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Abstract
This paper studied the existence and uniqueness of the solution of the fractional
logistic differential equation using Hadamard derivative and integral. Previous work
has shown that there is not an exact solution to this fractional model. Hence several
numerical approaches, such as generalized Euler’s method (GEM), power series
expansion (PSE) method, and Caputo–Fabrizio (CF) method, were used to compute
the solution. The classical solution obtained from the first order non-linear differential
equation was also considered to enable the comparison of error levels.
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1 Introduction
The name fractional calculus stems from the fact that the order of derivatives and integrals
are fractions rather than integers. Early work on fractional calculus dates back to the early
nineteenth century [1]. Researchers initially concentrated on the proof of the existence
and uniqueness of the solution to a fractional model [2–4]. Theory of fractional calculus
has been discussed by many authors [5–7].

Recent research has concentrated on showing the advantages of fractional over classi-
cal calculus [4, 8–11]. In many cases, the fractional calculus has provided better results
compared to those obtained via the classical approach. In general, the better performance
of the fractional calculus becomes evident based on lower error levels produced during
an estimation process [8–10, 12, 13]. Computational methods and numerical simulations
successfully applied to several works, such as those found in [14–19], aimed to show the
results proven theoretically or to iteratively compute the solution to problem whose ana-
lytic form is not explicit.

Evidence of fractional calculus being applicable to real life problems has gradually been
proven by researchers in various branches of science. Such works are for instance found
in biology [8, 11, 12, 20, 21], in economy [9], and in physics [8, 10].

It is common in research to define a fractional calculus problem referring to its ordinary
calculus counterpart when it exists. Such practice is often used in fractional differential
equations. However, the structure of the solution to a fractional differential equation does
not always correspond to its classical counterpart when it exists. Hence, an ordinary differ-
ential equation might have an exact solution whereas its fractional counterpart does not.
The logistic differential equation [22] has an exact solution. However, West [23] proposed
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a power series referring to it as the exact solution to fractional logistic differential equation
(FLDE). Subsequently Area et al. [24] claimed that West’s proposal is valid only when the
order of the derivative is one. However, the solution proposed by West was proven valid
by D’Ovidio et al. [25], subject to changing the structure of the FLDE for what they called
‘modified fractional logistic equation’. In [26] a numerical solution was proposed for FLDE
based on Euler’s method.

In this work the FLDE is investigated. Considering the fact that the FLDE is a non-linear
equation whose exact solution does not exist, several numerical methods are used to com-
pute its solution. Finally we compute the solution of FLDE by means of three numerical
methods: the power series expansion (PSE) method also known as Letnikov method (LM)
[27], the generalized Euler method (GEM) [28], and the Caputo–Fabrizio (CF) method
[29]. The error rate of each of the mentioned methods is also computed for performance
evaluation purpose. The introduction of the present work is followed by a preliminaries
section in which some useful definitions are given, followed by a discussion on various
numerical techniques used in the simulations. The fourth section is dedicated to the con-
struction of the FLDE. The two last sections are respectively the simulation section and
the concluding remarks.

2 Preliminaries
Some fractional calculus definitions and notation needed in the course of this work are
discussed in this section.

Definition 2.1 ([30]) The Riemann–Liouville fractional integral of order q > 0 of a func-
tion g : [0, +∞) →R is defined as

(
RLIq

0+ g
)
(t) =

1
Γ (q)

∫ t

0
(t – s)q–1g(s) ds,

provided that the right-hand side of the integral is pointwise defined on (0, +∞) and Γ is
the gamma function Γ (υ) =

∫ ∞
0 e–ttυ–1 dt, ∀υ > 0.

Definition 2.2 ([30]) The Riemann–Liouville fractional derivative of order q > 0 of a func-
tion g : [0, +∞) →R is defined as

(
RLDq

0+ g
)
(t) =

1
Γ (n – q)

(
dn

dtn

)∫ t

0
(t – s)n–q–1g(s) ds,

where n – 1 ≤ q < n, n ∈N.

Definition 2.3 ([30]) The Caputo derivative of order q > 0 for a function g : [0, +∞] →R

is defined as

(
CDq

0+ g
)
(t) =

⎧
⎨

⎩

∫ t
0

(t–s)n–q–1g(n)(s)
Γ (n–q) ds, n – 1 < q < n ∈R,

g(n)(t), q ∈N,

where n = [q] + 1, [q] is the integer part of q.
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Definition 2.4 ([5]) Let g be a continuous function and n = t–a
h , then the Grunwald–

Letnikov (GL) fractional derivative of g is given by

(
GLDq

a+ g
)
(t) = lim

h→0

1
hq

[ t–a
h ]∑

j=0

(–1)j

(
q
j

)

g(t – jh),

where

(
q
j

)

=
q!

j!(q – j)!
=

Γ (q + 1)
Γ (j + 1)Γ (q – j + 1)

, and

(
q
0

)

= 1.

Definition 2.5 ([31]) Let g ∈ H1(a, b), b > a, and q ∈ [0, 1]. Then the new Caputo version
of fractional derivative of g is defined as

(
CF Dq

0g
)
(t) =

M(q)
(1 – q)

∫ t

a
g ′(s) exp

[
–

q
1 – q

(t – s)
]

ds,

where M(q) is the normalization function with M(0) = M(1) = 1. If g /∈ H1(a, b), then a
new derivative, called Caputo–Fabrizio fractional derivative [31], is defined as

(
CF Dq

0g
)
(t) =

M(q)
(1 – q)

∫ t

0
g ′(s) exp

[
–

q
1 – q

(t – s)
]

ds.

The Caputo–Fabrizio fractional derivative has an advantage over other fractional
derivatives of being a fractional derivative with non-singular kernel [31].

Definition 2.6 ([32]) The Hadamard fractional integral of order q of a continuous func-
tion g is defined as

HIqg(t) =
1

Γ (q)

∫ t

a

(
ln

t
s

)q–1 g(s)
s

ds, q > 0,

provided that the integral exists.

Definition 2.7 ([32]) The Hadamard fractional derivative of order q > 0 of a continuous
function g : [a,∞) →R is defined as

HDqg(t) = δn(HIqg
)
(t) =

(
t

d
dt

)n 1
Γ (n – q)

∫ t

a

(
ln

t
s

)n–q–1 g(s)
s

ds,

with n–1 < q < n, n = [q]+1; δ = t( d
dt ) and [q] denotes the integer part of the real number q.

Lemma 2.8 ([32]) Let u, x ∈ Cn
δ ([a, T],R), where Cn

δ [a, T] = {u, x : [a, T] → R : δ(n–1)u ∈
C[a, T]}, then

HIq(HDqu
)
(t) = u(t) –

n∑

j=1

cj

(
ln

t
a

)q–j

.



Yameni Noupoue et al. Advances in Difference Equations        (2019) 2019:108 Page 4 of 13

3 Numerical techniques for solving non-linear differential equations
We discuss in this section some general numerical methods often used to find the nu-
merical solution to non-linear fractional differential equations. These methods are later
applied to the FLDE.

3.1 The generalized Euler’s method (GEM)
GEM is discussed here. The method was introduced by Odibat et al. [28]. It is derived
from the known Euler’s method for solving differential equations. Consider the fractional
order non-linear differential equation given by

(
CDq

0+ x
)
(t) = g

(
t, x(t)

)
, x(0) = 0, (3.1)

where the fractional order of derivative q ∈ (0, 1] and t > 0. Moreover, we assume that
the following functions x(t), CDq

0+ x(t), and CD2q
0+ x(t) are continuous on the closed interval

[0, T]. In order to find the numerical solution to the problem defined by Eq. (3.1) over the
interval [0, T], a discretization of [0, T] into k sub-intervals [tj, tj+1] of equal width h = T/k
is required. The set of points {tj, x(tj)} is also used in the approximation process. The GEM
approximated solution is given by

x(tj+1) = x(tj) +
hq

Γ (q + 1)
g
(
tj, x(tj)

)
, j = 0, 1, . . . , k – 1, (3.2)

where the node tj = jh, j = 1, 2, . . . , k.

3.2 The Grünwald–Letnikov method (GL) or power series expansion (PSE)
Grünwald provided a numerical approach for solving non-linear differential equation.
This approach is discussed in detail in [27].

Definition 3.1 ([27]) The explicit fractional numerical approximation formula of qth
derivative at the points kh (k = 1, 2, . . .) in the Grünwald–Letnikov sense has the following
form:

(k–Lm/h)
(

GLDq
tk g

)
(t) ≈ 1

hq

k∑

j=0

(–1)j

(
q
j

)

g(tk–j), (3.3)

where Lm is the memory length; tk = kh; the time-space step of iteration is h and (–1)j( q
j
)

are referred to as binomial coefficients. For computational issue, the binomial coefficients
are usually denoted by c(q)

j (j = 0, 1, . . .) and computed as follows:

⎧
⎨

⎩
c(q)

0 = 1,

c(q)
j = (1 – 1+q

j )c(q)
j–1.

Consider a non-linear fractional differential equation, where the fractional derivative is
taken in the Grünwald–Letnikov sense, with initial condition, defined by

(
GLDq

a+ u
)
(t) = g

(
u(t), t

)
, (3.4)
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the numerical solution to the problem stated by Eq. (3.4) is given by

u(tk) = g
(
u(tk), tk

)
hq –

k∑

j=1

c(q)
j u(tk–j). (3.5)

3.3 The Caputo–Fabrizio method (CF)
Consider a non-linear fractional differential equation with initial condition, where the
fractional derivative is taken in the Caputo–Fabrizio sense, defined by

(
CF Dq

0u
)
(t) = g

(
t, u(t)

)
, u(0) = u0. (3.6)

The numerical solution to the problem defined by Eq. (3.6) is built based on the Adam–
Basforth method as follows (see [29, 33]):

un+1 = un +
(

1 – q
M(q)

+
3qh

2M(q)

)
g(tn, un) +

(
1 – q
M(q)

+
qh

2M(q)

)
g(tn–1, un–1). (3.7)

4 Fractional logistic differential equation
In this section, the general form of the numerical solution of FLDE is discussed. The logis-
tic model is used for population growth modeling. Given a population with proliferation
capability, with an initial size of P0, one would obviously think that the size of the popula-
tion will infinitely increase when the time approaches infinity. However, it has been proven
by Malthus (see [34]) that a population size tends to stabilize when the time approaches
infinity. The growth trend obtained from the Malthusian theory is what we call the logistic
growth model. The model is defined classically by the following differential equation:

dN(t)
dt

= rN(t)
(

1 –
N(t)

K

)
, (4.1)

where the initial population size is N(0) = N0, r is called the growth rate; K is called the
carrying capacity. It is the maximum value that the population size can reach. N(t) is the
population size at time t.

The exact solution of the classical logistic differential equation defined by Eq. (4.1) is
given by

Nc(t) =
K

1 + ( K–N0
N0

)e–rt
. (4.2)

Without loss of generality, Eq. (4.1) can be converted to FLDE based on the Hadamard
fractional derivative as follows:

(HDq
0N

)
(t) = rN(t)(1 –

N(t)
K

), N(a) = Na < ∞. (4.3)

4.1 Existence and uniqueness of the solution of fractional logistic equation
In this section we prove the existence and uniqueness of the solution of the FLDE. Without
loss of generality, the Hadamard fractional derivative and integral symbols are used.



Yameni Noupoue et al. Advances in Difference Equations        (2019) 2019:108 Page 6 of 13

Applying the operator HIr to Eq. (4.3), we obtain the following:

N(t) – c1

(
ln

t
a

)q–1

= HIq
(

rN
(

1 –
N
K

))
.

For simplicity, the following kernel function is chosen:

Q
(
t, N(t)

)
= rN

(
1 –

N
K

)
.

Note that the initial value condition implies c1 = Na.
Let H = C([a, T],R) denote the Banach space of all continuous functions from [a, T] to

R, we identify the operator E : H → H endowed with the norm ‖N‖ = supa≤t≤T |N(t)|,
then

(EN)(t) = Na

(
ln

t
a

)q–1

+
1

Γ (q)

∫ t

a

(
ln

t
s

)q–1 Q(s, N(s))
s

ds.

4.1.1 Existence of solution
Using the setting above, the existence of the solution is stated and proven by Theorem 4.1
as follows.

Theorem 4.1 Let Q : [a, T] × R → R be a continuous function such that the following
assumptions hold:

(A1) ∃NQ > 0 such that |Q(t, N1) – Q(t, N2)| ≤ NQ|N1 – N2|, ∀t ∈ [a, T], ∀N1, N2 ∈ R.
(A2) |Q(t, N)| ≤ y(t), ∀(t, N) ∈ [0, T] × R, where, y ∈ C([a, T],R+) with supa≤t≤T |y(t)| =

‖y‖.

In addition, it is assumed that NQ
Γ (q+1) (ln T

a )q–1 < 1, then there is at least one solution for
the initial value problem given by Eq. (4.3).

Proof of Theorem 4.1 Consider the close set Bλ = {N ∈ H ,‖N‖ ≤ λ} with

λ ≥ Na

(
ln

T
a

)q–1

+
1

Γ (q + 1)

(
ln

T
a

)q

‖y‖.

We define the operators E1 and E2 on Bλ as

(E1N)(t) = Na

(
ln

t
a

)q–1

; (E2N)(t) =
1

Γ (q)

∫ t

a

(
ln

t
s

)q–1 Q(s, N(s))
s

ds.

For N1, N2 ∈ Bλ, then ‖E1N1 + E2N2‖ ≤ Na(ln T
a )q–1 + 1

Γ (q+1) (ln T
a )q‖y‖ ≤ λ, thus E1N1 +

E2N2 ∈ Bλ.
Next, we show that E2 is a contraction, ∀t ∈ [a, T], ∀N1, N2 ∈ Bλ, we have

∣
∣E2N1(t) – E2N2(t)

∣
∣ =

∣∣
∣∣

∫ t

a

(
ln

t
s

)q–1 Q(s, N1(s))
s

ds –
∫ t

a

(
ln

t
s

)q–1 Q(s, N2(s))
s

ds
∣∣
∣∣

≤ 1
Γ (q)

∫ t

a

(
ln

t
s

)q–1∣
∣Q

(
s, N1(s)

)
– Q

(
s, N2(s)

)∣∣ds
s

,
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then

‖E2N1 + E2N2‖ ≤ 1
Γ (q + 1)

NQ

(
ln

T
a

)q–1

‖N1 – N2‖

≤ ‖N1 – N2‖,

which implies that E2 is a contraction.
In addition, the operator E1 is continuous as a result of the continuity of N . Moreover,

E1 is uniformly bounded as

‖E1N‖ ≤ Na

(
ln

T
a

)q–1

.

Now it will be shown that the operator E1 is compact for t1, t2 ∈ [a, T] (t1 < t2), then

∥
∥(E1N)(t2) – (E1N)(t1)

∥
∥ ≤ Na

(∣∣
∣∣

(
ln

t2

a

)q–1

–
(

ln
t1

a

)q–1∣∣
∣∣

)
.

The right-hand side of the above inequality approaches zero as t1 → t2. Note that
‖(E1N)(t2) – (E1N)(t1)‖ is independent of N implies that E1 is relatively compact, by
Arzela–Ascoli theorem we conclude that E1 is compact on Bλ. Hence, the existence of
the solution of the initial value problem given by Eq. (4.3) holds by Krasnoselskii’s fixed
point theorem. �

4.1.2 Uniqueness of solution
Theorem 4.2 Let Q : [a, T] ×R →R be a continuous function satisfying (A1) and assume
that ( 1

Γ (q+1) (ln T
a )q)NQ < 1, then the initial value problem given by Eq. (4.3) has a unique

solution.

Proof Theorem 4.2 Consider the close set Bλ = {N ∈ H ,‖N‖ ≤ λ} with

λ ≥ Na(ln T
a )q–1 + M( 1

Γ (q+1) (ln T
a )q)

1 – NQ( 1
Γ (q+1) (ln T

a )q)
, where M = sup

a≤t≤T

∣∣Q(t, 0)
∣∣.

First we show that EBλ ⊂ Bλ. For any N ∈ Bλ, ∀t ∈ [a, T],

∣∣(EN)(t)
∣∣ ≤ Na

(
ln

t
a

)q–1

+
1

Γ (q)

∫ t

a

(
ln

t
s

)q–1 |Q(s, N(s))|
s

ds,

but

∣∣Q
(
t, N(t)

)∣∣ =
∣∣Q

(
t, N(t)

)
– Q(t, 0) + Q(t, 0)

∣∣

≤ ∣∣Q
(
t, N(t)

)
– Q(t, 0)

∣∣ +
∣∣Q(t, 0)

∣∣

≤ NQ‖N‖ + M

≤ NQλ + M,
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then

‖EN‖ ≤ Na

(
ln

T
a

)q–1

+
(

1
Γ (q + 1)

(
ln

T
a

)q)
(NQλ + M)

≤ λ,

which implies that EN ∈ Bλ, ∀N ∈ Bλ, that is, EBλ ⊂ Bλ. Then it is sufficient to show that
the operator E is a contraction.

∀N1, N2 ∈ H ,

∣
∣EN1(t) – EN2(t)

∣
∣ ≤ 1

Γ (q)

∫ t

a

(
ln

t
s

)q–1∣
∣Q

(
s, N1(s)

)
– Q

(
s, N2(s)

)∣∣ds
s

,

which implies that

‖EN1 – EN2‖ ≤
(

1
Γ (q + 1)

(
ln

T
a

)q)
NQ‖N1 – N2‖

≤ ‖N1 – N2‖.

So E is a contraction. By Banach’s contraction mapping theorem, the initial value prob-
lem given by Eq. (4.3) has a unique solution on [a, T]. �

5 Simulation studies
In the literature review it has become evident that no one has so far proposed a valid exact
form of solution to FLDE. In Sect. 4 the existence and uniqueness of the solution of FLDE
is proven. Since there is no exact solution to the FLDE problem, approximate solutions are
found using the GEM, PSE, and CF methods.

Let q ∈ (0, 1) ∪ (1, 2) be the fractional order of derivative, the numerical solutions of the
FLDE using GEM, PSE, and CF are respectively given by

NGEM(tj+1) = N(tj) +
hq

Γ (q + 1)
rN(tj)

(
1 –

N(tj)
K

)
, j = 0, 1, . . . k – 1, (5.1)

NPSE(tk) = rN(tk)
(

1 –
N(tk)

K

)
hq –

k∑

j=1

c(q)
j N(tk–j), (5.2)

NCF (tn+1) = N(tn) +
(

1 – q
M(q)

+
3qh

2M(q)

)
N(tn)

(
1 –

N(tn)
K

)

+
(

1 – q
M(q)

+
qh

2M(q)

)
N(tn–1)

(
1 –

N(tn–1)
K

)
. (5.3)

In order to evaluate the performance of these methods, the error rate between the true
data values and the values computed using fractional differential equations is computed
using the formula below [35]:

ER =

√∑n
i=0(yi(t) – ŷi(t))2

n

/
√∑n

i=0(yi(t))2

n
, (5.4)
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where yi(t) is the true value at time t; ŷi(t) is the estimate value at time t; n is the sample
datasize.

Experimental data comes from the study of the annual growth rate of helianthus plant.
The data is retrieved from [36]. The height of the plants measured at a constant spacing
time of 7 days is given in centimeters. Twelve measurements were considered, ranging
from the seventh day to the eighty-fourth day of the plant life. The mean values of the
heights are considered.

Considering Eq. (4.2) that gives the solution of the classical approach, the growth rate
r = 0.0760 and the carrying capacity K = 267.5301 for this data set are obtained through
a non-linear optimization tool. The ‘lsqcurvefit’ Matlab command was used in this case.
The classical approach Eq. (4.2) produced an error rate ER = 0.0320 that is 3.2%. The graph
of the classical solution alongside the true data is given in Fig. 1.

Recalling Eq. (5.1) and Eq. (5.2) for the GEM and PSE numerical solutions respectively,
it was decided to determine the value of the fractional order of derivative q for which the
error rate ER is minimized. The interval [0.9, 1.2] was iteratively covered by all the possible
q values using 10–3 steps. Both GEM and PSE minimized ER for q = 1 as shown in Fig. 2.

ER is minimized at q = 1 for both GEM and PSE, that is, when both methods coincide
with the classical method. At q = 1, both methods have ER = 0.0320 or 3.2%, which is the
same as the error rate obtained for the classical approach. The graphs in Fig. 3 show the
PSE and GEM data for q = 1.

In order to show the behavior of the results produced by GEM and PSE for different
values of q, let q = 0.9. Then the GEM method produced ER = 0.2954, that is, 29.54%,
whereas the PSE produced ER = 0.4146 or 41.46%. Figure 2 clearly illustrates variation of
the error rate ER with respect to q values. The graphs obtained for GEM and PSE methods
when q = 0.9 are shown in Fig. 4. In conformity with Fig. 2, where error rates for GEM and
Letnikov are about 0.29 and 0.41, respectively, deviation of the estimated values from the
true ones is greater in the Letnikov case as seen in Fig. 4.

Figure 1 Classical Method



Yameni Noupoue et al. Advances in Difference Equations        (2019) 2019:108 Page 10 of 13

Figure 2 GEM and PSE error rate versus q values

Figure 3 Graphs of (a) PSE with q = 1 and (b) GEM for q = 1

Figure 4 Graphs of (a) PSE with q = 0.9 and (b) GEM for q = 0.9



Yameni Noupoue et al. Advances in Difference Equations        (2019) 2019:108 Page 11 of 13

Figure 5 CF’s error rate versus q values

Figure 6 CF ‘s graph (a) for q = 1.005 and (b) for q = 1

To find the value of q for which the CF method, Eq. (5.3), minimizes the error rate ER,
q values ranging between 0.9 and 1.2 with increments 10–3 were used. Minimum error
(ER = 0.0321 or 3.21%) was obtained when q = 1.005 as seen in Fig. 5.

The graphs of the simulation obtained for the optimal value of q = 1.005, for the value
of q = 1 together with the original data are shown in Fig. 6. The CF method produced
ER = 0.3824 that is 38.24% for the value of q = 1, and much lower error (ER = 0.0321 or
3.21%) when q = 1.005.

6 Conclusion
The FLDE is studied, the existence and uniqueness of a solution are proposed and proved
by means of the Hadamard fractional derivative and integral formula. The proposed solu-
tion is shown to be applicable in practice by using a data set and employing three numerical
approaches, namely the GEM, PSE, and CF.

The values of the fractional derivative of order q, for which each of the method pro-
duces a minimum error rate ER, were found iteratively. It appeared that the GEM and PSE
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methods produce a common minimum error rate of ER = 3.2% for a value of q = 1. The
CF method produces the same minimum error rate of ER = 3.2% for a value of q = 1.005.

It is worth mentioning that the fractional derivative of order q = 1 coincides with the
classical approach of the solution. Through the application problem it has become evident
that the CF method has performed better in solving the FLDE, by producing a minimum
error rate for q value different from 1.
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35. Tandoğdu, Y., Erbilen, M.: Imputing missing values using support variables with application to barley grain yield.

J. Agric. Sci. Technol. 20(4), 829–839 (2018)
36. Reed, H.S., Holland, R.H.: The growth rate of an annual plant Helianthus. Proc. Natl. Acad. Sci. 5(4), 135–144 (1919)


	On numerical techniques for solving the fractional logistic differential equation
	Abstract
	Keywords

	Introduction
	Preliminaries
	Numerical techniques for solving non-linear differential equations
	The generalized Euler's method (GEM)
	The Grünwald-Letnikov method (GL) or power series expansion (PSE)
	The Caputo-Fabrizio method (CF)

	Fractional logistic differential equation
	Existence and uniqueness of the solution of fractional logistic equation
	Existence of solution
	Uniqueness of solution


	Simulation studies
	Conclusion
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


