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Abstract
In this article, we consider a study of a general class of nonlinear singular fractional
DEs with p-Laplacian for the existence and uniqueness (EU) of a positive solution and
the Hyers–Ulam (HU) stability. To proceed, we use classical fixed point theorem and
properties of a p-Laplacian operator. The fractional DE is converted into an integral
alternative form with the help of the Green’s function. The Green’s function is
analyzed as regards its nature and then, with the help of a fixed point approach, the
existence of a positive solution and uniqueness are studied. After the EU of a positive
solution, the HU-stability and an application are considered. The suggested singular
fractional DE with φp is more general than the one considered in (Khan et al. in Eur.
Phys. J. Plus 133:26, 2018)
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1 Introduction
Fractional order models have attracted the attentions of researchers of various discipline,
in the last two decades. In fact, fractional order models can be met with in numerous
fields such as processing, control theory, signals, biology, fluid dynamics,modern physics,
set theory, hydrodynamics, viscoelastic theory, computer networking and others. For de-
tailed literature connected to these topics, we refer the reader to some famous books
[2–8]. Various mathematical procedures have been considered by scientists through dif-
ferent research oriented aspects of fraction DEs.

Recently, some authors explored fractional DEs with singularity with the help of differ-
ent mathematical techniques. For example, Bai and Qiu [9] established EU of solutions
for a nonlinear singular boundary value problem (BVP) of fractional DEs with the help of
the Leray–Schauder and Krasnosel’skii’s fixed point theorems. They also provided some
applications to illuminate the results. Agarwal et al. [10, 11] investigated EU for a singular
fractional BVP involving the Riemann–Liouville fractional derivative. Bai and Fang [12]
explored a singular coupled system of nonlinear fractional DEs for the EU of solution with
the use of Leray–Schauder and Krasnoselskii’s fixed point technique. Vong [13] studied
fractional DEs with singularity and non-local boundary conditions by using a Schauder
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fixed point approach and using upper-lower solution techniques. Zhang et al. [14] inves-
tigated positive solutions of a multipoint BVP with singularity and applied the results to
a specific example to illuminate the results. Khan et al. [15] studied a nonlinear singular
fractional DE with singularity and p-Laplacian for the EU of solutions and stability analy-
sis. They also presented an important application of their work.

Hybrid fractional DEs were studied by several authors for the EU of solutions with the
help of different mathematical procedures. For instance, Kumam et al. [16] highlighted the
study of EU of solutions for a coupled system of high order hybrid functional DEs using a
classical fixed point approach by Krasnosel’skii. Chasreechai et al. [17] explored a hybrid
fractional sum-difference initial and BVP in a Banach algebra and presented an instructive
example.

Some authors worked on the EU of solutions for fractional DEs with p-Laplacian oper-
ator. For instance; Li [18] studied a fractional DE for the EU of positive solutions having
integral boundary conditions and the nonlinear p-Laplacian operator. Wang [19] exam-
ined the EU of positive solutions for a class of mixed fractional BVP and p-Laplacian. Khan
et al. [1] studied a nonlinear fractional DE with p-Laplacian operator for the EU of solu-
tions and a vital application was presented. On the other hand, existence and uniqueness
of delay fractional differential equations were first investigated in [20, 21] one decade ago.
For more existence and uniqueness results in fractional calculus one may refer to [22–25].

From the literature we note that no such investigation to p-Laplacian operator in the
frame of delay fractional DEs with singularity has been considered. Therefore, inspired
by the aforementioned work we investigate the following proposal for the existence of a
positive solution (EPS) and stability analysis:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ [Φp[Dϑ0 [x(t) – y∗
2(t, x(t))]]] = –A∗(t)y∗

1(t, x(t – τ )),

(Φp[Dϑ0 x(t) – y∗
2(t, x(t))])|t=0 = 0 = (Φp[Dϑ0 x(t) – y∗

2(t, x(t))])′|t=0,

x(0) = 0 = x′(1), I2–ϑ0 [x(t) – y∗
2(t, x(t)]|t=0 = 0,

(1.1)

where β ∈ (1, 2], ϑ0 ∈ (2, 3] and y∗
1, W are continuous but singular at some points. The

fractional derivatives Dβ and Dϑ0 are taken in the Caputo sense and in the Riemann–
Liouville sense, respectively, Φp(r) = |r|p–2r is a nonlinear Φp-operator satisfying 1/p +
1/q = 1 and Φ–1

p = Φq. By the positive solution x(t) of the suggested fractional DE (1.1) we
mean x(t) > 0 for t ∈ (0, 1], satisfying (1.1). Our projected p-Lapacian delay fractional DEs
with singularity operator Φp is more general than the problems considered in [26–28].

In this paper, we are involved in the study of EU of solutions and stability for the frac-
tional DEs with operator p-Laplacian relating time and space singularity and τ > 0 delay.
To the best of our knowledge, in the literature there is no article investigating the men-
tioned problem. In order to study this problem, we will change it to fractional integral form
with the help of the Green function Gϑ0 (t, s). Throughout the investigation, the mono-
tonicity properties of the Green function will be considered in the given interval (1, 2].
Further, using fixed point theorems the EU of solutions will be demonstrated and the sta-
bility will be checked. As an application, we give and analyse an example. The reader may
further consider multiplicity results using different definitions of the fractional derivatives.
We take a help of in our work from [29–41].
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Definition 1.1 The Riemann–Liouville fractional integral of a function ψ of order y1 > 0,
ψ : (0, +∞) →R, is given by

Iy1ψ(t) =
1

Γ (y1)

∫ t

0
(t – s)y1–1ψ(s) ds,

where for Re(y1) > 0 we have

Γ (y1) =
∫ +∞

0
e–ssy1–1 ds.

Definition 1.2 The fractional order derivative in the Caputo sense for a continuous func-
tion ψ(t) : (0, +∞) →R, is given as

Dϑ0ψ(t) =
1

Γ (k – y1)

∫ t

0
(t – s)k–y1–1ψ (k)(s) ds,

for k = [y1] + 1, where [y1] is integer part of y1, such that the integral is well defined on
(0, +∞) interval.

Lemma 1.1 ([29]) For a fractional order y1 ∈ (n – 1, n], ψ ∈ Cn–1, the following is satisfied:

Iy1Dy
1ψ(t) = ψ(t) + m0 + m1t + m2t2 + · · · + mn–1tn–1,

for the mk ∈R for k = 0, 1, 2, . . . , n – 1.

We utilize the well-known Guo–Krasnosel’skii theorem for the existence of positive so-
lution.

Theorem 1.2 ([42, 43]) Consider a Banach space Y and let P ∈ Y be a cone. Suppose
that W1, W2 are two bounded subsets of Y such that 0 ∈ W1, W1 ⊂ W2, and the operator
F∗ : P ∩ (W2\W1) → P be continuous such that

(N1) ‖F∗x‖ ≤ ‖x‖ if x ∈ P ∩ ∂W1 and ‖F∗x‖ ≥ ‖x‖ if x ∈ P ∩ ∂W2, or
(N2) ‖F∗x‖ ≥ ‖x‖ if x ∈ P ∩ ∂W1 and ‖F∗x‖ ≤ ‖x‖ if x ∈ P ∩ ∂W2.
Then F∗ has a fixed point in P ∩ (W2\W1).

Lemma 1.3 ([15]) Let Φp be the nonlinear Φp-operator. Then
(1) for 1 < p ≤ 2, γ ∗

1 γ2 > 0 and |γ ∗
1 |, |γ ∗

2 | ≥ ρ > 0, then

∣
∣Φp

(
γ ∗

1
)

– Φp
(
γ ∗

2
)∣
∣ ≤ (p – 1)ρp–2∣∣γ ∗

1 – γ ∗
2
∣
∣.

(2) If p > 2, and |γ ∗
1 |, |γ ∗

2 | ≤ ρ∗, then

∣
∣Φp

(
γ ∗

1
)

– Φp
(
γ ∗

2
)∣
∣ ≤ (p – 1)ρ∗p–2∣∣γ ∗

1 – γ ∗
2
∣
∣.

2 Green function and its properties
Theorem 2.1 For β ∈ (1, 2], ϑ ∈ (2, 3] a function y∗

1 ∈ C[0, 1] satisfies (1.1) if and only if

x(t) = y∗
2
(
t, x(t)

)
+

∫ 1

0
Gϑ0 (t, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1f (ζ )y∗

1
(
ζ , x(ζ )

)
)

dζ ds, (2.1)
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where Gϑ0 (t, s) is a Green’s function given by

Gϑ0 (t, s) =

⎧
⎨

⎩

–(t–s)ϑ0–1

Γ (ϑ0) + tϑ0–1(1–s)ϑ0–2

Γ (ϑ0) s ≤ t,
tϑ0–1(1–s)ϑ0–2

Γ (ϑ0) , s ≥ t.
(2.2)

Proof If we apply the fractional integral operator Iβ on (1.1) and make use of Lemma 1.1,
then problem (1.1) becomes

Φp
[
Dβx(t) – y∗

2
(
t, x(t)

)]
= –Iβ

[
f (t)y∗

1
(
t, x(t – τ )

)]
+ c1 + c2t. (2.3)

The conditions (Φp(Dϑ0 [x(t) – y∗
2(t, x(t))])|t=0 = 0 = (Φp(Dϑ0 [x(t) – y∗

2(t, x(t))])′|t=0, imply
that c1 = c2 = 0. Also, we get

Φp
(
Dϑ0

[
x(t) – y∗

2
(
t, x(t)

)])
= –Iα

[
f (t)y∗

1
(
t, x(t – τ )

)]
. (2.4)

From (2.4), we further have

Dϑ0
[
x(t) – y∗

2
(
t, x(t)

)]
= –Φq

(
Iβ

[
f (t)y∗

1
(
t, x(t – τ )

)
dt

])
. (2.5)

Applying integral operator of fractional order Iϑ0 on (2.5) and using Lemma 1.1 again, we
have

x(t) – y∗
2
(
t, x(t)

)
= –Iϑ0

(
Φq

(
Iβ

[
f (t)y∗

1
(
t, x(t – τ )

)]))

+ c∗
1tϑ0–1 + c∗

2tϑ0–2 + c∗
3tϑ–3, (2.6)

where x(0) = 0 implies that c∗
3 = 0, I2–ϑ0 [x(t) – y∗

2(t, x(t)]|t=0 = 0 implies that c∗
2 = 0 Now for

c∗
1, using condition x′(1) = 0, we have

c∗
1 =

1
ϑ0 – 1

Iϑ0–1(Φq
(
Iβ

[
f (t)y∗

1
(
t, x(t – τ )

))])|t=1. (2.7)

Putting the values of c∗
1 and c∗

2 in (2.6), we get

x(t) = y∗
2
(
t, x(t)

)
– Iϑ0

(
Φq

(
Iβ

[
f (t)y∗

1
(
t, x(t – τ )

))])

+
tϑ0–1

ϑ0 – 1
Iϑ0–1(Φq

(
Iβ

[
f (t)y∗

1
(
t, x(t – τ )

))])|t=1

= y∗
2
(
t, x(t)

)
+

[

–
∫ t

0

(t – s)ϑ0–1

Γ (ϑ0)
+ tϑ0–1

∫ 1

0

(1 – s)ϑ0–1

Γ (ϑ0)

]

Φq

(
1

Γ (ϑ0)

∫ s

0
(s – ζ )β–1[f (ζ )y∗

1
(
ζ , x(ζ – τ )

)]
dζ

)

ds

= y∗
2
(
t, x(t)

)

+
∫ 1

0
Gϑ0 (t, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[f (t)y∗

1
(
ζ , x(ζ – τ )

)]
dζ

)

ds, (2.8)

where Gϑ0 (t, s) is well defined by (2.2). �
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Lemma 2.2 The function Gϑ0 (t, s) defined by Eq. (2.2), satisfies:
(N1) 0 < Gϑ0 (t, s) for all s, t ∈ (0, 1);
(N2) the function Gϑ0 (t, s) is increasing and Gϑ0 (1, s) = maxt∈[0,1] Gϑ0 (t, s) and
(N3) Gϑ0 (t, s) ≥ tϑ–1 maxt∈[0,1] Gϑ0 (t, s) for s, t ∈ (0, 1).

Proof To evaluate the proof of (N1), we assume two cases.
Case 1: For s ≤ t, consider

Gϑ0 (t, s) = –
(t – s)ϑ0–1

Γ (ϑ0)
+ tϑ0–1 (1 – s)ϑ0–2

Γ (ϑ0)

= –tϑ0–1 (1 – s
t )ϑ0–1

Γ (ϑ0)
+ tϑ0–1 (1 – s)ϑ0–2

Γ (ϑ0)

≥ –tϑ0–1 (1 – s)ϑ0–1

Γ (ϑ0)
+ tϑ0–1 (1 – s)ϑ0–2

Γ (ϑ0)
≥ 0. (2.9)

Case 2: For t ≤ s, we have

Gϑ0 (t, s) = tϑ0–1 (1 – s)ϑ0–2

Γ (ϑ0)
> 0. (2.10)

With (2.9) and (2.10), it is proved that Gϑ0 (t, s) > 0 for all 0 < s, t < 1.
For (N2), we consider that:
Case 1 when s ≤ t, we proceed to find

∂

∂t
Gϑ0 (t, s) = –(ϑ0 – 1)

(t – s)ϑ0–2

Γ (ϑ0)
+ (ϑ0 – 1)tϑ0–2 (1 – s)ϑ0–2

Γ (ϑ0)

= –tϑ0–2 (1 – s
t )ϑ0–2

Γ (ϑ0 – 1)
+ tϑ0–2 (1 – s)ϑ0–2

Γ (ϑ0 – 1)

= –tϑ0–2 (1 – s)ϑ0–2

Γ (ϑ0 – 1)
+ tϑ0–2 (1 – s)ϑ0–2

Γ (ϑ0 – 1)
> 0. (2.11)

Case 2: For t ≤ s, we evaluate

∂

∂t
Gϑ0 (t, s) = (ϑ0 – 1)tϑ0–2 (1 – s)ϑ0–2

Γ (ϑ0)
> 0. (2.12)

With (2.11), (2.12), we have ∂
∂tGϑ0 (t, s) > 0 for s, t ∈ (0, 1). This implies that the Green’s

function Gϑ0 (t, s) is increasing with respect to t. Thus, for t ≥ s, we arrive at

max
t∈[0,1]

Gϑ0 (t, s) =
(1 – s)ϑ0–2

Γ (ϑ0)
= Gϑ0 (1, s). (2.13)

Similarly, for s ≥ t, we have

max
t∈[1,2]

Gϑ0 (t, s) =
(1 – s)ϑ0–1

Γ (ϑ0 – 1)
+

(1 – s)ϑ0–2

Γ (ϑ0 – 1)
= Gϑ0 (1, s). (2.14)

For (N3), we presume two cases.
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Case 1: For t ≥ s, then

Gϑ0 (t, s) = –
(t – s)ϑ0–1

Γ (ϑ0)
+ tϑ0–1 (1 – s)ϑ0–2

Γ (ϑ0)

≥ –
tϑ0–1(1 – s

t )ϑ0–1

Γ (ϑ0)
+

tϑ0–1(1 – s)ϑ0–2

Γ (ϑ0)
(2.15)

≥ –
tϑ0–1(1 – s)ϑ0–1

Γ (ϑ0)
+

tϑ0–1(1 – s)ϑ0–2

Γ (ϑ0)
≥ 0.

Case 2: For s ≥ t, then

Gϑ0 (t, s) = tϑ0–1 (1 – s)ϑ0–2

Γ (ϑ0)
= tϑ0–1 max

t∈[0,1]
Gϑ0 (t, s) = tϑ0–1Gϑ0 (1, s). (2.16)

By (2.15) and (2.16), the proof of (N3) is accomplished. �

3 Existence results
Consider a Banach space Y = C[0, 1] with a norm ‖x‖ = maxt∈[0,1]{|x(t)| : x ∈ Y} and let
P be a cone containing non-negative functions in the space Y , where P = {x ∈ Y : x(t) ≥
tε‖x‖, t ∈ [0, 1]}. Let W(r) = {x ∈ P : ‖x‖ < r}, ∂W(r) = {x ∈ P : ‖x‖ = r}.

With the help of Theorem 2.1, an alternate form of (1.1) is

x(t) = y∗
2
(
t, x(t)

)

+
∫ 1

0
Gϑ0 (t, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A∗(t)y∗

1
(
t, x(t – τ )

]
dζ ds

)

. (3.1)

Define F∗ : P\{0} → Y by

F∗x(t) = y∗
2
(
t, x(t)

)

+
∫ 1

0
Gϑ0 (t, s)Φq

(∫ 1

0
(s – ζ )β (s, ζ )

[
A∗(t)y∗

1
(
t, x(t – τ )

]
dt

)

ds. (3.2)

With the help of Theorem 2.1, the solution of (1.1), i.e., x(t) is equivalent to a fixed point
of F , that is,

x(t) = F∗x(t). (3.3)

Presume the following conditions:
(P1) y∗ : ((0, 1) × (0, +∞)) → [0, +∞) is continuous.
(P2) A : (0, 1) → [0, +∞) is discontinuous on (0, 1) and non vanishing and ‖A‖ =

maxt∈[0,1] |A∗(t)| < +∞.
(P3) For a1, a2, χ∗

1 , χ∗
2 positive constants and k1 ∈ [0, 1], the functions y∗

1 , y∗
2 satisfy

∣
∣y∗

1
(
t, x(t)

)∣
∣ ≤ Φp

(
a1

∣
∣x(t)

∣
∣k1 + χ∗

1
)
;

∣
∣y∗

2
(
t, x(t)

)∣
∣ ≤ φp

(
a2

∣
∣x(t)

∣
∣k2 + χ∗

2
)
.
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(P4) For a constant value λ1,λ2 > 0 and u, v ∈ Y , the functions y∗
1 , y∗

2 satisfy

∣
∣y∗

1
(
t, x(t)

)
– y∗

1
(
t, v(t)

)∣
∣ ≤ λ1

∣
∣x(t) – v(t)

∣
∣,

∣
∣y∗

2
(
t, x(t – τ )

)
– y∗

2
(
t, v(t – τ )

)∣
∣ ≤ λ2

∣
∣x(t) – v(t)

∣
∣.

Theorem 3.1 Assume that conditions (P1)–(P3) are satisfied. Then F∗ is completely con-
tinuous operator.

Proof For any x ∈W(r2)\W(r1), we have from Lemma 2.2 and (3.2) that

F∗x(t) = y∗
2
(
t, x(t)

)
+

∫ 1

0
Gϑ0 (t, s)Φq

(
1

Γ (ϑ0)

∫ s

0
(s – ζ )ϑ0–1[A∗(t)y∗

1
(
t, x(t – τ )

]
dt

)

ds

≤
∫ 1

0
Gϑ0 (1, s)Φq

(
1

Γ (ϑ0)

∫ s

0
(s – ζ )ϑ0–1[A(t)y∗

1
(
t, x(t – τ )

]
dt

)

ds, (3.4)

F∗x(t) = y∗
2
(
t, x(t)

)
+

∫ 1

0
Gϑ0 (t, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )ϑ0–1[A∗(t)y∗

1
(
t, x(t – τ )

]
dt

)

ds

≥ y∗
2
(
t, x(t)

)

+ tϑ0–1
∫ 1

0
Gϑ0 (1, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A∗(t)y∗

1
(
t, x(t – τ )

]
dt

)

ds. (3.5)

With help of (3.4) and (3.5), we proceed to find

F∗x(t) ≥ tϑ0–1∥∥F∗x(t)
∥
∥, t ∈ [0, 1]. (3.6)

This implies F∗ : W(r2)\W(r1) → P. Now, in order to show that F∗ is continuous, we
prove ‖F∗(xn) – F∗(x)‖ → 0 as n → ∞, given by

∣
∣F∗xn(t) – F∗x(t)

∥
∥

=
∣
∣
∣
∣y

∗
2
(
t, xn(t)

)
– y∗

2
(
t, x(t)

)

+
(∫ 1

0
Gϑ0 (t, s)Φq

)(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A∗(t)y∗

1
(
t, xn(t – τ )

)]
dt

)

ds

–
∫ 1

0
Gϑ0 (t, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A∗(t)y∗

1
(
t, x(t – τ )

)]
dt

)

ds)
∣
∣
∣
∣

≤
∫ 1

0

∣
∣Gϑ0 (t, s)

∣
∣

∣
∣
∣
∣Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A∗(t)y∗

1
(
t, xn(t – τ )

)]
dt

)

ds

– Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A∗(t)y∗

1
(
t, x(t – τ )

)]
dt

)∣
∣
∣
∣ds. (3.7)

With the help of (3.7), and continuity of y∗
1, y∗

2 we have |F∗xn(t) –F∗x(t)| → 0 as n → +∞,
which shows that F∗ is continuous. Now, for the uniformly boundedness of F∗, by (3.2)
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and (P2), we get

∣
∣F∗x(t)

∣
∣ =

∣
∣
∣
∣y

∗
2
(
t, x(t)

)

+
∫ 1

0
Gϑ0 (t, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A∗(t)y∗

1
(
t, x(t) – τ

)
)
]

dt
)

ds
∣
∣
∣
∣

= |y∗
2
(
t, x(t)

)

+
∫ 1

0

∣
∣Gϑ0 (t, s)

∣
∣Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[∣∣A∗(t)y∗

1
(
t, x(t – τ )

)∣
∣
]

dt
)

ds

≤ |y∗
2
(
t, x(t)

)

+
∫ 1

0

∣
∣Gϑ0 (1, s)

∣
∣Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1‖A‖Φp

(
a1‖x‖k1 + χ∗y∗)

dt
)

ds

≤
(

2
Γ (ϑ0 + 1)

+
1

Γ (ϑ0)

)[
1

Γ (β + 1)

]q–1

‖A‖q–1(a1‖x‖k1 + χ∗
1
)

+ a2‖x‖k
2 + χ∗

= �1‖A‖q–1(a1‖x‖ + χ∗) + a2‖x‖k
2 + χ∗

2 , (3.8)

where �1 = ( 1
Γ (ϑ0+1) + 1

(ϑ0–1)Γ (ϑ0) )[ 1
Γ (ϑ0+1) ]q–1. By (3.8), the operator F∗ : W(r2)\W(r1) is

uniformly bounded. Now for the equicontinuity of the operator F∗, by (P3), Theorem 2.1
and (3.2), for any t1, t2 ∈ [0, 1], we have

∣
∣F∗x(t1) – F∗x(t2)

∣
∣

≤ ∣
∣y∗

2(t1, x(t1) – y∗
2(t2, x(t2)

∣
∣

+
∣
∣
∣
∣

∫ 1

0
Gϑ0 (t1, s)Φq

(
1

Γ (ϑ0)

∫ s

0
(s – ζ )ϑ0–1[A∗(t)y∗

1
(
t, x(t – τ )

)]
dt

)

ds
)

–
∫ 1

0
Gϑ0 (t2, s)Φq

(
1

Γ (ϑ0)

∫ s

0
(s – ζ )ϑ0–1[A∗(t)y∗

1
(
t, x(t – τ )

)]
dt

)

ds
∣
∣
∣
∣

≤
∫ 1

0

∣
∣Gϑ0 (t1, s) – Gϑ0 (t2, s)

∣
∣

× Φq

(
1

Γ (ϑ0)

∫ s

0
(s – ζ )ϑ0–1‖A‖Φp

(
a1‖x‖k1 + χ∗

1
)

dζ

)

ds

≤
( |tϑ0

1 – tϑ0
2 |

Γ (ϑ0 + 1)
+

|tϑ0–1 – tϑ0–1|
Γ (ϑ0)

)[
1

Γ (β + 1)

]q–1

‖A‖q–1(a1‖x‖k1 + χ∗
1
)
. (3.9)

As t1 → t2, we find that (3.9) goes to zero. Hence F∗(W(r2)\W(r1)) is an equicontinuous
operator and by the Arzela–Ascoli theorem F∗(W(r2)\W(r1)) is compact. This proves
that F∗ is compact in W(r2)\W(r1). Consequently; F∗ : W(r2)\W(r1) → P is completely
continuous. �

Here, we define height for y∗(t, x(t)) for r > 0, and

⎧
⎨

⎩

Φmax(t, r) = maxt∈(0,1){y∗
1(t, x(t – τ )) : tϑ0–1r ≤ x ≤ r},

Φmin(t, r) = mint∈(0,1){y∗
1(t, x(t – τ )) : tϑ0–1r ≤ x ≤ r}.

(3.10)
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Theorem 3.2 Assume that (P1)–(P3) hold true and there exist a, b ∈ R
+ such that

(W1) a ≤ ‖y∗
2(t, x(t))‖ +

∫ 1
0 Gϑ0 (1, s)Φq( 1

Γ (ϑ0)
∫ s

0 (s – ζ )ϑ0–1Φmin(ζ , a) dt) ds < +∞ and
‖y∗

2(t, x(t))‖ +
∫ 1

0 Gϑ0 (1, s)Φq( 1
Γ (β)

∫ s
0 (s – ζ )β–1[f (ζ )Φmax(ζ , b)] dζ ) ds ≤ b, or

(W2) ‖y∗
2(t, x(t))‖ +

∫ 1
0 Gϑ0 (1, s)Φq( 1

Γ (ϑ0)
∫ s

0 (s – ζ )ϑ0–1[Ω(ζ )Φmax(ζ , a)] dt) ds < a and b ≤
‖y∗

2(t, x(t))‖ +
∫ 1

0 Gϑ0 (1, s)Φq( 1
Γ (ϑ0)

∫ s
0 (s – ζ )ϑ0–1[Ω(ζ )Φmin(ζ , b)] dt) ds < +∞,

is satisfied. Then the fractional DE with operator Φp (1.1) has a positive solution x ∈ P and
a ≤ ‖x‖ ≤ b.

Proof With no loss of generalization, consider the case (W1). If x ∈ ∂W(a), then we have
‖x‖ = a and tϑ0–1a ≤ x(t) ≤ a, t ∈ [0, 1]. With the help of (3.10), for t ∈ (0, 1), we have
Φmin(t, u) ≤ y∗

1(t, x(t – τ )), which implies

∥
∥F∗x(t)

∥
∥ = max

t∈[0,1]

∫ 1

0
Gϑ0 (t, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A∗(t)y∗(t, x(t – τ )

)]
dt

)

ds

≥ tϑ0–1
∫ 1

0
Gϑ0 (1, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[f (ζ )y∗(t, x(t – τ )

)]
dt]

)

ds

≥
∫ 1

0
Gϑ0 (1, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A∗(t)Φmin(t, a)

]
dt

)

ds ≥ a

= ‖x‖. (3.11)

If x(t) ∈ ∂W(b), then ‖x‖ = b and tϑ0–1b ≤ u ≤ b, for 0 ≤ t ≤ 1. By (3.10), we get
Φmax(t, u) ≥ y∗(t, x(t – τ )), and we proceed to find

∥
∥F∗x(t)

∥
∥ = max

t∈[0,1]
[y∗

2
(
t, x(t)

)

+
∫ 1

0
Gϑ0 (t, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A∗(t)y∗(t, x(t – τ )

)]
dt

)

ds

≤ tϑ0–1
∫ 1

0
Gϑ0 (1, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A∗(t)y∗(t, x(t – τ )

)]
dt

)

ds

≤ ‖y∗
2(t, x(t)‖

+
∫ 1

0
Gϑ0 (1, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[f (ζ )Φmax(ζ , b)

]
dζ

)

ds

≤ b = ‖x‖. (3.12)

By Lemma 1.2, F∗ has a fixed point say x ∈ W(b)\W(a). Thus, we have a ≤ ‖x∗‖ ≤ b,
which by Lemma 2.2 and Theorem 2.1 implies x∗(t) ≥ tϑ0–1‖x∗‖ ≥ atϑ0–1 > 0, for t ∈ (0, 1).
Thus x∗ is an increasing positive solution

∂

∂t
x∗(t) =

∂

∂t
F∗x(t)

=
∂

∂t
y∗

2
(
t, x(t)

)

+
∫ 1

0

∂

∂t
Gϑ0 (t, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A∗(t)y∗(t, x∗(t – τ )

)]
dt

)

ds

> 0. (3.13)
�
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4 Stability analysis
Here, a stability analysis is presented for the fractional DE with nonlinear Φp-operator
of the problem (1.1). The following definition is given on the basis of [1, 28] and related
literature.

Definition 4.1 We say that (3.1) is Hyers–Ulam stable if for every λ > 0, there exists a
constant value D∗ > 0, such that the following holds true:
if

∣
∣
∣
∣x(t) – y∗

2
(
t, x(t)

)
–

∫ 1

0
Gϑ0 (t, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A∗(t)y∗

1
(
ζ , x(ζ – τ )

)]
dζ

)

ds
∣
∣
∣
∣

≤ λ, (4.1)

there exists u(t) satisfying that

u(t) =
∫ 1

0
Gϑ0 (t, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A∗(ζ )y∗

1
(
ζ , u(ζ – τ )

)]
dζ

)

ds, (4.2)

such that

∣
∣x(t) – u(t)

∣
∣ ≤L∗λ∗. (4.3)

Theorem 4.1 The singular fractional DE with delay and Φp-operator, the problem (1.1) is
Hyers–Ulam stable provided that (P1), (P2) and (P4) are satisfied.

Proof By Theorem 3.2 and Definition 4.1, we assume that x(t) is a solution of the fractional
DE with delay (3.1) and y(t) is an approximate solution and satisfying (4.2). Then we have

∣
∣x(t) – u(t)

∣
∣

=
∣
∣y∗

2
(
t, x(t)

)
– y∗

2
(
t, u(t)

)∣
∣

+
∣
∣
∣
∣

∫ 1

0
Gϑ0 (t, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A∗(t)y∗

1
(
t, x(t – τ )

)]
dt

)

ds

–
∫ 1

0
Gϑ0 (t, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A∗(t)y∗

1
(
t, u(ζ – τ )

)]
dt

)

ds
∣
∣
∣
∣

≤ (p – 1)ρp–2∥∥A∗∥∥q–1(
∫ 1

0

∣
∣Gϑ0 (t, s)

∣
∣

∣
∣
∣
∣Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[y∗

1
(
t, x(t – τ )

)]
dt

)

ds

– Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[y∗

1
(
t, u(t – τ )

)]
dt

)

ds
∣
∣
∣
∣

≤ (p – 1)ρp–2λy∗
1

(
1

Γ (ϑ0 + 1)
+

1
(ϑ0 – 1)Γ (ϑ0)

)[
1

Γ (β + 1)

]q–1

× ‖A‖q–1‖x – u‖, (4.4)

where L∗ = (p – 1)ρp–2λy∗
1
( 1
Γ (ϑ0+1) + 1

(ϑ0–1)Γ (ϑ0) )[ 1
Γ (β+1) ]q–1‖A‖q–1. Hence (4.4) is Hyers–

Ulam stable. Consequently, the singular fractional DE with delay and operator Φp (1.1) is
Hyers–Ulam stable. �
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5 Illustrative example
In this section, an application of the results which have proved in Sects. 3 and 4, is pro-
vided.

Example 5.1 For ψ1(t, x(t – τ )) = x5(t) + –τ+1√
x(t) , t ∈ [0, 1], p = 3, q = 1.5, β = ϑ0 = 1.5, τ = 0.3,

A(t) = 1√
1–t , y∗

1(t, x(t)) = x5(t) + 1
5√

x(t) , y∗
2(t, x(t)) = 0.002, clearly A ∈ C((0, 1), [0, +∞)), y∗

1 ∈
C((0, 1) × (0, +∞), [0, +∞). Presume a singular fractional DE with Φp-operator:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ [Φp[Dϑ0 (x(t) – y∗
2(t, x(t)))]] + [ 1–τ√

x(t) + x5(t)] 1√
1–t = 0,

(Φp[Dβ (x(t) – y∗
2(t, x(t)))])|t=0 = 0 = (φp(Dϑ0 (x(t) – y∗

2(t, x(t))))′|t=0,

x(1) = 0 = x′(0).

(5.1)

We consider

Φmax(t, r) = max

{

x5 +
1 – τ

x
3

35
: t

5
3 r ≤ x ≤ r

}

≤ r5 +
1
5

0.7

t 1
7 r

3
35

,

Φmin(t, r) = min

{

x5 +
1 – τ

x
3

35
: t

5
3 r ≤ x ≤ r

}

≥ t5r3 +
1

5r
3

35
,

as height functions and

y∗
2
(
t, x(t)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

0 if t = 0;

0.002 if t ∈ (0, 1);

0 if t = 1.

(5.2)

Then, for t ∈ (0, 1), we have

0.002 +
∫ 1

0
Gϑ0 (1, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A(ζ )Φmax(ζ , b)

]
dζ

)

ds

= 0.002 +
∫ 1

0
Gϑ0 (1, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A(ζ )Φmax(ζ , 1)

]
dζ

)

ds

≤ 0.002 +
∫ 1

0
Gϑ0 (1, s)

(
(s – ζ )β

Γ (β + 1)
1√

1 – ζ

(

1 +
1

5ζ
1
7

))1.5

dζ ds

= 0.535426 < 1, (5.3)

0.002 +
∫ 1

0
Gϑ0 (t, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1[A(ζ )ψmin(ζ , a)

]
dζ

)

ds

= 0.002 +
∫ 1

0
Gϑ0 (1, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1

[

A(ζ )ψmin

(

ζ ,
1

1000

)]

dζ

)

ds

≥ 0.002

+
∫ 1

0
Gϑ0 (1, s)Φq

(
1

Γ (β)

∫ s

0
(s – ζ )β–1

[
1√

1 – ζ

(

ζ 5 1
10003 +

1000 1
3

35

)]

dζ

)

ds

= 0.262296 >
1

1000
. (5.4)

With the help of Theorem 3.2, (5.1) has a solution u∗ and satisfies 1
1000 ≤ ‖x∗‖ ≤ 1.
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6 Conclusion
In this paper we have considered a general class of hybrid fractional DEs (1.1) involving
time and space singularities and the nonlinear operator φp for the EU of solutions and HU-
stability. For these objectives, we utilized the classical results and obtained an alternate
integral formulation of the singular fractional DE (1.1). The integral equation is based on
the Green’s function. The Green’s function was examined and proved a positive increasing
function. Then with the help of fixed point approach, the existence and uniqueness of solu-
tions were evaluated and then HU-stability was also explored. A comprehensive example
was studied to deduce the applicability of the results. We suggest the reader to re-consider
the problem for multiplicity and exponential stability. Also, it would be of interest to con-
sider the existing results of this article for fractional differential operators of nonsingular
kernels. The recent articles [44, 45], with the formulation of Green’s type functions, are
recommended in this direction.
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