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1 Introduction
Since neural networks had been proposed in the 1940s, they have been widely studied
by many researchers, due to the many applications in various areas, such as associative
memory, optimization, pattern recognition, fault diagnosis and signal processing. A lot of
excellent work as regards the real-valued neural networks (RVNNSs) and complex-valued
neural networks (CVNNSs) has appeared in the study of their dynamics [1-6]. However,
there are some problems that the RVNNs and the CVNNs cannot deal with straightfor-
wardly, such as 4-D signals, body images which are four or more dimensional [7-9], new
methods or theories have to be put forward to, the theory of quaternion-valued neural net-
works (QVNNS) is one of those approaches, since it can handle not only real-valued and
complex-valued cases but also the multidimensional data. For details, see Refs. [10-17].
In the practical system, due to the internal and external disturbances, the stability may
be destroyed and this may bring about many faults and problems. On the other hand, the
inaccurate measurement, owing to technical reasons, will also result in the instability of
the systems. The general stability cannot describe the complete inner characters of the
systems, so it is quite necessary to refer to robust stability, while discussing the neural
networks with interval parameter uncertainties. So far, a large number of authors in the
literature have considered the important and interesting issue, some sufficient conditions
have been established to guarantee existence, uniqueness and robust stability of the equi-
librium point for RVNNs and CVNNs with interval parameter uncertainties [18—25].
Moreover, between neurons, there exists a limited transmission speed, it is inevitable
to see the delayed phenomenon in the neural networks, thus delays become one of the
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essential parts in analyzing its dynamics. Compared to the general systems, the dynamics
of neural networks with delays becomes more complicated and it may lead to volatility, in-
stability and even chaos. In fact, some authors also have considered the existence, unique-
ness and global stability of the equilibrium point for delayed quaternion-valued neural
networks [14, 26—34].

Although the work above is very excellent, little research considered robust stability
of quaternion-valued neural networks with delay and interval parameter uncertainties.
Recently, Chen in [35, 36] considered the robust stability with different kinds of delays for
quaternion-valued neural networks, some sufficient conditions have also been obtained
about the existence, uniqueness and global asymptotic robust stability. But in his judging
criteria, the negative definiteness of two matrices is needed, moreover, the entries in these
matrices are all the maximal values, which are decided by the absolution of the upper
and lower bounds of elements for the connection weight matrix, the sign of connection
weight matrix is ignored. In this article, inspired by the methods of [20], we proposed a
new approach to overcome this defects, in our unique criteria matrix, the given elements
depend on not only the lower bounds but also the upper bounds of the interval parameters,
which is different from previous contributions and extends the relevant work in Refs. [19,
20, 22, 27, 35].

The rest of this paper is arranged as follows. In Sect. 2, the discrete delayed QVNN
model is proposed, some basic knowledge, preliminaries and lemmas are also presented.
Our main results are given in Sect. 3, in which the sufficient condition for the existence,
uniqueness and global robust stability of the equilibrium point are obtained relying on The
homeomorphic mapping method, the Lyapunov stability theorem and inequality tech-
niques. In order to illustrate the effectiveness of our main results, the numerical simulation

is addressed in Sect. 4, and then the relevant conclusions at the end.

2 Problem formulation and preliminaries
For convenience, we give some notations used throughout this paper before introducing
the model.

R, C and H mean the real field, complex field and the skew field of quaternions, re-
spectively. R, C" and H"*" denote n x m real-valued matrices, complex-valued
matrices, and quaternion-valued matrices, respectively. A, A7 and A* denote the conju-
gate, the transpose and the conjugate transpose of matrix A, respectively. Let ||z|| denote
the norm of z € C", where ||z|| = v/z*z, and ||A|| means the norm of A € C”. The symbol I
denotes the identity matrix with appropriate dimensions. Apax(P) and Ay (P) stand for
the largest and the smallest eigenvalue of the Hermitian matrix P. The notation X > Y
(respectively, X > Y) means that X — Y is a positive semi-definite (respectively, positive
definite). Moreover, the notation * means the conjugate transpose of a suitable block in a
Hermitian matrix.

As for quaternion-valued operation and related issues, we can refer to [35]. Note that, if
p,q € Hwith p=po + p11 + paj + psk, 4 =qo + q11 + q2] + qsk, then p < g denotes p; <g;
(i=0,1,2,3). If A,B € H"™" with A = (a;)x» and B = (b;) <, then A < B denotes a; < b;;
(i=1,2,...,n). For A € H™", let AR, Al, A’ and AX be the real part and three imaginary

components.
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2.1 Model description

(2019) 2019:181

In this paper, we consider the following discrete delayed QVNNs with interval parameter

uncertainties:

q(t) = —Cq(t - 8) + Af (q(t)) + Bf (q(t — 7)) + ], 1)

where q(t) = (q1(£), g2(t), ..., q.(£))T € H", g;(¢) is the state of the ith neural neuron of the
neural network at time £, § > 0 and 7 > O represent the leakage delay and transmission

delay, respectively, f(g(2)) = (i(q1(), /(g2 (©)), ... . fu(qu(2)))T € H" refers to the neuron ac-
tivation function, C = diag{c,c3,...,c,} € R} with ¢; > 0 is the self-feedback connection

weight matrix, A € H"*” is the connection weight matrix, B € H"*" is the delayed connec-

tion weight matrix, J = (J1, /2, ..., J.)T € H" refers to the input vector.
Next, we will consider the dynamical behaviors of system (1).

Some assumptions as regards Eq. (1) are given first:
(A1) Forie{1,2,...,n}, the neuron activation function f; is continuous and satisfies

Ifile1) = fi@a)| < kilor — @2l V1,95 € H,

where k; is a real-valued positive constant; in the next proof, we define K =

diag{ky, ko, ..., ky,}.

(Az) The matrices C, A, B and J in model (1) are included in the following sets, respec-

tively:

where C = diag{¢1, ¢, ..., 60}, C = diag{ér,&,..., 80}, A = (@) nxn> A= (@) nxm B =
(hij)nxnr B= (bij)nxw
Before analyzing the existence, uniqueness and robust stability of the equilibrium point

in system (1), we need clear some definitions and notation.
For every A; = AR +1A! + jA] + kAKX, B; = BR +1B! + JB, + kBK e """, i = 0,1, let

AR = S (A% AT),
Ap= (A A,
A, = %(A/ L),

AF = (A A9,

B - %(BR +BY),

(A] _A]) = (M{j)nxn’
_AK) = (Ml{;)nxn’

1,4 v
Blf = E(BR_BR) = (U;;)nxn’

Page 3 of 25
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1
B =SB, B = LB - (),

1 .
Co==(C+0Q),

2

1. 1. . . . . .
Ci= E(C— C) = (Wij)nxn = Edlag{cl —€1,C1 —CyevvsCp— Cy}e

Obviously, AT > 0, Bf > 0, here X expresses R, I, ], K, respectively, and C; > 0, let ¢; =

(0,0,...,1,...,0)L_| where 1 belongs to the ith value in the unit row vector, define
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It is obvious that
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ME (Mﬁ)T = diag (Z [T Z //,ffj), M, (MI = diag (Z - Z “51/‘)’
1 1 1

TXCAIRC ) T w12 MRS oS o
=1 =1 1

ME (Mﬁ)T = diag (Z vﬁ., . Z vf/), ML (MI = diag (Z Vijr- Z vij) ,
=1 1 =1

M{B(M{E)T:diag( v Z%) M{;(Mfg)T:diag(zuﬁ,...,zvij),
1 1 1 =1

MC(MC)T = diag( @ljseees Z w,,j), (fo) TNf = diag (Z ule, Z “m)
=1 =1 1

(N3) NI = d1ag<z,u]1,. o

(N%) INK = d1ag<
j=1

(NB)'NE = diag(
j=1

n

(NE) TN = diag< ok
j=1

Moreover, we define

D Mo
I
> vl

]1,...

n n
> M,I> (N}) "N, = diag (Z Wi Z Win |
j=1 j=1

n
Sl

Jj=1

Zuf) (NB)'NE :diag( Z m)

n

’ZVJIH)’ (Né)TNé:diag<Z v}l,...,z 1."),

j=1 j=1 j=1

,Z f;); (NC)TNC:diag<Zw,1,...,Zw,-n).
j=1 j=1 j=1

:diag< Zulfj,..., Zui), Ldei@lg( Zu{j,..., ZM{,,),
j=1 j=1 \ /=1 j=1
:diag( ZM]U""’ ZM{’}')’ Lf:dmg( ZMIE,..., ZMI;/),
\NE 2 = -
LR = diag( Z Vi Xn: vff/.), L% = diag (\] Xn: Vijeeos Xn: vf,j),
\ = \ j=1 j=1 J=1
L{B = d1ag( Z 1)1], i V£j>¢ Lé( = dlag( i Uﬁ’ ¢ i ‘)g) ’
\ = \ j=1 j=1 j=1
Lc=diag< Yo Zcm)
A z

2.2 Basiclemmas

The following lemmas will play important roles in the proof of our main results.
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Lemma 1 Let X* = {¥ € REE i diag(e11,.+»E1ns -+ »Enls -+ Enn), where || < 1,
i,j=1,2,...,n}, then >T 3 <. Furthermore, let

C={C=Cy+McEcNc},

A={A=A¢+MESENE + ML BING + j ML ZIN) + e MK ZXNK),
B={B=By+MREENE + IMLZLNL + 1My ZEND + kM5 XN,

then for Sc, =X, 1, &) 2K sk 51 5/ 5K e v+, ¢ =C, A=A, B =B.

Proof The result can easily proved through calculation directly, which is similar to the
approach in [20]. So the details are omitted. d

Lemma 2 ([20]) IfU;, V; and W; (i = 1,2,...,m) are complex-valued matrices of appro-
priate dimension with M satisfying M* = M, then
m
M+ (UViWi+ WP VEUT) <0

i=1
forall ViV; <I(i=1,2,...,m), ifand only ifthere exist positive constants &; (i = 1,2,...,m)
such that
m
M+ (e UL + ;W W) <.
i=1

Lemma 3 ([19]) For a given Hermitian matrix, if S, = S11, S§y = Sa1 and S5, = Sy, then

S S
s= (" °2)
S Sxm
is equivalent to the following conditions:

(i) Sy <0and Sy11 — 5125521521 <0,
(11) S11 <0 and Syy — SZISIIISIZ <0.

Lemma 4 ([35]) Foranya,b € H", if P € H"*" is a positive definite Hermitian matrix, then
a‘*b+b*a<a*Pa+b*P'b.
Lemma 5 ([35]) If H(z): H" — H" is a continuous map and satisfies the following condi-
tions:
(i) H(z) is injective on H",

(i) limyz)— o0 [H(2)]| = 00,
then H(z) is a homeomorphism of H" onto itself.

Lemma 6 ([35]) For any positive definite constant Hermitian matrix W € H"" and any
scalar function w(s): [a,b] — H", if the integrations concerned are well defined, then

b * b b
(/ (s) ds) W/(/ (s) ds) < (b—a)/ @*(s)Ww(s) ds.
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Lemma 7 ([10]) Let A = Ay + Ay, and B = By + By,;, where A1,A9,B1,B, € C"™" and A,B €
H"*", then

(i) A*=A3 —AZT];

(i) AB=(A1B1 —A2B,) + (A1B; + A2B1),,
where By and B, denote the conjugate matrices of B; and B, respectively.

Lemma 8 ([10]) Let P € H"™" be a Hermite matrix, P = Py + Py, then P < 0 is equivalent

to
P, -P
BT« 0,
P, P

where Py, Py € C"™" and Py, P, denote the conjugate matrices of Py, P, respectively.

3 Global robust stability results

In this section, we will present the existence and uniqueness of the equilibrium point of
the delayed QVNNS on the basis of Assumptions (A;) and (A;), then we investigate the
global robust stability of the equilibrium point of the delayed QVNNs.

Theorem 1 Assume assumptions (A1) and (A,) are satisfied, then QVNNs (1) has a unique
equilibrium point which is globally robust stable, if there exist a positive definite Hermitian
matrix Q and four positive diagonal matrices R; (i = 1,2,3,4), and 27 positive constants A;
(i=1,2,...,27) such that the following linear matrix inequality holds:

2 = (82j)34x34 < 0, (2)

where

211 =-QCo— C{Q+Ry +8*Ry + R3 + KR K + 11 (N¢c)"Nc

+211(Ne) "N, 212 = QAy, £213 = QBy, 214 = CLQGy,
§£213 = QLc, 210 = QLE, 2110 = QLY, 211 =QL, 2112 = QLE,
2113 = QLY, 2114 = QLY, 115 = QL{g: 2116 = QL,
2117 =C{ QLc, 2119 = (McZcNe) QLe, 291 = (A0)*Q,
22 = Ry — Ry + 2o (NB) 'NE + a5 (NL) ' NE + 2a (N) N, + 25 (NX) T NK

+ 219 (NB) NE + hao (NF) N 4+ 2igr (N) TN, + o (NK) TN,
297 = (A0)"Q, 231 = (Bo)"Q,
233 = —Ry — Ry + h(NEF) NE + 17 (NB) " NE + 1s(N}) ' NJ + 1o (NE) ' NE

+ 23 (NR) NE + hoa(NE) NG + has (N§) "N + hao(NK) T NE,
Q5=(B)'Q  2u=CyQ0C,,
Qa4 =Ry + C§ QCo + hio(Ne)"Ne + Aa(Ne) "Ne + As(Ne) 'Ne

+ *1a(Nc)'Ne + A15(Nc) ' Ne + 117(Ne) ' N,
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245 = C{ QC,, 2418 = C{ QLc, 2420 = C{ QLc,

§2401 = COTQLC,

2427 = (McZcNe) QLe, 2423 = C{ QLc, 2425 = (McZcNe) QLc,

251 = Cg QC,, 255 = —Ry + Ms(N)'Ne + Ag(Nc) ' Ne + har(Ne) TN,

25=C1Q, 2524 =CJ QLc, 266 = —R3 + KR K, £275 = QA

§273 = QBy, §275 = QCo, 277, =-Q, 2726 = QLE, 2727 = QLL,
§2708 = QLQ, 2729 = QLE, 2730 = QLE, 2731 = QLE, §273 = QLQ;,
2733 = QLE, §2734=QLc, 201 =(Le)'Q, g5 = -1,

§291 = (Lﬁ)T ) §299 = —Aal, 2101 = (LA)TQ, £21010 = —Asl,

2111 = (LA)TQy £211.11 = —Aal, 121 = (LIX)TQ, 21212 = —Asl,

$2131 = (Lﬁ)TQ, £213.13 = —Asel, 141 = (LQ)TQ: 21414 = =271,

2151 = (Lfg)TQ» 21515 = =Xl 2161 = (LE)TQ, 21616 = —Aol,

2171 = (Lc)" QC, 1717 = =Aol, 2184 = (Lc)" QC, $21818 = —Aul,
2191 = (Lc)" QM ZeNe, 21919 = —A12], 2304 = (Lc)" QC,

§25020 = —A13l, 214 =(Lc)"QCo, §29101 = —Mal,

Q4= (Lc)"QMc EcNc, §29222 = =151,

34 =(Lc)"QCo, §29303 = —Mel, 225 = (L) QCo, §224.24 = —M171,
2254 =(Lc)"QMc N, §29525 = —A18l, $2967 = (Lﬁ)TQ,

§296.26 = =191, Q77 = Lllq)TQ, §297.27 = —Aaol, $2987 = (LQ)TQ,

T
§29808 = —Aol, §2297 = Lﬁ) Q §229.29 = —Aal,
Q §23131 = —Aoal,

(

(
23030 = —Aasl,  2317= (L

(I3) Q  $23333=—Aoel,

§23332 = —Aosl, 337 = (LY

§25434 = —Ao7l,
the other entries of §2 are zeros.

Proof We will prove the theorem in three steps.

2307 = (L§)TQ,
0237 = (Lé)TQ,

2347 =(Lc)Q

Step 1: The negative definiteness of the following matrix A is equivalent to the negative

definiteness of matrix £2,

An QA QB crQc 0 0
*  Ry—R; 0 0 0 0
* * —Ry— Ry 0 0 0
A=] * * Ay c'Qc o
* * * * R 0
* * * * * Ags
* * * * * *

A*Q
B*Q

CcTQ

_Q*

Page 8 of 25
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where

Aqp

AVY)

=-QC-CTQ+R; +8%Ry + Ry + KR K,

=-R, +CTQC, Ags = —Rs + KR K.

From Lemma 1, for any C € C;, A € A;, B € B, we obtain

C= C() + Mcchc, (4')
A=Ay + MESENR ML ZIN + g M SN + e ME SENK, (5)
B =By +MESENE + i MLEIND + j M) ZIND + kMK SKNK, (6)

Note that, for (X¢), (Z‘jf), (ZX) € Z*, here X expresses R, I, ], K, respectively, it is to get
(ZO)TE <L (ZN'Z) <L, (Zc)" Zc <1
Taking (4), (5), (6) into (3), we obtain

A QA QBy,  CIQGC, 0 0 0
*x R—Ry 0 0 0 0 (40)'Q
* * Ry — R, 0 0 0  (Bo)*Q
* * * Ay CiQCy 0 0
* * * * -R; 0 C()TQ
* * * * * Agg 0
* * * * * * -Q*
+((-MEQ)e ) Zc(Ncer) + Nee) (o) ((-MEQ)er)
+(((M5) Qer)" ZE(NFea) + (NFe2) " (25) " (((F)" Q)
+ (M) Q)er)" Zh (NAes) + (Nie2) " (20) " (((1M4) " Q)en)
+ (UML) Qer)" T4 (NJea) + (Nse2) ' (Z1) " (1M) " Q)
+ (((eME)"Q)er)” 5 (Nfe2) + (NXe2) " (25) " (M) Q)en)
+((M5)"Q)er)" Z5 (NFes) + (NFea) ' (25) " (((M5)" Q)en)
+ (((M5)" Q1) Zh(Npes) + (Njes) " (Z5) " (((1M5)"Q)en)
+ ((1M3)"Q)er)” Sp(Npes) + (Npea) " (5)" ((1Mp) " Qen)
((

+ (((eME)" Q1) BF (N ea) + (Nfe3) " (25) " (((eMF) Qo)
+ (M) TQCo)e1)" EcNeea) + (Neea)(20)T (((Mc) T QCo)er)
+ (NceD)T(20)T (M) " QCo)ea) + (((Mc)TQCo)es) Ec(Neer)
+ (((Mc)" QM EcNC)er) " Bc(Nees) + (Neea) " (Ze)T (M) QMe EcNc)er)
+ (M) QCo)es)" EcNeea) + (Ncew)' (20)" (((Mc) T QCo)ea)
+ (Ncea)T(20)T (M) QCo)ea) + (((Mc)TQCo)es) " Ec(Nees)

+ (((MC)TQMCECNC)84)TEC(NC&L) + (Ncea)" (Ze)" (((Mc)" QM ZcNc)es)
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+ (((Mc)TQCo)ea) " Ec(Nees) + (Nees) ()T (((Mc) T QCo)ea)
+ (Nee) T (Ze) T (((Me)TQCo)es) + (((Mc)TQCo)es) " Ec(Nees)
+ (((MC)TQMCECNC)84)TEC(NC55) + (Nces) (Ze)" (((Mc)" QM ZcNc)es)

Niea) ()" (M5)"Q)er) + (M) Qer) " ZA(Nfe)

+ (
+ (Nie2) " (2) " ((04)"Qer) + ((1M4)"Q)er)” 4 (Nfe)
+ (Njea)' (2 )T(((J M) ))

(&4

+ (M) )87) Zi(Nge2)

(((

) ) )+(((M) )87) ZB(N§83)
(1M3)” ))+(((l 5) Q)e7)" Tp(Npes)
(M ) e7) + (((1Mz)"Q )87) Zp(Njes)
((

+ (Nees) T (Zc) (((Mc) Q)e7)+(((MC>TQ)87)TEC<NCaS).

Here, (X¢;),247, denotes a block matrix with the matrix X, 2, lies in the ith column, here

i=12,...,

7,

A =-QCo—CLQ+R, +8*Ry + Rs + KR K,

Ay = —Ry + CLQCy, Ags = —Rs + KR, K.

From Lemma 2 we can see that A < 0 if and only if there exist positive constants A;

(=1,

>

2,...,27) such that

Ann QAo QB clQc, 0 0 0
*  Ry—R 0 0 0 0 (A))"Q
* * Ry -R, 0 0 0 (BnQ
* * * R, +CIQC, CIQCy, o 0
* * * * R 0 cra
* * * * * Ags 0
* * * * * * -Q*

+a7! —MgQ)&)T((—MgQ)Sl) +h1(Ncer) (Ncer)

((lMﬁx) Q)e) + 23(Nje2) " (Nie2)

(
"(((M4) Q) + ha(Nje2) (Nje2)
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M) Q)er)" (((1Mp)" Q)e1) + 2s (Npes) " (Njes)

«Mg)"Q)er)" ((<M5)"Q)er) + 2o (Nfes) " (Nfe3)
(Mc)"QCo)er)" (((Mc)"QCo)er) + hao(Ncea) (Ncea)

(M) QCo)ea) " (((Mc)TQCo)es) + A (Ncen) (Neer)
(Mc)"QMcEcNe)er)" (((Mc)T QMe ScNe)er) + ha(Nees) T (Neea)
(Mc)TQCo)es)" (((Mc)TQCo)ea) + das(Neea)T (Neea)
(Mc)TQCo)es)" (((Mc)TQCo)ea) + aa(Neea)T (Neea)
(MC>TQMC TeNe)es)' (M) QMc ZeNe)ea) + has(Neea) (Nces)
(MC>TQco)s4)T(((MC>TQCO)84) + h6(Nces)” (Nees)

(M) QCo)es) " (((Mc)TQCo)es) + Air(Ncea)T (Nces)

s (MC)TQMCECNC)&L)T(((MC)TQMCECNC)&L) + Ms(Nces) (Nces)

(
(
+ )Cé (
(

-1
+ AL

+333((M5)" Qer) " ((M5) Q)er) + Mo (Nfea) " (Nfe2)
+ 23 (((M4)"Qer) " ((:M4) Qer) + Aao(Nher) (Ne2)
+ 251 (ML) Qer)" (ML) Q)e7) + hn (Ne2) ' (Ne2)

M) Qer)" (M) Q)er) + A (Nies) " (N e2)
((M5)" Q)er) + A2s (Nfes) " (Nfes)
(1M5)"Q)e7) + Aa (Njea) " (Njes)
(7M5)"Q)e7) + has (Nea) " (Njes)
M) Q)e7)" ((eMF) " Q)e) + haos(Nf e3) " (Nf e3)
(M) TQ)e7)" (((Mc)TQ)e7) + har(Nces)T (Nces)
<0. 7)

o e e e s s e T T s e T T e e e e e e e e

Rewrite (7) in the form of Lemma 3 and by direct calculation, we have A=8 - 5125521521,
on the other hand 2 = (21 5;) It is obvious that Sy < 0. Here, (S11)74x7ns (S12)71x271
(S21)27nx7m> (S22)27nx 27, are the sub-block matrices of the judging matrix £2. We find that
(7) is equivalent to (2) by Lemma 3. Because A < 0 is equivalent to £2 < 0, thus, A <0 and
£2 <0 are equivalent.

Step 2: We will show system (1) has a unique equilibrium point under the condition

A < 0. Let g be an equilibrium point of the system, then g satisfies
—Ci+Af@ +Bf@)+] =0.
Let F(q) = —Cq + Af(q) + Bf(q) +J. In the following, we prove the map F : H"” — H" is

a homeomorphism map.

Firstly, we prove that F(q) is an injective map on H".
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Supposing there exist g1, ¢, € H” with ¢; # g, such that F(g;) = F(q>), then we can get

~Clq1 - q2) + A(f(q1) — f(q2)) + B(f(q1) —f (q2)) = 0. (8)

Left-multiplying both sides of (8) by (g1 — g2)*Q leads to

~(q1 - 92)* QC(q1 — q2) + (q1 — 72)* QA(f (1) —f (92))
+(q1 - 42)*QB(f(q1) — f(g2)) = 0. 9)

Taking the conjugate transpose on both sides of (9), we have

~(q1 - )" C*Qlq1 - q2) + (F(q1) - f(g2)) "A* Qa1 — 92)
+(f(q1) - f(@2)) 'B*Qlq1 - q2) = 0. (10)

Summing (9) and (10) results in

0=(q1 - 72)*(-QC - C*Q)(q1 — q2) + (q1 — 42)*QA(f (q1) - f(q2))
+ (Flq1) —f(g2)) "A* Qa1 — 42) + (@1 — 42)*QB(f(q1) - f(42))
+(F(q1) —f(g2) "B* Qg1 - q2). (11)

From A < 0, we see

Ry— Ry <0, —R; <0, —82Ry <0, —R5 + KR,K <0, (12)
—QC-CTQ+Ry +8%Ry +Rs + KR1K QA QB
* R4 - Rl 0 <0. (13)
* O —R4 — R2

Hence, from (12) (13) we can get

—QC-CTQ+K(R, + Ry)K QA QB
* R4, —Rl 0 <0.
* 0 —R4 —Rz

By Lemma 3, we obtain
—QC-C*"Q+ QAR —Ry)'A*Q + QB(Ry + R)'B*Q + K(R1 + R)K < 0. (14)

Considering equality (11) and the negative definite quality of Ry — Ry and R + Ry, it is easy
to obtain the following inequality by Lemma 4:

0 < (q1 - )" [-QC - C*Q+ QA(R; — Ry) "A*Q+ QB(Ry + Ry) ' B*Q]
X (q1-q2) + (f(q1) —£(g2)) Ry + Ro) (F(q1) — £ (2))- (15)

Page 12 of 25
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Since Ry and R, is real-valued positive diagonal matrix, we can see from Assumptions (A;)
that

(F(q1) —f(@2)) Ry + Ro) (F(q1) — f(@2)) < (@1 — q2)*K(Ry + R)K(q1 — o). (16)
Then, by (15) and (16), we get

0= (q1 - 42)"[-QC - C*Q+ QA(R; — Ry) "'A*Q+ QB(R, + Ry) ' B*Q
+K(Ry + Ry)K](q1 - o).

(17)

From inequalities (14) and (17), we can get q; = g2, which contradicts the supposed con-
dition. Hence, F(g) is an injective map on H".

Secondly, we prove that || F(g)|| — +o0 as ||g|| — +00.

From the definition of F(g), we can get

Flq) - F(0) = -Cq + A(f(q) —£(0)) + B(f (q) - £(0)). (18)
Left-multiplying both sides of (18) by 4*Q brings about

7" Q(F(q) - F(0)) = 4" QCq + q*QA(f (q) - £ (0)) + 4" QB(f (q) — £ (0)). (19)
Taking the conjugate transpose on equality (19), we have

(F(@) - F(0))"Qq = —q*C*Qq + (f(q) —£(0))"A*Qq + (f(q) — £(0)) "B*Qq. (20)
Summing (19) and (20) one derives that

7Q(F(q) - F(0) + (F(g) - F(0))'Qq = 4" (-QC - C*Q)q

+q*QA(f(q) - £(0)) + (f(q) - £(0))"A*Qq
+q*QB(f(q) -£(0)) + (f(q) - £(0)) "B*Qq.

Similar to the proof of the injective map, we obtain

7"Q(F(q) - F(0)) + (F(g) - F(0)) 'Qq
<q"[-QC-C"Q+ QAR ~Ry)™
x A*Q+ QB(Ry + Ry)'B*Q + K(R + Ry)K]q

< —hmin(=A) g%,
where
A=-QC-C*Q+ QAR —Ry)A*Q+ QB(Ry + R) 'B*Q + K(Ry + Ry) < 0.
Applying the Cauchy—Schwarz inequality brings about

Amin(=A)lgl1* < -q*Q(F(q) - F(0)) + (F(q) - F(0))" Qq
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= —2Re(7*Q(F(q) - F(0)))

<2|7*Q(F(q) - F(0))|

<2|qll - 1Qll - | F(q) - F(0)

<2lqll - 1QlI- (| F@] + [FO)]). (21)
So, || F(q)|| — +00 as ||g|| = +00, by Lemma 5, we know that F(g) is a homeomorphism
of H". Therefore, system (1) has a unique equilibrium point.

Step 3: We will analyze the globally asymptotic robust stability of the equilibrium point.
Let z(£) = q(t) — g, then system (1) can be rewritten as

2(t) = —Cz(t - 8) + Ah(2(2)) + Bh(z(t - 1)), (22)

where h(z(t)) = f(q(t)) —f(q) and h(z(t — ©)) = f(q(t — 7)) - f(@).

Considering the following Lyapunov function:

V(t) = Vi(t) + Va(t) + Va(t) + Val(t) + Vs(2),

where
Vi(t) = <Z(t) - C/t‘—é z(s) ds) Q(z(t) - C/t_,s z(s) ds>, (23)
Vo(t) = /tts Z"($)R1z(s) ds, (24)
Vi(t) = 8 /O 5 [t tu 2(5)Roz(s) ds du, (25)
Va(t) = /t t{ Z*(s)R3z(s) ds, (26)
viw= [ I (25)) Ra(2(5)) ds. 27)

Calculating the time-derivative of V1(t), Va(2), Va(¢), Va(t) and Vs(t), we can get

Vi(e) = (z(t) -C / ts 2(s) ds>*Q(i(t) — Ca(t) + Cz(t - 8))

t

+ (é(t) — Cz(t) + Cz(t - 8))*Q<z(t) - C/

-8

z(s) ds)
= —z*(t)(QC + CTQ)z(t) + z*(t)QAh(z(t)) + i (z(t))A*Qz(t)

+ z*(t)QBh(z(t - r)) /A (z(t - r))B*Qz(t) + (/t z(s) ds>*CTQCz(t)
-8

+z*(t)CTQC</t z(s) ds) - (/t z(s) ds)*CTQAh(z(t))
-8 )

-h* (z(t))A*QC(/t z(s) ds) - (/t z(s) ds)*CTQBh(z(t— r))
t-5 t-5

— (2t - r))B*QC( / ts 2(s) ds>, (28)

Page 14 of 25
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Vo(t) = 2*(t)Ry2(t) — 2 (t - 8)Ry2(t - 8), (29)

5
Vs(t) = 8%2* (t)Roz(t) — 8 / Z°(t — u)Ryz(t — u) du
0
= 822" (£)Ryz(t) - 8 / t Z"(8)Ryz(s) ds.
-5

By Lemma 6, enlarging the equation V;(t)

’ < 2, % _ ! ! ‘

V3(t) < 8°Z*(£)Roz(t) (/M z(s) ds) Ry (./:5 z(s) ds), (30)
Va(t) = 2 (£)R3z(t) — 2 (t — T)Rsz2(t — 7), (31)
Vs(t) = h* (z(t))R4h(z(t)) -n* (z(t - t))R4h(z(t - r)). (32)

Further, for real-valued positive diagonal matrices R; and R,, we can get from Assump-

tion (A;)
0 < z*(t)KR, Kz(t) — h* (2(2)) Rih(2(2)), (33)
0<z*(t—1)KRKz(t — 1) - h* (z(t - t))Rgh(z(t - ‘L')). (34)

From system (22), we obtain

0= [Qk(t) + QC/‘t{s z(s) ds]*[—é(t) - Cz(t - 8) + Ah(z(¢)) + Bh(z(t - 7))]

t

+ [—é(t) —Cz(t-98) + Ah(z(t)) + Bh(z(t - r))]* |:Qé(t) + QC/

=

z(s) ds}

=2°(6)(-Q*)2(t) — 2°())Q*Cz(t - 8) + 2" (1) Q" Ah(z(t)) + 2" () Q" Bh(z(t — 7))

- (/ z(s) ds) CTQzt) - (/t z(s) ds) CTQCz(t - 8)

t-8 =
+ </t z(s) ds) CTQAh(z(t))

-8
+ </t z(s) ds) CTQBh(z(t - r)) + 25 @) (-Q)z(t) - z* (¢ — 8)CT Qz(¢)

-8
+h* (z(t))A*Qé(t) +h* (z(t - r))B*Qé(t) - é*(t)QC(/t z(s) ds)

=3

—z*(t—(S)CTQC(/t z(s) ds) +h*(z(t))A*QC(/t z(s) ds)
L t-8

-5
+h* (z(t — r))B*QC(/ z(s) ds). (35)
=8
It follows from (28) to (35) that

V(t) < -z*(6)(QC + CTQ)z(t) + z* () QA (2(2)) + h* (2(8)) A* Qz(t)
+2"(1)QBh(z(t — 7)) + h*(2(¢ — 7)) B*Qz(¢)

Page 15 of 25
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+ (/ z(s >*CTQCz(t) + z*(t)CTQC</t; z(s) ds)
</ z(s) ds) CTQAh(z(t)) -h* (z(t))A*QC(/t z(s) ds)
P

/ z(s) ds) CcTQBh (z(t - r)) -h* (z(t - r))B*QC(/t z(s) ds)
t-5

+ Z(t)R1z(t) — 2*(t = §)R1z(t - 5)

822" ()Ryz(t) — t d. *R t d
+8°Z" () Ryz(t) (/t—éZ(S) s) 2(/;_5;5(3) s)

+ 2" (t)R3z(t) — 2" (t — T)Raz(t — 1)

+ 1 (2(0)) Rah(2(8)) — I (2(t — 7)) Rah(2(t - 7))

+ 2 (KR Kz(t) — I (2(£) ) Rih(2(2))

+2"(t = T)KRyKz(t — 7) — h*(2(¢ — 7)) Roh(2(t - 7))
+2°(6) (-Q%) () — 2" (1)QCz(t — 8) + 2*(£) Q" Ah(2(¢))

+ z*(t)Q*Bh(z(t— r)) - (/t z(s) ds>*CTQé(t)
-8
_ < / ") ds>*CTQCz(t— 5) + ( / g ds>*CTQAh(z(t))
t-8 =8
+ (/t z(s) ds)*CTQBh(z(t - 1’)) +2° () (-Q)z(t) — z* (t — 8)CT Qz(¢)
-8
+h* (z(t))A*Qé(t) +h* (z(t - r))B*Qé(t) - é*(t)QC(/t z(s) ds)
-8
-zt - 5)CTQC</t z(s) ds) +h* (z(t))A*QC(/t z(s) ds)
t-8 =
+h* (z(t - r))B*QC(/t z(s) ds)

-5
=2'#)(-QC - C"Q + Ry + 8?Ry + R3 + KR K)z(¢)
+ z*(t)QAh(z(t)) +h* (z(t))A*Qz(t)

+2°(1)QBh(z(t - 7)) + h*(2(¢ — 7)) B*Qz(¢)

x T ! ! o
+z25(t)C QC(/t-a z(s) ds) + (/H z(s) ds) C” QCz(t)

+ I (2(8)) (Ry — Ry (2(2))
+ 1 (2(0) A* Qa(t) + 2 (£) QAR(2(1))
+ 1 (2(t = 7)) (~Ra — Ro)h(2(t - 7))
+h (z £—1))B*Qz(¢) + 2" (£)QBh(z(t - 1))

+ z(s) ds) ( R2)</t z(s) ds>
-8
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2(s ) (CTQC)(- z(t—a))+(—z*(t—a))(cTQc)< /t;z(s)ds>

(.
+( (s ) (-CTQ)(0) + (*(t))(—QC)( /;Z(s)ds>
(-
(

z"(t - 8))( Rl)( z(t—8))
Z(t-8))(CTQ)z(t) + 2 (t)(QC)( (¢ - 9))

+2°(2) (—Q* - Q)(®). (36)

By Lemma 4, we can deduce that

(/a z(s) ds) (—CTQ) (é(t)) + (é*(t))(—QC) (fg z(s) a’s)

< (/t z(s) ds)*(CTQC) (/t z(s) ds) + 25 (£)Qz(¢). (37)
) -8

Combining (37) with (36), we have

V(t) <z*(t)(-QC — CTQ+ Ry + 8°Ry + R + KR K)z(?)
+2*(t)QAh(2(2)) + h*(2(£))A*Qz(t)
+2*(t)QBh (z(t - r)) +h* (z(t - r))B*Qz(t)

+Z*(t)CTQC(/t: z(s) ds) + (/cts z(s) ds)*CTQCz(t)

+h* (z ) (z(t))
+ h*(2(£)) A" Q&(8) + 2" () QAh(2(2))
+ h*(z (t- r)) Rz)h( (t- r))

+h* (z(t - t))B* Qz(¥) + é*(t)QBh(z(t - ‘L'))

+ (/tt z(s) ds)*(—leg)(/:S z(s) ds) + (/:5 z(s) ds)*(CTQC) (/t; z(s) ds)

-
+ ( /t ; z(s) ds)*(CTQC) (~2(t-8)) + (-z* (- 8))(CTQC) < /, _: 2(s) ds>
(~2*(t - 8)) (=Ry) (~2(t - 8))
(—z*(t - 8))(CTQ)z(t) + £ ()(QC) (~=(t - 9))
+2*(t — T)(=Rs + KR, K)z(t — T)
+2°(6)(-Q")2(t)
=E"()AE(1), (38)

where £*(¢) = [z*(¢), h*(z(¢)), h*(z(t - 7)), (ftis z(s) ds)*, (-z*(t = 8)),z* (¢t — 1), 2" (8)].
Obviously, V(t) < 0since A <0.
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By making use of Lyapunov theory, we derive that the unique equilibrium point g in
system (1) is globally robust stable.
The proof is completed. d

Remark 1 In [20], the authors discussed the robust stability of complex-valued neural
networks with interval parameter uncertainties and obtained the existence, uniqueness
and global robust stability of the equilibrium, we add the leak delay, extend the model to
quaternion-valued neural networks and obtain the corresponding results under the rela-
tively weak conditions. Namely, in system (1), when § = 0, g(¢) € C" and C, A, B,] € C"*",
it is easy to get the relevant conclusions of the literature [20] by our Theorem 1.

Remark 2 In the literature [35], the negative definiteness of two judging matrices is
needed, moreover, the entries in these matrices are all the maximal values, which rely
on resolving of the upper and lower bounds of elements for the connection weight matrix,
the sign of connection weight matrix is ignored, but in our article, the given elements de-
pend on not only the lower bounds but also the upper bounds of the interval parameters,
which is different from previous contributions and extends the relevant work in Refs. [19,
20, 22, 35].

Since LMI (2) is defined in H"*”, we cannot handle it directly using the Matlab LMI tool-
box, in order to simulate our results, it is an effective way to turn the quaternion LMI into
a complex one. In the following, the following corollary is required theoretically, which
can easily be obtained by Theorem 1 of our article.

Expressing the parameters as pairs of complex parts, AY + 1A% + ]A{) + kAKX = AR +1AR +
(Ah+1AK) ;) = Ay + Ay, and BE +1B8 + 1B + kBX = B +1BR + (B +1BX)j = By + By, where
A1,Az, By, By € C"™”, then we have the following result.

Corollary 1 Supposing assumptions (A;) and (A;) valid, then system (1) is globally robust
stable, if there exist a positive definite Hermitian matrix Q; € C"*", a skew-symmetric
matrix Qy € C"™", four real positive diagonal matrices R; € R (i = 1,2,3,4), 27 positive
constants A; (i=1,2,...,27), such that the following CVLMIs hold:

- 21 -8
@ Q) L) <o, (39)
Q O 2§
where §21 and $2, are defined in (40) and (41),
21 = (82i)34x34s (40)

where

211 =-Qi1Co— CIQy + Ry + 82Ry + R3 + KR K + 1 (N¢)"Ne + 411 (Ne) TN,
212 = Q1A — QuA,, 213 = Q1B1 - Q:By, 214 = CL Qi C, $218 = Q1Lc,
210 = QLE, 2110 = QLY 2111 = QlLip 2112 = Qi LK,

2113 = Qi L%, 2114 = QLY 2115 = Q1L§3, 2116 = QiL,
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27=C Qile, R =McEcNe)' Qle,  2n =470 -4;Q5,
22 = Ry — Ry + 2 (NB) 'NF + 25 (NE) NG + 0 (N) TN + as (NX) T NK

+ 2o (NR) 'NE + koo (NE) "N + 2ot (NF) TN + 2pa (NX) TN,
207 =A5Q1 +A] Qy, 231 =B{Q; - B, Q;,
233 = =Ry — Ry + ho(NE) NE + 17 (NB) ' Nb + 1s(Np) ' Np + 1o (NE) " NE

+ ho3(NB) 'NE + hoa (NE) N + 2o (N}) T NG + has (NK) ' NK,
25, =B{Q:1 +B; Q,, 241 = CLQ}Co, Q44 =Ry + C{ Q1 Gy,
25=CQCo,  Rus=CQle,  220=CiQiLe,  2am =G QL
212 =(McZcNe)' Qile,  Ra23=CiQile, a5 = McZcNe)' QiLc,
254 = C{ Q}Co, 255 = =Ry + AM6(N)"Ne + Asg(Ne)'Ne + Aoz (Ne) TN,
257=CQu  2u=ClQle,  Res=-Ry+KRK,  Qp=QiA1+QjA,
273=Q;B1+Q; By, 25 = Q1 Co, 277 =-Q7, 2726 = QLE,
2727 = QiLY, 2708 = QuL,, 2720 = Qi L, 2730 = Qi LY,
2731 = QiL, $2739 = Q1Lfg, 2733 = QL% §2734 = QilLc,
261 = (L)' Q}, $288 = =M1, §291 = (Lﬁ)TQT: §299 = —ol,
)TQT: £21010 = —Asl, 111 = (LQ)TQT: §£21111 = —Aal,
) Q; 21212 = —Asl, 2131 = (LE)T 1 21313 = —Ael,
§2141 = (Lﬁg)T 1s 21414 = —A71, 2151 = (Lé)T 1 §215.15 = —Agl,
2161 = (Lfg()T i $216.16 = —Aol, 2171 = (Lo)' QI Gy, $£217.17 = —A1od,
2184 = (Lo)T QI Gy, $218.18 = —A11d, 2191 = (Lo) ' QM XN,
§£219.19 = =A12d, 204 = (L)' QI Gy, §22020 = =13l 2514 = (L) QCy,
§221.01 = —Aal, 2904 = (Le) QM XN, §229.00 = —Aisl,
2034= (L) QG 29323 = —Ai6d, 2045=(Lc) QI Cy, 29404 = —M171,
254 = (LT QGMcENe,  Rasas=—hsl,  2a67 = (L5)" QS
§226.26 = —A191, Q77 = (L))
(X
(L)' Qh
()" Qi

)TQT» $22727 = =haol, $2987 = (qu)T it
)TQT» §229.29 = —Anal, 2307 = (Lg)T 0

§27898 = —A21d, $2997

T
§23030 = —A23l, 2317 = §23131 = —Aoal, 2397 = (L;) 1

§23232 = —Aosl, 337 = (LY §23333 = —A2sl, 2347 =LLQ},
23434 = —Ao7l, and

29 = (82i)34x34s (41)
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where

211 =-Q:Co— CJ Qy, 212 = Q1A + QA 213 = Q1B + QBy,

212 = Cg QCo, $218 = QoLc, 219 = QLE, 2110 = QLY

2111 = Q2L{47 2112 = QLY 2113 = QLY 2114 = QLE,

2115 = Qng, 2116 = QoLE, 2117 = C) Q:Lc,

2119 = (McZcNe)' QoLc, 201 =-4A; Q] —AQ;, 207 =A}Qy —A] Qy,
231 =-B; Q] -B;Q;, 237 =B{Q, - B; Q1, 241 =-Cy Q3 Cy,

R4 = Cg QCo, 245 = Cg Q2Co, 2418 = C) Q:Lc, Q420 = Cl Q:Lc,
2401 = CJ Q:Lc, 242 = (McZcNe)' QoLc, 2423 =CLQLc,

2425 = (McZcNe) QoLc, 25 =-C1 Q1 Cy, 257=CLQy,

2524 =CJ Q:Lc, 277 =-QF A + QjA,, 273=-Q1 B, + Q;By,
275=-Q; Cy, 277 =-Q3, 2726 = Q LR, 2707 = QL

§2708 = QzLip 2729 = QL 2730 = QLY 2731 = QLE,

§273) = Q2Lfg; 2733 = Q.LE, §2734 = QoL 241 =-(Lc)'Q;,

291 = —(Lﬁ)TQzT, $101 = —(LQ)TQzT,

111 = —(LQ)TQ; 2121 = —(Lf)TQgT: $£2131 = —(LE)TQZT,
Qui=-(1)" QA 2is1=-(Lp) Q261 =-(L5) Q]
2170=-Le)' Q@ Co Risa=-LA)'QCo  2191=-(Lc) QMcZcNc,
204=-Lc)'QCo  2na=-L)'QCo  22a=-(Lc) QMcZcNc,
254=-L)'QCn  2us=-Ld)'QCo  2a=-(Lc) QMcZcNc,
$2967 = —(Lﬁ)TQzT; 2977 = —(LQ)TQZT: §2987 = —(LA)TQZT,

§2297 = —(L,Ii)TQzT, 2307 = —(Lﬁ)TQzT, 2317 = —(Lf;)TQgT,

T T
237 =—(L})" QF, 2337 =—(Ly) Q3. Q347 =-LLQ3,

and the other ones in §21 and $2, are zeros.

Proof Based on Lemmas 7 and 8 and Theorem 1, the result easily can be checked. O

4 Numerical example
In this section, we will demonstrate the effectiveness of our obtained results by the fol-
lowing example.

Example 1 Assume that the parameters of QVNNS (1) are given as follows:

06 0 0 075 0 0
c=lo o6 o], C=|lo0o o8 o],
0 0 05 0 0 06
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01 O 0
K=|10 01 0], §=0.1,
0 0 0.1

A = (@j)3x3 A = (4ij)3x3

where

ay =—0.075 + 0.02: + 0.025; + 0.02«,
a3 =—0.06 — 0.033: —0.033; — 0.03«,
doy =—0.025+ 01 + 0y + Ok, a3 = —
as =—0.04+ 0t + 0y + Ok,
ass3 = —0.07 — 0.006: — 0.006; — 0.008k,
aix = 0.075 + 0.015: + 0.015; + 0.016«,

dz1 = 0.025 + 0.004¢ + 0.007; + 0.006k,

B = (by)3x3,

2132 =-0.

=02,

B = (by)3x3,

a2 = —0.02 — 0.025: — 0.025; — 0.02«,

dy =-0.06+ 01 +0y + Ok,

0.02 - 0.0142 — 0.015; — 0.014«,

045 — 0.0047 — 0.006; — 0.004«,
a1 = 0.05 + 0.025: + 0.0255; + 0.0256k,

a3 =0.02 + 0.0124¢ + 0.0125; + 0.012«,

dzp = 0.035 + 0.0006: + 0.0005; + 0.0005«,

dss = 0.01 +0.0125: + 0.0125; + 0.012«,
dsp = 0.005 + 0.006: + 0.005; + 0.005«,
lvau =—-0.04 - 0.001: — 0.002; — 0.003«,
lvolg =-0.02 - 0.003: — 0.004; — 0.006«,
Z)gg =-0.15-0.016: — 0.015; — 0.014«,
Z)gl =-0.03 - 0.001: — 0.002; — 0.003«,
Z)gg =-0.01 - 0.003: — 0.003; — 0.005«,
@12 =0.008 + 0.03: + 0.02; + 0.02«,

@21 =0.08 + 0.012: + 0.012; + 0.012«,
1323 =0.096 + 0.05: + 0.047 + 0.08«,

1332 =0.016 + 0.03: + 0.05; + 0.04«,

a31 = 0.04 + 0.003: + 0.003; + 0.003x,

433 = 0.095 + 0.008: + 0.008 + 0.006x,
b1y = —0.055 + 0t + 0 + Ok,
by =—-0.01+01 + 07 + Ok,
b3 = —0.085 — 0.031: — 0.031 — 0.05x,
b3y = —0.015 — 0.015: — 0.016 — 0.016k,
b1 =0.032+ 01 + 0/ + Ok,

b13 = 0.16 + 0.0041 +0.003 ] + 0.004«,

byy =0.12 +0.0141 + 0.015 + 0.016k,
b1 =0.032 + 01 + 0 + Ok,

I;gg =0.04+0.019: + 0.016; + 0.019«.

Then we choose the following activation function of the QVNNSs (1):

fi@ =) =f(9) = (Ig+ 1 - g - 1]) x

Vq = qo+iq1 +jq2 + kqs € H.

0.05,

It is obvious that the function satisfies Assumption (A;) and Assumption (Ajy). Applying
YALMIP with the solver of SDPT3 in MATLAB, we obtain the following feasible solution

to the LMI (2) in Theorem 1:

23.8873 —-0.0148 + 0.0017:  0.0833 — 0.0013:
Q=] -0.0148 - 0.0017: 22.2007 -0.0262 - 0.0007: |,
0.0833 + 0.0013:  —0.0262 + 0.0007:  45.3548 + 0.0000¢
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19.1380 0 0
R, = 0 19.6444 0 )
0 0 28.8901
166.0871 0 0
Ry = 0 151.3635 0 )
0 0 168.7452
1.4655 0 0
R; = 0 0.4237 0 )
0 0 0.8634
3.1066 0 0
Ry = 0 2.5973 0 )
0 0 4.3724
A1 =28.5537, Az =53.6157, A3 =49.4532, Ay =49.5432,
As =49.8468, Ag =120.9964, A7 = 80.8760, Ag = 82.2778,
Ag = 85.6456, A10 = 744314, A1 = 8.8261, A12 = 57.8808,
A1z = 58.2264, A14 = 58.2264, A15 = 57.8808, A =13.2412,
A7 = 69.3583, Ag =12.7879, A9 = 37.2494, Ao = 43.9406,
Ag1 =43.9092, A2 = 44.4620, A2z =101.3891, Aos =71.3626,
Aos =71.7247, Age = 74.5952, Aoy = 26.2634.

Thus, the condition of Theorem 1 is satisfied, then system (1) has a unique equilibrium

point and the equilibrium point is globally robust stable.

In the following, we choose the following fixed network parameters:

06 O
C=]10 06
0 O

0
(U I
0.55

A= (aij)

0.1-0.1: - 0.2y +0.05«

J=

-0.2+0.1: +0.057 - 0.1« |,

0.1+0.1: +0.2; + 0.5«

where

ai; =0.02 +0.021: + 0.0252; + 0.025«,

a3 =0.01+0.012: + 0.012; + 0.01x,

ax =0.02 + 0.0004: + 0.0001; + 0.0002«,

a3 = 0.02 + 0.0015: + 0.0015; + 0.0015«,

aszz = 0.05 + 0.005: + 0.005; + 0.005«,

b12 =0.005 + 0.02: + 0.01; +0.01x,

B =(bjj)3x3,

3x3»

(42)

ap =0.02 +0.01z +0.01; + 0.012«,
as1 = 0.015 + 0.001:z + 0.005; + 0.004«,
ay3 =—-0.01 +0.012: + 0.012; + 0.01«,
a3y =0.01 +0.003: + 0.003; + 0.001«,
b1 =0.03 - 0.001: — 0.001; — 0.002«,

b13 =0.15 + 0.003: + 0.002; + 0.003«,
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Figure 1 The first part of the state trajectories for
system (1) with parameters tstpartof q,
istpartofa, | |
Istpartof g,
o
5
t
g
&
10 12 14 16 18 20
t
Figure 2 The second part of the state trajectories
for system (1) with parameters 2nd part of g,
2nd partof g, | |
2nd part of g
o
5
T
g
o
&
10 12 14 16 18 20
t
Figure 3 The third part of the state trajectories for 2 _—
system (1) with parameters —adpartofa,
3rd partofq2
151 4
3rd part of g,

3rd part of q

by1 =0.05+0.01: +0.01; + 0.01«, by =0.1+0.01z + 0.012; + 0.014«,

by3 =0.08 +0.03: +0.02; + 0.03«, bs; =0.02 - 0.001: — 0.002; — 0.0015«,

b3y =0.012 + 0.015: + 0.01; + 0.02«, b33 =0.03 + 0.016: + 0.015; + 0.014«.

Figures 1, 2, 3 and 4 depict the four parts of the states of the considered quaternion-valued
neural network system. It can be seen from these figures that each neuron state converges
to the stable equilibrium point, which is (0.1701 — 0.1674z — 0.3335; + 0.0830«,—0.3366 +
0.1673: + 0.0838 — 0.1662k,0.1836 + 0.1812: + 0.3633 7 + 0.9083«)7.
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Figure 4 The fourth part of the state trajectories for 2 —
system (1) with parameters \ ——dtnpartofq,
——4thpartofq,
4th part c>fq:‘l

4th part of q

5 Conclusion

In this paper, the issue of globally robust stability of delayed quaternion-valued neural net-
works with interval parameter uncertainties has been investigated by using a quaternion-
valued inequality, a Lyapunov function and a homeomorphic mapping, some new suffi-
cient conditions to the existence, uniqueness and global robust stability of the equilibrium
point for delayed quaternion-valued neural networks with interval parameter uncertain-
ties have been derived. To the study of [20] we add the leak delay, extend the model to
quaternion-valued neural networks and obtain the corresponding results under the rela-
tively weak conditions. In addition, the elements of a given unique criteria matrix in our
proposed results depend on not only the lower bounds but also the upper bounds of the
interval parameters, which is less conservative than some previous contributions [19, 22,
27, 35].

We would like to point out that more quaternion-valued neural networks can be gen-
eralized based on our main results such as discrete-time neural networks [26], stochastic
perturbations [37], and Markovian jumping parameters [38]. As future work, we plan to
focus on discrete-time quaternion-valued neural networks with linear threshold function,
the relevant results will be presented in the near future.
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