and flexi-
bility of finite element method, and the approximate result of this method provides high
accuracy and spectral convergence. In this method the solution is approximated on each
element using spectral methods. One of the advantages of this method is the high accu-
racy and stable solving algorithm with a small number of elements under a wide range of
conditions [1].

Finite element method was proposed for the first time in 1943 by Courant [2]. He solved
the Poisson equation based on minimizing piecewise linear approximations on finite sub-
domains.

The spectral method is a conventional method for solving partial differential equations,
which was first introduced by Navier for elastic sheet problems in 1825. In spectral method
the solution is approximated on one general domain.

In 1984, Patera applied a spectral method to a greater number of subdomains by a divi-
sion of domains. He proposed the spectral element method by combining the spectral
method and the finite element method [3]. In his innovative method, Patera uses the
Chebyshev polynomials as the interpolation basis functions. Legendre’s spectral element
was developed by Maday and Patera [4]. The use of the Lagrangian interpolation conju-
gate with the Gauss–Legendre–Lobatto quadrature leads to a matrix of mass with diam-
eter structure [5]. The diagonal mass matrix is a very important property of the Legendre
spectral element method and is different from the Chebyshev spectral element method [6].

The Legendre spectral element method is widely used in solving partial differential
equations. Chen et al. [7] used the Legendre spectral element method to solve a con-
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strained optimal control problem. An alternating direction implicit (ADI) Legendre spec-
tral element method for the two-dimensional Schrodinger equation is developed in [8],
and the optimal H1 error estimate for the linear case is given. The aim of [9] is the
Lagrange–Galerkin spectral element method for solving two-dimensional shallow water
equations. The authors of [10] considered the numerical approximation of the acoustic
wave equation by the spectral element method based on the Gauss–Lobatto–Legendre
quadrature formulas and finite difference Newmark’s explicit time advancing schemes.
A modified set of basis functions for use with spectral element methods is presented in [11]
for solving a mixed elliptic boundary value problem. These basis functions are constructed
so that the axial conditions along a plane or axis of symmetry are satisfied identically.
A numerical spectral element method for the computation of fluid flows governed by the
incompressible Euler equations in a complex geometry is presented in [12]. Zhuang and
Chen [13] used this method to solve biharmonic equations. In [14], the authors used the
spectral element method with least-square formulation for parabolic interface problems.
Ai et al. [15] used fully diagonalized Legendre spectral element methods using Sobolev
orthogonal/biorthogonal basis functions for solving second-order elliptic boundary value
problems. A Legendre spectral element formulation of an improved time-splitting method
is developed for the natural convection heat transfer problem in a square cavity by Wang
and Qin [16].

The sine-Gordon equation is one of the most important partial differential equations,
which applies to many scientific fields such as the motion of a rigid pendula attached to a
stretched wire [17], solid state physics, nonlinear optics, and the stability of fluid motions.

We consider the one-dimension sine-Gordon equation

utt – uxx + sin(u) = 0, x ∈ Ω , t ∈ (0, T),

ux(x, t) = 0, x ∈ ∂Ω , t ∈ (0, T),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω ,

(1)

where u is a function of x and t, and u0(x) and u1(x) are known analytic functions.
Different numerical methods are presented for Eq. (1). Dehghan and Shokri [18] solved

a one-dimensional sine-Gordon equation using collocation points and approximating the
solution using thin plate splines radial basis function. Dehghan and Mirzaei [19] used a
numerical method of the boundary integral equation to approximate the solution of one-
dimensional equation (1). Mohebbi and Dehghan [20] have also used the finite difference
method for numerical solution of equation (1).

In [21] the authors present an analysis of the stability spectrum for all stationary periodic
solutions to the sine-Gordon equation. Yousif an Mahmood [22] used the variational ho-
motopy perturbation method for solving the Klein–Gordon and sine-Gordon equations.
In [23] a new scheme, which has energy-preserving property, is proposed for solving the
sine-Gordon equation with periodic boundary conditions. This method is obtained by
the Fourier pseudo-spectral method and the fourth-order average vector field method.
Baccouch [24] presented superconvergence results for the local discontinuous Galerkin
method for the sine-Gordon nonlinear hyperbolic equation in one space dimension.

Other numerical methods have also been used to solve the sine-Gordon equation such as
Chebyshev tau meshless method [25], meshless method of lines [26], high-accuracy mul-
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tiquadric quasi-interpolation [27], reduced differential transform method [28], pseudo-
spectral method [29], modified cubic B-spline differential quadrature method [30], mod-
ified cubic B-spline collocation method [31], etc.

In this paper, we study the Legendre spectral element method for solving Eq. (1). First,
using the Legendre spectral element method, we obtain a semi-discrete spatial form of
Eq. (1), and then, using the leap-frog method, we obtain a complete discrete form of Eq. (1).
We bring theorems on stability and convergence, and, finally, we show the results by a
numerical example.

This paper is organized as follows: In Sect. 2, we perform a spatial discretization of
Eq. (1) using the Legendre spectral element method. In Sect. 3, we perform a time dis-
cretization of Eq. (1) using the second-order leap-frog method. In Sect. 4, we present sta-
bility and convergence theorems. Finally, in Sect. 5, we present a numerical example to
validate the stability and convergence of the numerical scheme with respect to the dis-
cretization parameters.

2 Space discretization
In this section, we explain the Legendre spectral element method and spatial discretization
of Eq. (1).

2.1 Legendre spectral element method
In the Legendre spectral element method, we first divide the domain Ω into Ne nonover-
lapping subdomains Ωe:

Ω̄ =
Ne⋃

e=1

Ω̄e,
Ne⋂

e=1

Ωe = ∅.

We define the approximation space

Uh = {u ∈ U : u|Ωe ∈ PN },

where PN is a polynomial space of dimension less than or equal to N . Basis functions are
considered as the Lagrangian interpolation polynomials defined at Gauss–Lobatto inte-
gration points on each element. If Ne = 1, then we obtain the spectral Galerkin method of
order N – 1. If N = 1 or N = 2, then we obtain a standard Galerkin finite element method
based on linear and quadratic elements, respectively.

Now on each element Ωe, we define the approximate solution of order N as

ue(x, t) =
N∑

j=0

ue
j (t)ϕj(x), 1 ≤ e ≤ Ne, (2)

where ϕj is the jth Lagrange polynomial of order N on the Gauss–Legendre–Lobatto
points {ξi}N

i=0 [32]:

ϕj(ξ ) =
1

N(N + 1)LN (ξj)
(ξ 2 – 1)L′

N (ξ )
ξ – ξj

, 0 ≤ j ≤ N , –1 ≤ ξ ≤ 1,

and LN is the Legendre polynomial of order N .
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To convert the [–1, 1] to the eth element and its inverse, we use the mapping functions

x(ξ ) =
(xe – xe–1)ξ

2
+

xe + xe–1

2
, –1 ≤ ξ ≤ 1,

ξ (x) =
2x – (xe + xe–1)

xe – xe–1
, xe–1 ≤ x ≤ xe,

where xe and xe–1 are the endpoints of the eth element. The stiffness [33] and mass matrices
[34] on each element are calculated as follows:

Se
ij =

∫ xe

xe–1

ϕ′
i(x)ϕ′

j (x) dx =
2
he

∫ 1

–1
ϕ′

i(ξ )ϕ′
j (ξ ) dξ ,

Me
ij =

∫ xe

xe–1

ϕi(x)ϕj(x) dx =
he

2

∫ 1

–1
ϕi(ξ )ϕj(ξ ) dξ ,

where

he = xe – xe–1.

Using the Gauss quadrature, we obtain [35]

Se
ij =

2
he

N∑

k=0

dikdjkwk ,

Me
ij =

he

2
δijwi,

where

wk =
2

N(N + 1)[LN (tk)]2 , 0 ≤ k ≤ N ,

and

dik =
LN (ξk)
LN (ξi)

1
ξk – ξi

, i �= k,

dii =
L′

N (ξi)
2LN (ξi)

.

2.2 Space discretization of the sine-Gordon equation
We obtain the weak form of Eq. (1) as follows. For each element Ωe, we find ue ∈ Uh such
that

∫

Ωe

ue
ttv dx +

∫

Ωe

ue
xvx dx = –

∫

Ωe

sin
(
ue)v dx, v ∈ Uh, 1 ≤ e ≤ Ne.
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The second integral on the left-hand side is obtained by integration by parts. Now, taking
the kth Lagrange function of order N as the test function v and using Eq. (2), we have

N∑

j=0

d
dt2

(
ue

j

∫

Ωe

ϕjϕk dx
)

+
N∑

j=0

ue
j

(∫

Ωe

ϕ′
jϕ

′
k dx

)

= –
N∑

j=0

sin
(
ue

j
)(∫

Ωe

ϕjϕk dx
)

. (3)

We obtain the right-hand side of Eq. (3) using the following equation [36]:

sin
(
ue) ∼=

N∑

j=0

sin
(
ue

j
)
ϕj.

The matrix form of the semidiscrete form of Eq. (3) is

MeUe
tt(t) + SeUe(t) = –Me sin

(
Ue(t)

)
, (4)

where the vector Ue contains an approximation solution of order N on the element Ωe

at time t, Me is a local diagonal mass matrix, and Se is a local stiffness matrix on the ele-
ment Ωe.

To obtain a semidiscrete form on the general domain, we must assemble the local ma-
trices Me and Se and obtain the general matrices M and S [35]. So Eq. (4) becomes

MUtt(t) + SU(t) = –M sin
(
U(t)

)
, (5)

where U is the vector of the approximate solution on the general domain Ω at time t.

3 Time discretization
For full discretization of Eq. (5), we first divide the interval (0, T) into subintervals [tn, tn+1],
where t0 = 0 and tn+1 = tn + k for n = 0, . . . , Nt – 1. Now, using the leap-frog method, we
obtain the full discrete form of Eq. (1):

M
Un+1 – 2Un + Un–1

k2 + SUn = –M sin(Un), (6)

where Un is the vector of approximation solution at time tn. After simplifying, Eq. (6)
becomes

MUn+1 =
(
2M – k2S

)
Un – MUn–1 – k2M sin(Un),

U0 =

⎡

⎢⎢⎢⎢⎣

u0(0)
u0(t1)

...
u0(tNt )

⎤

⎥⎥⎥⎥⎦
,

d
dt

U0 =

⎡

⎢⎢⎢⎢⎣

u1(0)
u1(t1)

...
u1(tNt )

⎤

⎥⎥⎥⎥⎦
.

(7)

For n = 0, we have

MU1 =
(
2M – k2S

)
U0 – MU–1 – k2M sin(U0).
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For calculation of U–1, we have

d
dt

U0 =
U1 – U–1

2k
,

and thus

U–1 = U1 – 2k
d
dt

U0.

So, for n = 0, we have

2MU1 =
(
2M – k2S

)
U0 + 2kM

d
dt

U0 – k2M sin(U0). (8)

For n > 0, we also have

MUn+1 =
(
2M – k2S

)
Un – MUn–1 – k2M sin(Un). (9)

Because the mass matrix M is diagonal, solving Eqs. (8) and (9) is easier than by similar
methods.

4 Stability and convergence analysis
In this section, we analyze the stability of leap-frog method and the convergence of the
spectral element method presented in the previous sections.

4.1 Stability of leap-frog method
Equation (9) can be written as

Un+1 =
(
2I – k2A

)
Un + Fn,n–1,

where

A = M–1S

and

Fn,n–1 = –Un–1 + k2 sin(Un).

Since Fn,n–1 is a known vector at each step and does not play any role in the stability anal-
ysis, we need to consider the equation

Un+1 =
(
2I – k2A

)
Un. (10)

Theorem 4.1 Equation (10) is stable under the following condition:

C∗N–1 ≤ k2 ≤ C̃N–3h2, h = max
1≤e≤Ne

he.
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Proof We must show that

∥∥2I – k2A
∥∥2

2 = ρ
(
2I – k2A

) ≤ 1.

If μi are the eigenvalues of the diagonal matrix M and λi are the eigenvalues of the matrix
S, then λi

μi
are the eigenvalues of the matrix A. We must show that

∣∣∣∣2I – k2 λi

μi

∣∣∣∣ ≤ 1.

From this inequality we obtain

k–2 ≤ λi

μi
≤ 3k–2. (11)

According to [37], we have that

C1N–1h ≤ λi ≤ C2N2h–1,

C3N–2h ≤ μi ≤ C4N–1h–2,

and, consequently,

C5N ≤ λi

μi
≤ C6N3h–2.

According to Eq. (11),

C∗N–1 ≤ k2 ≤ C̃N–3h2. �

4.2 Convergence of spectral element method
In [38] the convergence theorem is presented for the spectral element method for acoustic
waves.

Theorem 4.2 ([38]) Suppose that u ∈ C2(0, T ; Hs(Ω)) ∩ C4(0, T ; L2(Ω)) is the exact solu-
tion of

M
un+1 – 2un + un–1

k2 + Sun = 0

and U is the approximation result of the spectral element method under stability conditions
on k. Then, for all tn > 0, we have

∥∥u(tn) – Un
∥∥

L2(Ω) ≤ O
(
hmin(N ,s)N–s + k2).

5 Numerical results
In this section, we consider a numerical example to validate the proposed scheme. The
accuracy of the scheme is verified in the L2 and L∞ norms and root mean square errors.
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We set

L2 err(tn) ≡ ∥∥u(tn) – Un
∥∥

2,

L∞ err(tn) ≡ ∥∥u(tn) – Un
∥∥∞,

RMS err(tn) =
L2 err(tn)
Ne,N + 1

,

where Ne,N are all nodes of the domain, and Un is the vector of nodal values of the numer-
ical solution corresponding to the discretization parameters N , Ne, and k at time tn, and
for each continuous function f ,

‖f ‖2 =

√√√√
Ne,N∑

r=1

f 2(xr),

‖f ‖∞ = max
1≤r≤Ne,N

∣∣f (xr)
∣∣.

Example 5.1 We consider the equation

utt – uxx + sin(u) = 0, –20 ≤ x ≤ 20, t ≥ 0,

ux(–20, t) = u(20, t) = 0, t ≥ 0,

u(x, 0) = 4 arctan

(
c sinh

(
x√

1 – c2

))
, –20 ≤ x ≤ 20, c = 0.2,

ut(x, 0) = 0, –20 ≤ x ≤ 20,

(12)

and the exact solution is given by

u(x, t) = 4 arctan

(
c sinh

( x√
1–c2

cosh( ct√
1–c2

))
, –20 ≤ x ≤ 20, t ≥ 0. (13)

We solve this problem with the Legendre spectral element method presented in this paper
with several values of N , k, and Ne at final time T = 1. Table 1 shows the errors of Legendre
spectral element method with several values of N at final time T = 1 with k = 0.1, 0.01 and
Ne = 20.

Table 2 shows the maximum pointwise error |uexact – uLSEM| at several times T =
1, 2, . . . , 10 with N = 4, Ne = 20, and k = 0.01.

Table 1 Numerical results for sine-Gordon equation Example 5.1 with Ne = 20 and T = 1

k = 0.1 k = 0.01

N L2 err L∞ err RMSerr L2 err L∞ err RMSerr

1 2.4093e–01 1.6930e–01 1.1473e–02 2.4629e–01 1.7297e–01 1.1728e–02
2 1.2518e–01 7.9776e–02 3.0531e–03 1.3130e–01 8.3774e–02 3.2024e–03
3 2.2023e–02 9.9553e–03 3.6104e–04 2.4071e–02 1.0268e–02 3.9460e–04
4 3.9778e–03 1.9421e–03 4.9109e–05 6.4771e–03 3.4862e–03 7.9964e–05
5 3.5862e–03 1.3858e–03 3.5507e–05 1.0154e–03 5.3085e–04 1.0053e–05
6 3.5050e–03 1.3304e–03 2.8967e–05 3.5765e–04 1.5567e–04 2.9558e–06
7 3.7733e–03 1.2734e–03 2.6761e–05 3.5359e–04 1.2447e–04 2.5078e–06
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Table 2 Maximum pointwise error at several times for sine-Gordon equation in Example 5.1 with
N = 4, Ne = 20, and k = 0.01

Time (second) Max|uexact – uLSEM|
1 3.4862e–03
2 3.7742e–03
3 5.0095e–03
4 5.7173e–03
5 5.7173e–03
6 5.7173e–03
7 1.1208e–02
8 1.5732e–02
9 2.3081e–02
10 3.3925e–02

Figure 1 LSEM approximation for sine-Gordon equation for Example 5.1 with N = 4, Ne = 20, and k = 0.1 for
t ≤ 1

Figure 2 Absolute error for sine-Gordon equation for Example 5.1 with N = 4, Ne = 20, and k = 0.1

Figures 1 and 2 show graphs of approximate solution and absolute error and Fig. 3 shows
graph of approximate and exact solution at T = 1, using present method with N = 4, Ne =
20 and k = 0.1.

In the following figures (4, 5, and 6) we have used a logarithmic scale for both axes. In
Fig. 4, we show the RMS err as a function of the degree of the polynomials N for two fixed
values of k (k = 0.1, 0.01) and Ne = 20.



Lotfi and Alipanah Advances in Difference Equations        (2019) 2019:113 Page 10 of 15

Figure 3 Comparison between the LSEM and exact solutions for Example 5.1 at T = 1 with N = 4, Ne = 20 and
k = 0.1

Figure 4 The RMSerr as a function of N, k = 0.1, 0.01 for Example 5.1

Figure 5 The RMSerr as a function of k: N = 7, Ne = 20 for Example 5.1

In Fig. 5, we report the quantity RMS err for k ranging from 0.001 to 0.1 and fixed N = 7
and Ne = 20.
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Figure 6 The RMSerr as a function of Ne : N = 4, k = 0.1, 0.01 for Example 5.1

Table 3 Comparison of L2 err and L∞ err of Example 5.2 with N = 7, Ne = 30, and k = 0.001 at
different time levels

Time (s) LSEM Dehghan and Shokri [18] Shukla and Tamsir [30] Mittal and Bhatia [31]

L2 err L∞ err L2 err L∞ err L2 err L∞ err L2 err L∞ err

0.25 2.39e–06 4.05e–06 3.91e–05 5.89e–06 2.43e–06 5.56e–06 1.18e–05 2.32e–05
0.5 6.85e–06 7.02e–06 1.30e–04 2.01e–05 5.54e–06 7.39e–06 4.19e–05 4.11e–05
0.75 6.97e–06 7.36e–06 2.35e–04 3.63e–05 6.45e–06 7.40e–06 7.78e–05 1.02e–04
1 1.07e–05 2.23e–05 3.27e–04 5.07e–05 7.84e–06 8.75e–06 1.30e–04 1.64e–04

Figure 6 shows the RMS err as a function of Ne for two fixed values of k (k = 0.1, 0.01)
and N = 4.

Example 5.2 In this example, we obtain the numerical solutions of Eq. (1) the computa-
tional domain Ω = [–1, 1] with the initial conditions

u(x, 0) = 0,

ut(x, 0) = 4 sech(x).
(14)

The analytical solution is given in [39] as

u(x, t) = 4 arctan
(
t · sech(x)

)
. (15)

The boundary conditions are obtained from the exact solution. We compute the numerical
solution in the domain Ω = [–1, 1] with several values of N , k, Ne, and time t. The obtained
results are compared with the results in [18, 30, 31]. Table 3 shows the results at the differ-
ent time levels. It can be seen from Table 3 that the present results are in good agreement
with those in the literature. A graph comparing the exact and numerical solutions at T = 1
with N = 4, k = 0.01, and Ne = 20 is depicted in Fig. 7. We also draw the space-time graph
of approximate solution for t ≤ 2 in Fig. 8 with N = 2, Ne = 10, and k = 0.01.
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Figure 7 Comparison between the LSEM and exact solutions for Example 5.2 at t = 1 with N = 4, Ne = 20, and
k = 0.01

Figure 8 LSEM approximation for sine–Gordon equation Example 5.2 with N = 2, Ne = 10, and k = 0.01 for
t ≤ 2

Example 5.3 Consider the sine-Gordon equation (1) in the range Ω = [–10, 10] with the
initial conditions

⎧
⎨

⎩
u(x, 0) = 0,

ut(x, 0) = 4γ sech(γ x),
(16)

where c = 0.5 is the velocity of solitary wave, and γ = 1√
1+c2 . The exact solution [31] is given

as

u(x, t) = 4 arctan
(
c–1 sin(γ ct) sech(γ x)

)
. (17)

The boundary conditions can be obtained from the exact solution. The numerical solution
for Example 5.3 is computed in the domain [–10, 10] using the parameter values N = 7,
Ne = 30, and k = 0.001. Computed results are compared with the results obtained in [30,
31, 40]. Table 4 shows L2 err and L∞ err at different time levels. From Table 4 we can see that
the present results are in good agreement with those of [31, 40], but it has more errors than
[30]. Figure 9 shows the comparison between the numerical and exact solutions at t = 1
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Table 4 Comparison of the L2 err and L∞ err of Example 5.3 with N = 7, Ne = 30, and k = 0.001 at
different time levels

Time (s) LSEM Bratsos [40] Shukla and Tamsir [30] Mittal and Bhatia [31]

L2 err L∞ err L∞ err L2 err L∞ err L2 err L∞ err

1 1.024e–06 2.321e–06 1.276e–04 1.868e–09 2.318e–09 2.564e–05 1.818e–05
10 5.432e–06 4.003e–06 1.912e–04 5.474e–09 5.234e–09 5.850e–05 5.228e–05
20 2.015e–05 1.358e–05 2.519e–04 9.800e–09 5.471e–09 1.713e–04 9.438e–05

Figure 9 Comparison between the LSEM and exact solutions for Example 5.3 at t = 1 with N = 3, Ne = 30 and
k = 0.01

Figure 10 LSEM approximation for sine-Gordon equation Example 5.3 with N = 3, Ne = 30 and k = 0.1, for
t ≤ 10

with N = 3, Ne = 30, and k = 0.01. In Fig. 10, we show the space-time graph of approximate
solution for t ≤ 10 using the present method with N = 3, Ne = 30, and k = 0.1.

6 Conclusion and discussion
The spectral polynomials are useful tools for solving ordinary and partial differential equa-
tions. Also, the incorporation of the finite element method with spectral polynomials, that
is, the use of spectral polynomials as new shape functions in the finite element method is
very efficient for obtaining a numerical algorithm with high accuracy. In this paper, we
constructed a Legendre spectral element method for the solution of the one-dimensional
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sine-Gordon equation. We used the Legendre spectral element method for discretizing
the spatial space. Also, we used a leap-frog scheme for discretizing the temporal space
with the stability condition C∗N–1 ≤ k2 ≤ C̃N–3h2. We presented theorems on the stabil-
ity and convergence. Finally, using one test problem, we demonstrated that the algorithm
is efficient for obtaining approximation solutions of the sine-Gordon equation.
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