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Abstract
Based on the weighted and shifted Grünwald formula, a fully discrete finite element
scheme is derived for the variable coefficient time-fractional subdiffusion equation.
Firstly, the unconditional stable and convergent of the fully discrete scheme in
L1(H1)-norm is proved. Secondly, through a new estimate approach, the superclose
properties are obtained. The global superconvergence orderO(τ 2 + hm+1) is deduced
with the help of interpolation postprocessing technique. Finally, some numerical
results are provided to verify the theoretical analysis.
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1 Introduction
In the recent few decades, the remarkable applications of fractional calculus in diverse en-
gineering fields have been gradually realized and, meanwhile, the discussion of the related
fractional partial differential equations (FPDEs) becomes a hot topic of many scholars.
For instance, the reader may refer to the work [1–11]. Like traditional partial differen-
tial equations, most commonly the exact solutions of the FPDEs are not available. Even
if their solutions can be found, they are usually in the form of series, which are difficult
to evaluate. So the numerical investigation of the FPDEs has been a vital topic in recent
years.

Fractional derivatives are nonlocal operators and they have the character of history de-
pendence. When solving approximation solutions for time FPDEs on the current time
layer, one needs to retain the information about all the previous time layers, which makes
the storage expensive. Based on this aspect, developing high-order numerical methods
for solving time FPDEs are quite valuable. In the present studies, we propose high-order
methods by first improving the spatial accuracy with the compact difference operator for
time FPDEs, which needs few grid points to produce a highly accurate solution. Gao and
Sun [12] applied the L1 approximation for the time-fractional derivative and developed a
compact finite difference scheme for the fractional sub-diffusion equation. The stability
and L∞ convergence are proved by the energy method. Wang and Vong [13, 14] estab-
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lished high-order schemes for the fractional diffusion-wave equation and the modified
anomalous fractional subdiffusion equation and fractional Klein–Gordon equation, re-
spectively.

Another way for developing a high-order method for solving time FPDEs is to improve
the temporal accuracy. Recently, a weighted and shifted Grünwald difference (WSGD) op-
erator was developed for solving space fractional diffusion equations in [15]. The WSGD
operator to approximate the Riemann–Liouville derivative can achieve second-order ac-
curacy. Gao et al. [16] presented a new numerical differentiation formula for the Ca-
puto fractional derivative, called the L1-2 formula. Then the difference schemes for the
time-fractional sub-diffusion equations in bounded and unbounded spatial domains were
constructed based on the L1-2 formula. However, they did not give the analysis on the
stability and convergence of the obtained schemes. Later, Gao et al. [17] proposed a
second-order difference scheme based on the certain superconvergence at some particu-
lar points of the fractional derivative by the first-order GL formula. The obtained scheme
can achieve the global second-order accuracy in time. Recently, Alikhanov [18] proposed
a new difference analog of the Caputo fractional derivative, called the L2-1σ formula.
The stability and convergence of these schemes in L2-norm were analyzed by the energy
method.

The finite element method is one of the effective numerical methods for solving clas-
sical PDEs. For the FPDEs, finite element method also can be a useful and effective nu-
merical method. In recent years, some valuable papers were concerned with the finite ele-
ment method for the FPDEs. Roop and Ervin [19–21] investigated the theoretical frame-
work for the Galerkin finite element approximation to some kinds of the FPDEs. Jiang
and Ma [22] analyzed the finite element method and showed that the optimal convergent
rate O(τ 2–α + N–m) can be obtained, where m measures the regularity of the solution in
space. Jin et al. [23–25] constructed some finite element schemes for solving some kinds
of the FPDEs. They proved that those schemes were stable and the numerical solution was
convergent. In [26] a fully discrete finite element scheme for solving the two-dimensional
space- and time-fractional Bloch–Torrey equations is developed and the stability and con-
vergence estimate of the fully discrete scheme are proved. Wang and Yang [27] studied the
wellposedness of a variable coefficient conservative fractional elliptic differential equation
and its weak formulation. Recently, Ren et al. [28, 29] presented two fully discrete schemes
for the diffusion equations and diffusion-wave equations, respectively. The unconditional
stability and superconvergence error estimates of the obtained schemes are investigated
using the integral identities and postprocessing techniques. The optimal time accuracy
O(τ 2–α) (0 < α < 1) and O(τ 3–α) (1 < α < 2) is obtained, respectively. However, according
to current knowledge of the authors, there are few studies on the numerical treatment of
FPDEs, high efficient numerical methods of time and space superconvergence analysis are
still limited.

Many researchers have observed that for certain classes of problems the rate of conver-
gence of the finite element solution and/or its derivatives at some special points exceeds
the best global rate. This phenomenon has been termed “superconvergence” and has been
analyzed mathematically because of its practical importance in engineering computations.
This motivates us to consider the superclose and global superconvergence properties of
the FPDEs. The main goal of this paper is to construct a high-order fully discrete finite
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element scheme and establish the corresponding superconvergence error estimate. The
method follows the idea of the weighted and shifted GL difference operators [14, 15].
Based on the equivalence of Riemann–Liouville derivative and Caputo derivative under
some regularity assumptions, we derive a second-order accuracy formula to approximate
Caputo fractional derivative and the standard Galerkin finite element method approach
for the spatial discretization. The unconditional stability and L1(H1)-norm convergence
are proved rigorously.

The outline of this paper is as follows. In Sect. 2, some preliminary numerical formulas
and useful lemmas are prepared. In Sect. 3, a fully discrete scheme for the variable coeffi-
cient fractional subdiffusion equation is developed and the unconditional stability of the
obtained scheme is proved. In Sect. 4, the superclose and superconvergence analysis for
the scheme are presented. In Sect. 5, some numerical examples are presented to verify our
theoretical results. Some conclusions are given in the last section. Throughout this paper,
the notation c denotes a generic constant, which may differ at different occurrences, but
it is always independent of the mesh size h, the time step size τ . Let W k,p(Ω) the standard
Sobolev space of k-differential functions in Lp(Ω), its norm by ‖ · ‖k,p, and the norm of
Hk(Ω) by ‖ · ‖k . When k = 0, we let L2(Ω) denote the corresponding space defined on Ω

with norm ‖ · ‖.

2 Preliminaries
In this section, some useful notations, lemmas and formulas will be prepared for the forth-
coming work.

For temporal discretization, we divide the interval [0, T] into N-subintervals with τ =
T/N and tk = kτ , k = 0, 1, 2, . . . , N . Let un = u(x, y, tn). In order to develop a second-
order approximation of the Riemann–Liouville fractional derivative, we introduce the
shifted Grünwald approximation to the Riemann–Liouville fractional derivative given by
(cf. [30])

Aα
τ ,rf (t) =

1
τα

∞∑

k=0

g(α)
k f

(
t – (k – r)τ

)
, (1)

where r is an integer and g(α)
k = (–1)k(αk ). Based on the method introduced by [14, 15], we

suppose that f ∈ C2+α(R), then it hold that

(
1 +

α

2

)
Aα

τ ,0f (t) –
α

2
Aα

τ ,–1f (t)

= R
–∞Dα

t f (t) + O
(
τ 2) (2)

uniformly holds in t ∈ R as τ → 0. We have

Cn+α(R) =
{

f
∣∣∣f ∈ L1(R) and

∫ ∞

–∞

(
1 + |κ|)n+α∣∣f̂ (κ)

∣∣dκ < ∞
}

,

here f̂ (κ) =
∫ ∞

–∞ eiκt f (t) dt is the Fourier transformation of f (t).



He and Lv Advances in Difference Equations        (2019) 2019:116 Page 4 of 17

By using a simple calculation the left-hand side of (2) is equivalent to the following equa-
tion:

(
1 +

α

2

)
Aα

τ ,0f (t) –
α

2
Aα

τ ,–1f (t)

=
1
τα

{(
1 +

α

2

)
g(α)

0 f (t) +
∞∑

k=1

[(
1 +

α

2

)
g(α)

k –
α

2
g(α)

k–1

]
f (t – kτ )

}

=
1
τα

∞∑

k=0

λ
(α)
k f (t – kτ ),

where

λ
(α)
0 =

(
1 +

α

2

)
g(α)

0 ,

λ
(α)
k =

(
1 +

α

2

)
g(α)

k –
α

2
g(α)

k–1, k ≥ 1.
(3)

Lemma 1 ([14, 17]) Let λ
(α)
k be defined by (3), then, for any positive integer m and real

vector (v0, v1, v2, . . . , vm)T ∈ Rm+1,

m∑

n=0

( n∑

k=0

λ
(α)
k vn–k

)
vn ≥ 0.

In order to establish fully discrete finite element scheme, we introduce some notations
as follows. We assume that Ω can be partitioned by a rectangular mesh. Let �h = {K}
be a rectangular mesh over Ω with size h. Let Vh ⊂ H1

0 (Ω) be a standard finite element
space

Vh =
{

v ∈ C0(Ω̄), v|K ∈ Qm(K),∀K ∈ �h, v|∂Ω = 0
}

,

where Qm(K) denotes the space of polynomial functions of total degree lower or equal to
m with respect to x and y on K .

Moreover, Ih : C0(Ω̄) → Vh denotes the Lagrange interpolation operator, i.e., Ih|K ∈
Qm(K) and the interpolation error estimates imply that for u ∈ Hr+1(Ω) (cf. [31])

‖u – Ihu‖s ≤ chr–s‖u‖r+1, 0 ≤ s ≤ r, 0 < r ≤ m + 1. (4)

3 Stability for fully discrete finite element scheme
In this subsection, we discuss the stability for the fully discrete finite element scheme.
First, we consider the following two-dimensional variable coefficient time-fractional sub-
diffusion equation:

⎧
⎪⎪⎨

⎪⎪⎩

C
0 Dα

t u(x, y, t) = ∇ · (b(x, y)∇u(x, y, t)) + f (x, y, t), (x, y) ∈ Ω , t ∈ (0, T],

u(x, y, 0) = 0, (x, y) ∈ Ω ,

u(x, y, t)|∂Ω = 0, t ∈ [0, T],

(5)
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where 0 < α < 1 and C
0 Dα

t denotes the Caputo fractional derivative, the symbol ∇·
and ∇ denote the divergence and gradient operators, respectively, f (x, y, t) is the given
smooth function. It is without loss of generality to assume that u(x, y, 0) = 0. If u(x, y, 0) =
φ(x, y) �= 0, let v(x, y, t) = u(x, y, t) – φ(x, y) and consider the problem with respect to
v(x, y, t). b(x, y) is a smooth and bounded function, which satisfies following assump-
tion:

0 < β1 ≤ b(x, y) ≤ β2. (6)

In the current work, we assume that the function u(x, y, t) can be extended by zero from
the time bounded domain [0, T] to R. Noticing the equivalence between the Riemann–
Liouville fractional derivative R

–∞Dα
t f (t) with f (t) = 0 when t ≤ 0 and the Caputo frac-

tional derivative R
–∞Dα

t f (t). Assuming that R
–∞Dα

t u ∈ C2+α(R) and using (2), we discretize
the time-fractional derivative as follows:

R
–∞Dα

t u(x, y, tk) =
1
τα

k∑

l=0

λ
(α)
l uk–l + O

(
τ 2). (7)

According to (7), we arrive at the following fully discrete finite element scheme for the
problem (5): find uk

h ∈ Vh such that

⎧
⎨

⎩

1
τα

∑k
j=0 λ

(α)
j (uk–j

h , vh) + (b∇uk
h,∇vh) = (f k , vh), ∀vh ∈ Vh,

u0
h = 0.

(8)

In order to obtain the stability and convergence of the fully discrete scheme (8), we prove
firstly the following priori estimate.

Theorem 1 Let wk
h ∈ Vh be the solution of the following scheme:

⎧
⎨

⎩

1
τα

∑k
j=0 λ

(α)
j (wk–j

h , vh) + (b∇wk
h,∇vh) = (Gk , vh), ∀vh ∈ Vh,

w0
h = 0.

(9)

Then we have

τ

n∑

k=1

∥∥∇wk
h
∥∥2 ≤ cτ

n∑

k=1

∥∥Gk∥∥2, 1 ≤ n ≤ N .

Proof Taking vh = wk
h in (9), using Cauchy–Schwarz inequality, we have

1
τα

k∑

j=0

λ
(α)
j

(
wk–j

h , wk
h
)

+ β1
∥∥∇wk

h
∥∥2 ≤ (

Gk , wk
h
)

≤ c
∥∥Gk∥∥2 +

β1

2
∥∥∇wk

h
∥∥2, 1 ≤ k ≤ N .
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Summing up the above inequality for k from 1 to n, we obtain

1
τα

n∑

k=1

k∑

j=0

λ
(α)
j

(
wk–j

h , wk
h
)

+
β1

2

n∑

k=1

∥∥∇wk
h
∥∥2 ≤ c

n∑

k=1

∥∥Gk∥∥2, 1 ≤ n ≤ N .

Noticing w0
h = 0, when τ is sufficiently small, with the help of Lemma 1 yields

τ

n∑

k=1

∥∥∇wk
h
∥∥2 ≤ cτ

n∑

k=1

∥∥Gk∥∥2, 1 ≤ n ≤ N .

This completes the proof. �

From Theorem 1, we can obtain the following stability conclusion.

Theorem 2 The fully discrete finite element scheme (8) is unconditionally stable with re-
spect to the inhomogeneous term f .

4 Superconvergence estimate for the fully discrete finite element scheme
In this section, we discuss the error estimate for the fully discrete scheme. In order to
analyze the spatial discretization error, we assume that the solution is sufficiently smooth.
First, let us introduce the following two lemmas.

Lemma 2 ([32]) Assume that u ∈ Hm+2(Ω), then we have

∣∣(∇(u – Ihu),∇v
)∣∣ ≤ chm+1‖u‖m+2‖∇v‖, ∀v ∈ Vh. (10)

Lemma 3 Suppose that R
–∞Dα

t u ∈ Hm+1(Ω), Ihu be the finite element interpolation of u.
Then we have for 1 ≤ k ≤ N

∣∣∣∣∣

(
R

–∞Dα
t uk –

1
τα

k∑

j=0

λ
(α)
j Ihuk–j, v

)∣∣∣∣∣

≤ c
(
τ 4 + h2m+2)(1 + max

0≤s≤T

∥∥ R
–∞Dα

t u(s)
∥∥

m+1

)2
+

β1

4
‖∇v‖2, ∀v ∈ Vh.

Proof Using (7) and (4) and recalling the analytical method and tools in the proof of [28,
29], we similarly obtain the desired result. �

By virtue of Lemmas 2 and 3, now we carry out the rigorous error analysis for the fully
finite element scheme (8).

Theorem 3 Suppose that R
–∞Dα

t u ∈ Hm+1(Ω), ut ∈ Hm+2(Ω) ∩ H1
0 (Ω), let uk

h and Ihuk be
the finite element solution and finite element interpolation of u(tk), respectively. Then the
following supercloseness estimate holds for 1 ≤ n ≤ N :

τ

n∑

k=1

∥∥Ihuk – uk
h
∥∥

1 ≤ c
(
τ 2 + hm+1)

(
1 + max

0≤s≤T

∥∥ R
–∞Dα

t u(s)
∥∥

m+1 +
∫ T

0

∥∥ut(s)
∥∥

m+2 ds
)

,

where the constant c depends on Ω , T , α and b, but it is independent of h and τ .
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Proof We split the error

uk – uk
h =

(
uk – Ihuk) +

(
Ihuk – uk

h
) ≡ ρk + θ k .

By comparing (5) and (8), we have the following error equation: for 1 ≤ k ≤ N

1
τα

k∑

j=0

λ
(α)
j

(
θ k–j, vh

)
+

(
b∇θ k ,∇vh

)

= –
(
Rk , vh

)
–

(
b∇ρk ,∇vh

)
, ∀vh ∈ Vh, (11)

where

Rk = R
–∞Dα

t uk –
1
τα

k∑

j=0

λ
(α)
j Ihuk–j.

Taking into account vh = θ k in (11), then it follows that

1
τα

k∑

j=0

λ
(α)
j

(
θ k–j, θ k) +

(
b∇θ k ,∇θ k) = –

(
Rk , θ k) –

(
b∇ρk ,∇θ k). (12)

For the second term in the left-hand side of (12), noticing (6), we have

∣∣(b∇θ k ,∇θ k)∣∣ ≥ β1
∥∥∇θ k∥∥2. (13)

Let A = 1
|K |

∫
K b(x, y) dx dy, applying the Bramble–Hilbert Lemma (cf. [31]), we have

∣∣b(x, y) – A
∣∣ ≤ ch‖b‖1,∞. (14)

Using the Cauchy–Schwarz inequality, Lemma 2 and (14), we arrive at

∣∣–
(
b∇ρk ,∇θ k)∣∣ =

∣∣((b – A)∇ρk ,∇θ k) +
(
A∇ρk ,∇θ k)∣∣

=
∣∣∣∣
(
(b – A)∇ρk ,∇θ k) +

∑

K∈�h

A
∫

K
∇ρk · ∇θ k dx dy

∣∣∣∣

≤ ch‖b‖1,∞
∥∥∇ρk∥∥∥∥∇θ k∥∥ + chm+1∥∥uk∥∥

m+2

∥∥∇θ k∥∥

≤ chm+1∥∥uk∥∥
m+2

∥∥∇θ k∥∥

≤ ch2m+2∥∥uk∥∥2
m+2 +

β1

4
∥∥∇θ k∥∥2

≤ ch2m+2
(

‖u0‖m+2 +
∫ tk

0

∥∥ut(s)
∥∥

m+2 ds
)2

+
β1

4
∥∥∇θ k∥∥2. (15)
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Substituting (13) and (15) into (12), applying Lemma 3 and summing up k from 1 to n, we
obtain

1
τα

n∑

k=1

k∑

j=0

λ
(α)
j

(
θ k–j, θ k) + β1

n∑

k=1

∥∥∇θ k∥∥2

≤ c
(
τ 2 + hm+1)2

n∑

k=1

(
1 + max

0≤s≤T

∥∥ R
–∞Dα

t u(s)
∥∥

m+1 +
∫ tk

0

∥∥ut(s)
∥∥

m+2 ds
)2

+
β1

2

n∑

k=1

∥∥∇θ k∥∥2, ∀1 ≤ n ≤ N .

Adding λ
(α)
0
τα (θ0, θ0) on both sides of the above inequality, we have

1
τα

n∑

k=0

k∑

j=0

λ
(α)
j

(
θ k–j, θ k) + β1

n∑

k=1

∥∥∇θ k∥∥2

≤ c
(
τ 2 + hm+1)2

n∑

k=1

(
1 + max

0≤s≤T

∥∥ R
–∞Dα

t u(s)
∥∥

m+1 +
∫ tk

0

∥∥ut(s)
∥∥

m+2 ds
)2

+
λ

(α)
0
τα

(
θ0, θ0) +

β1

2

n∑

k=1

∥∥∇θ k∥∥2, 1 ≤ n ≤ N .

Noting that θ0 = 0 and applying Lemma 1 yields the desired result. This completes the
proof. �

Furthermore, we can obtain the global superconvergence result of the fully discrete
scheme (8) by virtue of a proper postprocessing technique introduced by [32]. For the
sake of completeness, we present the construction method of the operator Π2h. First we
combine four neighboring elements into a big element K̃ =

⋃4
i=1 Ki, which has the follow-

ing properties (cf. [32, 33]):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Π2hu|K̃ ∈ Qm+1(K̃), ∀K̃ ∈ �2h,

Π2hIhu = Π2hu, ∀u ∈ C(Ω̄),

‖Π2hu – u‖1 ≤ chm+1‖u‖m+2, ∀u ∈ Hm+2(Ω),

‖Π2hvh‖1 ≤ c‖vh‖1, ∀vh ∈ Vh,

(16)

where �2h consists of the four small elements Ki (i = 1, 2, 3, 4) in �h.
We can deduce the following global superconvergence result.

Theorem 4 Suppose uk
h are the solution of the fully discrete finite element (8) and under

the conditions of Theorem 3. Then we have the following result for 1 ≤ k ≤ N :

τ

n∑

k=1

∥∥uk – Π2huk
h
∥∥

1 ≤ c
(
τ 2 + hm+1)

(
1 + max

0≤s≤T

∥∥ R
–∞Dα

t u(s)
∥∥

m+1 +
∫ T

0

∥∥ut(s)
∥∥

m+2 ds
)

.
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Table 1 Numerical errors and convergence orders in temporal direction with h = π
250 at T = 1 for

Example 1

α τ ‖un – unh‖1 Rate

α = 1/3 1/2 4.4337e-2 1.97
1/4 1.1337e-2 2.00
1/8 2.8432e-3 2.01
1/16 7.0376e-4 2.07
1/32 1.6712e-4 ∗

α = 1/2 1/2 8.6340e-2 1.93
1/4 2.2736e-2 1.98
1/8 5.7464e-3 2.00
1/16 1.4383e-3 2.02
1/32 3.5459e-4 ∗

α = 2/3 1/2 1.4806e-1 1.87
1/4 4.0643e-2 1.97
1/8 1.0376e-2 1.99
1/16 2.6127e-3 2.00
1/32 6.5345e-4 ∗

Table 2 Numerical errors and convergence orders in spatial direction with τ = 1
100 and α = 0.1 at

T = 1 for Example 1

h ‖un – unh‖ Rate ‖un – unh‖1 Rate ‖Ihun – unh‖1 Rate ‖un –Π2hunh‖1 Rate

π /4 2.7783e-1 1.96 6.4095e-1 0.99 8.8916e-2 2.13 7.3428e-2 1.95
π /8 7.1625e-2 1.99 3.2382e-1 1.00 2.0343e-2 2.04 1.8993e-2 1.96
π /16 1.8037e-2 2.00 1.6239e-1 1.00 4.9636e-3 2.01 4.8653e-3 1.99
π /32 4.5157e-3 2.00 8.1256e-2 1.00 1.2311e-3 2.01 1.2246e-3 2.01
π /64 1.1277e-3 ∗ 4.0636e-2 ∗ 3.0493e-4 ∗ 3.0451e-4 ∗

Table 3 Numerical errors and convergence orders in spatial direction with τ = 1
100 and α = 0.3 at

T = 1 for Example 1

h ‖un – unh‖ Rate ‖un – unh‖1 Rate ‖Ihun – unh‖1 Rate ‖un –Π2hunh‖1 Rate

π /4 2.6920e-1 1.97 6.4002e-1 0.98 7.4278e-2 2.19 6.0812e-2 2.01
π /8 6.8944e-2 1.99 3.2373e-1 1.00 1.6283e-2 2.06 1.5082e-2 1.98
π /16 1.7324e-2 2.00 1.6238e-1 1.00 3.9158e-3 2.03 3.8272e-3 2.00
π /32 4.3295e-3 2.01 8.1255e-2 1.00 9.6026e-4 2.06 9.5437e-4 2.06
π /64 1.0753e-3 ∗ 4.0636e-2 ∗ 2.2993e-4 ∗ 2.2955e-4 ∗

Proof We can deduce from the property (16) and Theorem 3 that

τ

n∑

k=1

∥∥uk – Π2huk
h
∥∥

1 ≤ τ

n∑

k=1

∥∥uk – Π2hIhuk∥∥
1 + τ

n∑

k=1

∥∥Π2hIhuk – Π2huk
h
∥∥

1

≤ τ

n∑

k=1

∥∥uk – Π2huk∥∥
1 + τ

n∑

k=1

∥∥Ihuk – uk
h
∥∥

1

≤ c
(
τ 2 + hm+1)

(
1 + max

0≤s≤T

∥∥ R
–∞Dα

t u(s)
∥∥

m+1

+
∫ T

0

∥∥ut(s)
∥∥

m+2 ds
)

.

This completes the proof. �
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Figure 1 The exact solution (top) and numerical solution (bottom) for Example 1, when h = 0.05, τ = 0.05,
α = 0.5 and T = 1

Remark 4.1 It should point that using the WSGD operator to approximate R
–∞Dα

t u(x,
y, tk), the temporal derivative provided that ∂nu(x,y,t)

∂tn |t=0 = 0 (n = 0, 1, . . . , 4), which can be
guaranteed in view of the work in [34] and [35], is sufficient but not necessary. We will
further illustrate this point by numerical experiments (Example 2).

Remark 4.2 In the present work, we obtain the superclose and superconvergence results
in L1(H1)-norm through approach for WSDG fully discrete finite element scheme, which
improve the conclusions in [17, 22, 29]. It seems that these results have never be seen in
the existing literature.

Remark 4.3 Let Rh : H1
0 (Ω) → Vh be the Ritz projection operator defined by

(
b∇(u – Rhu),∇vh

)
= 0, ∀vh ∈ Vh.
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Table 4 Numerical errors and convergence orders in temporal direction with h = π
300 and β = 2 at

T = 1 for Example 2

α τ ‖un – unh‖1 Rate

α = 1/3 1/2 2.8602e-2 2.07
1/4 6.8097e-3 2.03
1/8 1.6620e-3 2.04
1/16 4.0529e-4 2.10
1/32 9.4220e-5 ∗

α = 1/2 1/2 4.4594e-2 2.12
1/4 1.0231e-2 2.06
1/8 2.4506e-3 2.03
1/16 5.9844e-4 2.06
1/32 1.4358e-4 ∗

α = 2/3 1/2 6.1011e-2 2.19
1/4 1.3382e-2 2.12
1/8 3.0810e-3 2.05
1/16 7.4636e-4 2.04
1/32 1.8138e-4 ∗

Table 5 Numerical errors and convergence orders in spatial direction with τ = 1
100 , β = 2 and

α = 0.1 at T = 1 for Example 2

h ‖un – unh‖ Rate ‖un – unh‖1 Rate ‖Ihun – unh‖1 Rate ‖un –Π2hunh‖1 Rate

π /4 2.7798e-1 1.96 6.4097e-1 0.99 8.9179e-2 2.13 7.3655e-2 1.95
π /8 7.1673e-2 1.99 3.2382e-1 1.00 2.0417e-2 2.03 1.9064e-2 1.96
π /16 1.8050e-2 2.00 1.6239e-1 1.00 4.9828e-3 2.01 4.8843e-3 1.99
π /32 4.5193e-3 2.00 8.1256e-2 1.00 1.2363e-3 2.01 1.2298e-3 2.01
π /64 1.1288e-3 ∗ 4.0636e-2 ∗ 3.0656e-4 ∗ 3.0615e-4 ∗

Table 6 Numerical errors and convergence orders in spatial direction with τ = 1
100 , β = 2 and

α = 0.3 at T = 1 for Example 2

h ‖un – unh‖ Rate ‖un – unh‖1 Rate ‖Ihun – unh‖1 Rate ‖un –Π2hunh‖1 Rate

π /4 2.7064e-1 1.96 6.4016e-1 0.98 7.6732e-2 2.18 6.2915e-2 2.00
π /8 6.9390e-2 1.99 3.2374e-1 1.00 1.6960e-2 2.05 1.5732e-2 1.97
π /16 1.7445e-2 2.00 1.6238e-1 1.00 4.0926e-3 2.02 4.0023e-3 2.00
π /32 4.3629e-3 2.01 8.1255e-2 1.00 1.0084e-3 2.04 1.0024e-3 2.03
π /64 1.0865e-3 ∗ 4.0636e-2 ∗ 2.4562e-4 ∗ 2.4523e-4 ∗

Table 7 Numerical errors and convergence orders in temporal direction with h = π
300 and β = 3/2 at

T = 1 for Example 2

α τ ‖un – unh‖1 Rate

α = 1/3 1/4 1.9167e-3 1.62
1/8 6.2512e-4 1.80
1/16 1.8005e-4 1.70
1/32 5.5317e-5 ∗

α = 1/2 1/4 1.3791e-3 2.10
1/8 3.2111e-4 2.14
1/16 7.2857e-5 2.54
1/32 1.2487e-5 ∗

α = 2/3 1/4 6.9744e-4 2.50
1/8 1.2292e-4 2.44
1/16 2.2599e-5 1.86
1/32 6.2186e-6 ∗
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Table 8 Numerical errors and convergence orders in temporal direction with h = π
300 and β = 1 at

T = 1 for Example 2

α τ ‖un – unh‖1 Rate

α = 1/3 1/4 3.1965e-3 1.88
1/8 8.6946e-4 1.79
1/16 2.5118e-4 1.65
1/32 8.0200e-5 ∗

α = 1/2 1/4 7.4822e-3 1.81
1/8 2.1280e-3 1.69
1/16 6.5861e-4 1.60
1/32 2.1679e-4 ∗

α = 2/3 1/4 1.6058e-2 1.74
1/8 4.7995e-3 1.55
1/16 1.6431e-3 1.46
1/32 5.9870e-4 ∗

Figure 2 The exact solution (top) and numerical solution (bottom) for Example 2, when h = 0.05, τ = 0.05,
β = 2 and T = 1
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Figure 3 The error reduction in temporal direction of the scheme (8) for Example 3

Figure 4 The error reduction in spatial direction of the scheme (8) for Example 3 with α = 0.1

By establishing the relationship between Ritz projection and the linear interpolation as
[36], if we choose Rhu instead of Ihu in the supercloseness analysis of Theorem 3, the
result τ

∑n
k=1 ‖Rhuk – uk

h‖1 = O(τ 2 + hm+1) can be obtained.

Remark 4.4 It is not difficult to verify that the conclusions of this article also hold true
for the constant coefficient time-fractional subdiffusion equation, the numerical results
about this case are provided in next section (Example 1).
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Figure 5 The error reduction in spatial direction of the scheme (8) for Example 3 with α = 0.3

5 Numerical experiments
In this section, some test examples based on piecewise bilinear polynomials will be per-
formed to illustrate the computational efficiency and convergence rate of the proposed
schemes.

Example 1 In (5), set b(x, y) = 1 and let Ω = [0,π ] × [0,π ] and T = 1. In order to test the
convergence rate of the proposed methods, we consider the exact solution of the problem
as follows: u(x, y, t) = t2+α sin x sin y. Then f (x, y, t) and u0(x, y) are chosen corresponding
to the exact solution, respectively.

Firstly, the numerical accuracies of the fully finite element scheme in time is tested. For
different α, the numerical results are computed using the developed scheme with varying
temporal stepsizes and fixed sufficiently small spatial stepsizes. The second-order conver-
gence of both the schemes in time can be observed from the data of Table 1.

Secondly, the numerical accuracies of the fully finite element scheme in space is verified
by the example. With fixed sufficiently small temporal stepsizes, the ‖un – un

h‖, ‖un – un
h‖1,

‖Ihun – un
h‖1 and ‖un –Π2hun

h‖1 norm errors and spatial convergence orders of the scheme
are illustrated in Tables 2 and 3 when α = 0.1, 0.3, respectively. As predicted by the theo-
retical estimates, the second-order supercloseness and superconvergence of the scheme in
space variable for computing this example are verified. The figures of exact solution (top)
and numerical solution (bottom) of both schemes are shown in Fig. 1.

Example 2 In (5), let b(x, y) = 1 and taking Ω = [0,π ] × [0,π ], T = 1, f (x, y, t) =
[ Γ (β+1)
Γ (β+1–α) t–α + 1]tβ sin x sin y and initial condition u0(x, y) = 0, then the exact solution of

the example is

u(x, y, t) = tβ sin x sin y,

where β is a positive constant.
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Figure 6 The exact solution (top) and numerical solution (bottom) for Example 3, when h = 0.05, τ = 0.05,
α = 0.5 and T = 1

We have pointed out that the condition ∂nu(x,y,t)
∂tn |t=0 = 0 (n = 0, 1, . . . , 4) is sufficient

but unnecessary for the numerical accuracy of the proposed schemes. In this exam-
ple, we are concerned with the computational results of the fully finite element scheme
for the cases β = 2, 3/2, 1, respectively. From Table 4, we can see that the second-order
convergence in temporal direction can be achieved. Tables 5 and 6 show that the
supercloseness and superconvergence results in spatial direction can still be
achieved.

Tables 7 and 8 report the numerical errors and convergence orders in temporal direction
for the problems with β = 3/2 and β = 1, respectively. The second-order convergence of
the scheme in temporal direction cannot be achieved for the above two cases. Namely,
certain conditions on the derivative values of the function u(x, y, t) with respect to t at
t = 0 up to a necessary order are essential to ensure the second-order convergence of the
in time variable, whereas the condition ∂nu(x,y,t)

∂tn |t=0 = 0 (n = 0, 1, . . . , 4) is only sufficient but
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unnecessary. The figures of exact solution (top) and numerical solution (bottom) of both
schemes are shown in Fig. 2.

Example 3 In (5), take Ω = [0,π ]× [0,π ], T = 1, b(x, y) = sin x sin y + 0.1, the exact solution
of the example is u(x, y, t) = t2+α sin x sin y. It is not difficult to obtain the corresponding
forcing term f (x, y, t), and the initial condition u0(x, y).

We test the numerical scheme (8) for this Example. The results at the time T = 1 with
h = π/300 are reported in Fig. 3. We show the temporal errors as the function of τ for
different α. The slope is two in good agreement with the theoretical result of Theo-
rem 4.2.

The errors obtained by the scheme at time T = 1 with τ = 1/150 are shown in Figs. 4
and 5 with different α. It is clear that the second-order supercloseness and super-
convergence of the scheme in spatial accuracy are obtained. Similarly, the figures of
exact solution (top) and numerical solution (bottom) of both schemes are shown in
Fig. 6.

6 Conclusions
In this work, we have developed a high-order approximation fully discrete finite element
scheme in time for the variable coefficient time-fractional subdiffusion equation which
involves Caputo fractional derivative in time. By using some of the same analytical tech-
niques as [28, 29], a supercloseness approximation between the interpolation of the ex-
act solution and the finite element solution is derived. Then the global superconvergence
O(τ 2 + hm+1) in the L1(H1)-norm is also obtained with the aid of a suitable postprocessing
method. The global second-order convergence of the obtained schemes in time variable is
attainable. In future work, the numerical solutions for the nonlinear fractional differential
equations will be investigated.
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