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Abstract
A powerful analytical approach, namely the fractional residual power series method
(FRPS), is applied successfully in this work to solving a class of fractional stiff systems.
The methodology of the FRPS method gets a Maclaurin expansion of the solution in
rapidly convergent form and apparent sequences based on the Caputo sense
without any restriction hypothesis. This approach is tested on a fractional stiff system
with nonlinearity ranging. Meanwhile, stability and convergence study are presented
in the domain of interest. Illustrative examples justify that the proposed method is
analytically effective and convenient, and it can be implemented in a large number of
engineering problems. A numerical comparison for the experimental data with
another well-known method, the reproducing kernel method, is given. The graphical
consequences illuminate the simplicity and reliability of the FRPS method in the
determination of the RPS solutions consistently.
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1 Introduction
Initial value problems of fractional order often appear during the modeling of many issues
in the major scientific disciplines, leading us to a deeper understanding, quantification ca-
pability, and simulation of a particular feature of the real-world problems, including the
disciplines of physics, biology, chemistry, engineering, and economics. Unfortunately, it
seldom happens that these equations have solutions that can be expressed in closed form,
so it is common to seek approximate solutions by means of numerical methods. As a mat-
ter of terminology, stiff systems form a class of mathematical problems that appear fre-
quently in the study of many real phenomena. They were first highlighted by Curtiss and
Hirschfelder [1]. They are observed in the study of chemical kinetics, aerodynamics, bal-
listics, electrical circuit theory and other areas of applications [2]. The mathematical stiff-
ness of a problem reflects the fact that various processes in the considered physical models
have different rates. It results from the decaying of some of the solution components being
more rapidly than other components as they contain the term e–λt , λ > 0. However, many
numerical and analytical techniques have been employed recently for solving stiff systems
of ordinary differential equations including the homotopy perturbation method [3], the
block method [4], the multistep method [5], and the variational iteration method [6]. Ex-
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amples of another mathematical models and effective numerical solutions can be found
in [7–9].

In the last decades, the topic of fractional calculus has attracted the attention of nu-
merous researchers for its considerable importance in many applications such as fluid
dynamics, viscoelasticity, physics, entropy theory and vibrations [10–14]. In this regard,
many differential equations of integer order were generalized to fractional order, as well
as various methods were developed to solve them. Recently, the Atangana-Baleanu frac-
tional concept has been suggested as a novel fractional operator in the Liouville–Caputo
sense based on the generalized Mittag-Leffler function; such fractional operator is with
a non-singular and non-local kernel that has been introduced in order to better describe
complex physical problems that follow at the same time the power and exponential de-
cay law; see for example [15–19]. Thereby, approximate and analytical techniques have
been introduced to obtain solutions of fractional stiff systems such as the homotopy anal-
ysis method [20], the homotopy perturbation method [21], and the multistage Bernstein
polynomial method [22].

For the first time, this paper aims to utilize the residual power series (RPS) algorithm for
solving fractional order stiff systems of the following form:

Dβi ui(t) = fi
(
t, u1(t), u2(t), . . . , um(t)

)
, n – 1 < βi ≤ n, n ∈N, (1.1)

subject to the initial condition

ui(0) = ai,0, (1.2)

where t ≥ 0, ai are real finite constants, fi : [0,∞)×R
m →R, i = 1, 2, . . . , m, are continuous

real-valued functions on the domain of interest, which can be linear or nonlinear, Dβi is
the Caputo derivative fractional order βi, i = 1, 2, . . . , m, m ∈ N, and ui(t) are unknown
analytical functions to be determined. Here, we assume that the fractional stiff systems
(1.1) and (1.2) has unique smooth solution for t ≥ 0.

The RPS technique has been used in providing approximation numerical solutions for
certain class of differential equations under uncertainty [23]. Later, the generalized Lane-
Emden equation has been investigated numerically by utilizing the RPS method. Also,
the method was applied successfully in solving composite and non-composite fractional
DEs, and in predicting and representing multiplicity solutions to fractional boundary value
problems [24, 25]. Furthermore, [26–29] assert that the RPS method is easy and powerful
to construct power series solution for strongly linear and nonlinear equations without
terms of perturbation, discretization, and linearization. Unlike the classical power series
method, the FRPS method distinguishes itself in several important aspects such that it
does not require making a comparison between the coefficients of corresponding terms
and a recursion relation is not needed and provides a direct way to ensure the rate of
convergence for series solution by minimizing the residual error related.

Bearing these ideas in mind, this work is organized as follows. In the next section, some
basic definitions and preliminary remarks related to fractional calculus and generalized
Taylor’s formula are described. Section 3 is devoted to establishing the FRPS algorithm for
obtaining the approximate solutions for a class of stiff system of fractional order. Mean-
while, a description of the proposed method is presented. Stability and convergence anal-
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yses are also presented. Several numerical applications are given in Sect. 4 to illustrate
the simplicity, accuracy, applicability and reliability of the presented method. Further, a
comparison between the numerical results of the FRPS method and another approximate
method, namely, the reproducing kernel Hilbert space method, has been given. Finally, a
brief conclusion is given in the last section.

2 Fundamentals concepts
The purpose of this section is to present some basic definitions and facts related to frac-
tional calculus and fractional power series, which are used in subsequent sections of this
study.

Definition 2.1 ([30]) The Riemann–Liouville fractional integral operator of order β > 0
is defined by

(
Jβ
a u

)
(t) =

1
Γ (β)

∫ t

a
u(ξ )(t – ξ )β–1 dξ , t > 0. (2.1)

For β = 0, it yields (Jβ
a u)(t) = u(t).

Definition 2.2 ([30]) For n – 1 < β < n, n ∈ N. The Caputo fractional derivative operator
of order β is defined by

(
Dβ

a u
)
(t) =

1
Γ (n – β)

∫ t

a
u(n)(ξ )(t – ξ )n–β–1 dξ , t > 0. (2.2)

Specially, Dβ
a u(t) = u(n)(t) for β = n.

The operators Dβ
a and Jβ

a satisfy the following properties:

• Dβ
a c = 0 for any constant c ∈ R. (2.3)

• Dβ
a (t – a)q =

Γ (q + 1)
Γ (q – β + 1)

(t – a)q–β for n – 1 < β < n, q > n – 1,

and is equal to zero otherwise. (2.4)

• Jβ
a Jα

a u = Jα
a Jβ

a u = Jα+β
a u. (2.5)

• Jβ
a c =

c
Γ (β + 1)

(t – a)β for any constant c ∈R. (2.6)

• (
Jβ
a Dβ

a u
)
(t) = u(t) –

n–1∑

k=0

u(k)(a)
k!

(t – a)k

for u ∈ Cn[a, b] and n – 1 < β ≤ n, with n ∈N.

Moreover, if β ≥ 0, u ∈ C[a, b], then Dβ Jβu(t) = u(t). (2.7)

Definition 2.3 ([26]) A power series (PS) expansion at t = t0 of the following form:

∞∑

m=0

am(t – t0)mβ = a0 + a1(t – t0)β + a1(t – t0)2β + · · ·

for n – 1 < β ≤ n, n ∈N and t ≤ t0, is called the fractional power series (FPS).
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Theorem 2.1 ([25]) There are only three possibilities for the FPS
∑∞

m=0 am(t – t0)mβ , which
are:

(1) The series converges only for t = t0. That is; the radius of convergence equals zero.
(2) The series converges for all t ≥ t0. That is; the radius of convergence equals ∞.
(3) The series converges for t ∈ [t0, t0 + R), for some positive real number R and diverges

for t > t0 + R. Here, R is the radius of convergence for the FPS.

Theorem 2.2 ([25]) Suppose that u(t) has a FPS representation at t = t0 of the form

u(t) =
∞∑

m=0

cm(t – t0)mβ . (2.8)

If u(t) ∈ C[t0, t0 + R), and Dmβu(t) ∈ C(t0, t0 + R), for m = 0, 1, 2, . . . , then the coefficients cm

will be of the form cm = Dmβ
t u(t0)

Γ (mβ+1) , where Dmβ = Dβ ·Dβ · · ·Dβ (m times).

3 Fractional residual power series method
In this section, we are intending to use the FRPS method for solving a class of stiff systems
of fractional order described in (1.1) and (1.2) through substituting the FPS expansions
within truncation residual functions will be used. To do so, we assume that the FPS solu-
tion of the fractional stiff systems (1.1) and (1.2) at t = 0 has the following form:

ui(t) =
∞∑

n=0

ai,n
tnβi

Γ (1 + nβi)
. (3.1)

The aim of the FRPS algorithm is obtaining a supportive approximate solution to the
proposed model. Thus, by using the initial conditions in Eq. (1.2), ui(0) = ai,0, as initial
iterative approximation of ui(t), Eq. (3.1) can be written as

ui(t) = ai,0 +
∞∑

n=1

ai,n
tnβi

Γ (1 + nβi)
. (3.2)

Consequently, the suggested solution ui(t) can be approximated by the following kth-
truncated series:

ui,k(t) = ai,0 +
k∑

n=1

ai,n
tnβi

Γ (1 + nβi)
. (3.3)

According to the RPS algorithm, the residual function will be defined as

Res ui(t) = Dβi ui(t) – fi
(
t, u1(t), u2(t), . . . , um(t)

)
, i = 1, 2, . . . , m, 0 ≤ t < R. (3.4)

Therefore, the kth-residual function Res ui,k(t), for k = 1, 2, 3, . . . , n, can be given by

Res ui,k(t) = Dβi ui,k(t) – fi
(
t, u1,k(t), u2,k(t), . . . , um,k(t)

)
, i = 1, 2, . . . , m. (3.5)

As in [25–27], we have Res ui(t) = 0, and limk→∞ Res ui,k(t) = Res ui(t), for each t ≥ 0.
As a matter of fact, this yields Dnβi Res ui,k(t) = 0 for n = 0, 1, 2, . . . , k, i = 1, 2, . . . , m, and
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Dnβi Res ui(0) = Dnβi Res ui,k(0) = 0. As a result, to determine the unknown coefficients of
Eq. (3.3), one can seek the solution of the following fractional equation:

D(k–1)βi Res ui,k(0) = 0, i = 1, 2, . . . , m, k = 1, 2, 3, . . . . (3.6)

To illustrate the basic idea of the FRPS algorithm for finding the first unknown coeffi-
cient ai,1, we substitute ui,1(t) = ai,0 + ai,1

tβi
Γ (1+βi)

in the kth-residual function Eq. (3.5) with
k = 1, Res ui,1(t), to get

Res ui, 1(t)

= Dβi ui,1(t) – fi
(
t, u1,1(t), u2,1(t), . . . , um,1(t)

)

= Dβi

(
ai,0 + ai,1

tβi

Γ (1 + βi)

)

– fi

(
t, a1,0 + a1,1

tβi

Γ (1 + βi)
, a2,0 + a2,1

tβi

Γ (1 + βi)
, . . . , am,0 + am,1

tβm

Γ (1 + βm)

)
.

Based on Eq. (3.6) and then using the fact Res ui,1(0) = 0, it yields ai,1 = fi(0, a1,0, a2,0,
. . . , am,0). Therefore, the first FRPS approximated of IVPs (1.1) and (1.2) will be

ui,1(t) = ai,0 + fi(0, a1,0, a2,0, . . . , am,0)
tβi

Γ (1 + βi)
.

Likewise, to obtain the second unknown coefficient ai,2, we substitute ui,2(t) = ai,0 +
ai,1

tβi
Γ (1+βi)

+ ai,2
t2βi

Γ (1+2βi)
in the kth-residual function Eq. (3.5) with k = 2, Res ui,2(t), to get

Res ui, 2(t) = Dβi ui,2(t) – fi
(
t, u1,2(t), u2,2(t), . . . , um,2(t)

)

= Dβi

(
ai,0 + ai,1

tβi

Γ (1 + βi)
+ ai,2

t2βi

Γ (1 + 2βi)

)

– fi

(
t, a1,0 + a1,1

tβi

Γ (1 + βi)
+ a1,2

t2βi

Γ (1 + 2βi)
, . . . ,

am,0 + am,1
tβm

Γ (1 + βm)
+ am,2

t2βi

Γ (1 + 2βi)

)
.

Therefore, applying the operator Dβi on Res ui, 2(t) will show that

Dβi Res ui, 2(t) = D2βi

(
ai,0 + ai,1

tβi

Γ (1 + βi)
+ ai,2

t2βi

Γ (1 + 2βi)

)

– Dβi

(
fi

(
t, a1,0 + a1,1

tβi

Γ (1 + βi)
+ a1,2

t2βi

Γ (1 + 2βi)
, . . . ,

am,0 + am,1
tβm

Γ (1 + βm)
+ am,2

t2βi

Γ (1 + 2βi)

))
.

Consequently, by using the fact Dβi Res ui,2(0) = 0, the second unknown coefficient ui,2

will be given by ui,2 = fi(0, a1,1, a2,1, . . . , am,1). Therefore, the second FRPS approximated of
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IVPs (1.1) and (1.2) will be as

ui,1(t) = ai,0 + fi(0, a1,0, a2,0, . . . , am,0)
tβi

Γ (1 + βi)
+ fi(0, a1,1, a2,1, . . . , am,1)

t2βi

Γ (1 + 2βi)
.

By repeating the same routine until arbitrary order, the other unknown coefficients, ai,k ,
will be obtained [31, 32].

Lemma 3.1 Suppose that u(t) ∈ C[t0, t0 + R), R > 0, Djβ
t0 u(t) ∈ C(t0, t0 + R), and 0 < β ≤ 1.

Then, for any j ∈N, we have

(
J jβ
t0 Djβ

t0 u
)
(t) –

(
J (j+1)β
t0 D(j+1)β

t0 u
)
(t) =

Djβ
t0 u(t0)

Γ (jβ + 1)
(t – t0)jβ .

Proof Using property (2.5) of the fractional integral operator, we can write

(
J jβ
t0 Djβ

t0 u
)
(t) –

(
J (j+1)β
t0 D(j+1)β

t0 u
)
(t) =

(
J jβ
t0 Djβ

t0 u
)
(t) –

(
Jβ
t0 J jβ

t0 Djβ
t0 Dβ

t0 u
)
(t)

=
(
J jβ
t0 Djβ

t0 u
)
(t) –

(
Jβ
t0

(
J jβ
t0 Djβ

t0

)
Dβ

t0 u
)
(t)

= J jβ
t0

[(
Djβ

t0 u
)
(t) –

(
J jβ
t0 Djβ

t0

)(
Dβ

t0 u
)]

(t).

Applying (2.7) for (J jβ
t0 Djβ

t0 )(Dβ
t0 u)(t), we get

(
J jβ
t0 Djβ

t0 u
)
(t) –

(
J (j+1)β
t0 D(j+1)β

t0 u
)
(t)

= J jβ
t0

[(
Djβ

t0 u
)
(t) –

(
Djβ

t0 u
)
(t) + Djβ

t0 u(t0)
]

= J jβ
t0

[
Djβ

t0 u(t0)
]

=
Djβ

t0 u(t0)
Γ (jβ + 1)

(t – t0)jβ , by using (2.6) with c = Djβ
t0 u(t0). �

Theorem 3.1 Let u(t) has the FPS in (2.8) with radius of convergence R > 0, and suppose
that u(t) ∈ C[t0, t0 + R), Djβ

t0 u(t) ∈ C(t0, t0 + R) for j = 0, 1, 2, . . . , N + 1. Then

u(t) = uN (t) + RN (ζ ), (3.7)

where uN (t) =
∑N

j=0
Djβ

t0 u(t0)
Γ (jβ+1) (t – t0)jβ and RN (ζ ) =

D(N+1)β
t0 u(ζ )

Γ ((N+1)β+1) (t – t0)(N+1)β , for some ζ ∈ (t0, t).

Proof First, we notice that

u(t) –
(
J (N+1)β
t0 D(N+1)β

t0 u
)
(t) =

N∑

j=0

[(
J jβ
t0 Djβ

t0 u
)
(t) –

(
J (j+1)β
t0 D(j+1)β

t0 u
)
(t)

]
.

Using Lemma 3.1, we get

u(t) –
(
J (N+1)β
t0 D(N+1)β

t0 u
)
(t) =

N∑

j=0

Djβ
t0 u(t0)

Γ (jβ + 1)
(t – t0)jβ . (3.8)

So,

u(t) =
N∑

j=0

Djβ
t0 u(t0)

Γ (jβ + 1)
(t – t0)jβ +

(
J (N+1)β
t0 D(N+1)β

t0 u
)
(t).
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But

(
J (N+1)β
t0 D(N+1)β

t0 u
)
(t)

= J (N+1)β
t0

(
D(N+1)β

t0 u
)
(t)

=
1

Γ ((N + 1)β)

∫ t

t0

D(N+1)β
t0 u(τ )(t – τ )(N+1)β–1 dτ

=
D(N+1)β

t0 u(ζ )
Γ ((N + 1)β)

∫ t

t0

(t – τ )(N+1)β–1 dτ (by the mean value theorem for integrals)

=
D(N+1)β

t0 u(ζ )
Γ ((N + 1)β)

(t – t0)(N+1)β

(N + 1)β

=
D(N+1)β

t0 u(ζ )
Γ ((N + 1)β + 1)

(t – t0)(N+1)β .

Finally, we substitute in (3.8) to get (3.7). �

Remark 1 The formula of uN (t) in the previous theorem gives an approximation of u(t),
and RN (ζ ) is the truncation (the remainder) error that results from approximating u(t) by
uN (t). Moreover, if |D(N+1)β

t0 u(ζ )| < M on [t0, t0 + R), then the upper bound of the error can
be computed by

∣
∣RN (ζ )

∣
∣ ≤

∣∣
∣∣ sup
t∈[t0,t0+R]

M(t – t0)(N+1)β

Γ ((N + 1)β + 1)

∣∣
∣∣.

Remark 2 For solving stiff system in (1.1) using the FRPS technique, we put

ui(t) =
∞∑

n=0

ai,n
tnβi

Γ (1 + nβi)
∀i = 1, 2, . . . , m. (3.9)

So, if we assume that each ui(t) has the FPS in (3.9) with radius of convergence Ri > 0,
and that ui(t) ∈ C[0, Ri), Djβi

0 ui(t) ∈ C(0, Ri) for j = 0, 1, 2, . . . , N + 1, then ui(t) = uiN (t) +
RiN (ζ ), ∀i. The approximate solution UN(t) = (u1N (t), u2N (t), . . . , umN (t))T converges to
the exact solution U(t) = (u1(t), u2(t), . . . , um(t))T as N → ∞, ∀t ∈ [0, R), where R =
min{R1, R2, . . . , Rm} and the remainder error equals

RN (ζ ) = max
{

R1N (ζ ), R2N (ζ ), . . . , RmN (ζ )
}

.

4 Numerical applications
To confirm the high degree of accurateness and efficiency of the proposed FRPS method
for solving stiff systems of fractional order, numerical patterns and examples are applied in
this section. Also, we make a comparison with another numerical technique, namely, the
reproducing kernel Hilbert space method. The reader can find a description and applica-
tions for this method in [33–36]. Computations were performed by using the Mathematica
package.
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Example 4.1 Consider the following fractional-order stiff system:

Dα
0 u(t) = –u(t) + 95v(t), 0 < α ≤ 1,

Dα
0 v(t) = –u(t) – 97v(t),

subject to the initial conditions

u(0) = 1, v(0) = 1.

The exact solution of this system when α = 1 is

u(t) =
1

47
(
95e–2t – 48e–96t), v(t) =

1
47

(
48e–96t – e–2t).

For k = 1, the first truncated power series approximations from Eq. (3.3) have the forms

u1(t) = 1 +
c1

Γ (1 + α)
tα , v1(t) = 1 +

d1

Γ (1 + α)
tα

and the first residual functions are

Res u1(t) = Dα
0 u1(t) + u1(t) – 95v1(t)

= Dα
0

(
1 +

c1

Γ (1 + α)
tα

)
+ 1 +

c1

Γ (1 + α)
tα – 95

(
1 +

d1

Γ (1 + α)
tα

)
,

Res v1(t) = Dα
0 v1(t) + u1(t) – 95v1(t)

= Dα
0

(
1 +

d1

Γ (1 + α)
tα

)
+ 1 +

c1

Γ (1 + α)
tα + 97

(
1 +

d1

Γ (1 + α)
tα

)
.

From (3.6), Res u1(0) = 0 and Res v1(0) = 0, which gives c1 = 94 and d1 = –98. So

u1(t) = 1 +
94tα

Γ [1 + α]
and v1(t) = 1 –

98tα

Γ [1 + α]
.

For k = 2, the second truncated power series approximations have the forms

u2(t) = 1 +
94

Γ (1 + α)
tα +

c2

Γ (1 + 2α)
t2α , v2(t) = 1 –

98
Γ (1 + α)

tα +
d2

Γ (1 + 2α)
t2α ,

and the second residual functions are

Res u2(t) = Dα
0 u2(t) + u2(t) – 95v2(t)

= Dα
0

(
1 +

94
Γ (1 + α)

tα +
c2

Γ (1 + 2α)
t2α

)
+ 1 +

94
Γ (1 + α)

tα +
c2

Γ (1 + 2α)
t2α

– 95
(

1 –
98

Γ (1 + α)
tα +

d2

Γ (1 + 2α)
t2α

)
,



Freihet et al. Advances in Difference Equations         (2019) 2019:95 Page 9 of 15

Res v2(t) = Dα
0 u2(t) + u2(t) – 95v2(t)

= Dα
0

(
1 +

94
Γ (1 + α)

tα +
c2

Γ (1 + 2α)
t2α

)
+ 1 +

94
Γ (1 + α)

tα +
c2

Γ (1 + 2α)
t2α

+ 97
(

1 –
98

Γ (1 + α)
tα +

d2

Γ (1 + 2α)
t2α

)
.

From (3.6), Dα
0 Res u2(0) = 0 and Dα

0 Res v2(0) = 0, which gives c2 = –9404 and d2 = 9412.
So

u2(t) = 1 +
94tα

Γ [1 + α]
–

9404t2α

Γ [1 + 2α]
and

v2(t) = 1 –
98tα

Γ [1 + α]
+

9412t2α

Γ [1 + 2α]
.

Continuing this process, we get

u3(t) = 1 +
94tα

Γ [1 + α]
–

9404t2α

Γ [1 + 2α]
+

903,544t3α

Γ [1 + 3α]
,

v3(t) = 1 –
98tα

Γ [1 + α]
+

9412t2α

Γ [1 + 2α]
–

903,560t3α

Γ [1 + 3α]
,

u4(t) = 1 +
94tα

Γ [1 + α]
–

9404t2α

Γ [1 + 2α]
+

903,544t3α

Γ [1 + 3α]
–

86,741,744t4α

Γ [1 + 4α]
,

v4(t) = 1 –
98tα

Γ [1 + α]
+

9412t2α

Γ [1 + 2α]
–

903,560t3α

Γ [1 + 3α]
+

86,741,776t4α

Γ [1 + 4α]
,

u5(t) = 1 +
94tα

Γ [1 + α]
–

9404t2α

Γ [1 + 2α]
+

903,544t3α

Γ [1 + 3α]
–

86,741,744t4α

Γ [1 + 4α]
+

8,327,210,464t5α

Γ [1 + 5α]
,

v5(t) = 1 –
98tα

Γ [1 + α]
+

9412t2α

Γ [1 + 2α]
–

903,560t3α

Γ [1 + 3α]
+

86,741,776t4α

Γ [1 + 4α]
–

8,327,210,528t5α

Γ [1 + 5α]
.

Some numerical results and tabulated data for α = 1 and k = 200 are given in Table 1 us-
ing the FRPS method. In Table 2, numerical results for the same example using the RKHS
method have been given. Figures 1 and 2 show the comparison between the behavior of
the exact solution and the approximate solution using the FRPS and the RK methods, re-
spectively, for α = 1 with step size 0.2.

Figure 1 The behavior of FRPS solution of Example 4.1: __ exact; . . . . approximated
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Figure 2 The behavior of RK solution of Example 4.1: __ exact; . . . . approximated

Table 1 Numerical results of the FRPS solutions at different values of t of Example 4.1

t Exact u(t) Approximation u(t) Absolute Error Relative Error

0.000 1. 1. 0. 0.
0.025 1.830049650419 1.8300496504186 6.661338147751× 10–16 3.639976732996× 10–16

0.050 1.820521847980 1.8205218479801 4.218847493576× 10–15 2.317383610780× 10–15

0.075 1.7389664179059 1.7389664179059 1.998401444325× 10–15 1.149189210181× 10–15

0.100 1.6548121396395 1.6548121396396 6.017408793468× 10–14 3.636309312294× 10–14

0.125 1.574165520630 1.5741655206310 1.418198891656× 10–12 9.009210740996× 10–13

0.150 1.4973979619154 1.4973979619805 6.508638072944× 10–11 4.346632116834× 10–11

0.175 1.4243694914073 1.4243694910746 3.326674491433× 10–10 2.335541803936× 10–10

0.200 1.3549022160256 1.3549022084615 7.564062487475× 10–9 5.582736818944× 10–9

0.225 1.2888228592360 1.2888227498472 1.093887884718× 10–7 8.487495988131× 10–8

0.250 1.2259662270401 1.2259657966770 4.303631988556× 10–7 3.510400118400× 10–7

t Exact v(t) Approximation v(t) Absolute Error Relative Error

0.000 1. 1. 0. 0.
0.025 0.0724091985828 0.0724091985828 2.3592239273× 10–16 3.2581826253× 10–15

0.050 –0.010847011908 –0.010847011908 3.2734231992× 10–15 3.0178110130× 10–13

0.075 –0.0175504650558 –0.0175504650558 1.3850032232× 10–14 7.8915471403× 10–13

0.100 –0.0173506334835 –0.0173506334839 3.6409417148× 10–13 2.0984488654× 10–11

0.125 –0.0165639544868 –0.0165639544956 8.8100464424× 10–12 5.3188062364× 10–10

0.150 –0.0157615205520 –0.0157615206823 1.3034362131× 10–10 8.2697364688× 10–9

0.175 –0.0149933119699 –0.0149933122356 2.6574836429× 10–10 1.7724460401× 10–8

0.200 –0.0142621239543 –0.0142621227122 1.2421122308× 10–9 8.7091672654× 10–8

0.225 –0.0135665559925 –0.0135665780247 2.2032217302× 10–8 1.6240096100× 10–6

0.250 –0.0129049076149 –0.0129052984430 3.9082809609× 10–7 3.0285230070× 10–5

Table 2 Numerical results of the RK solutions at different values of t of Example 4.1

t Approximation u(t) Approximation v(t) Absolute Error u(t) Absolute Error v(t)

0. 1 1 0. 0.
0.025 1.831067484 0.07135645072 1.017833134× 10–3 1.052747859× 10–3

0.050 1.820045141 –0.01040257192 4.767065702× 10–4 4.444399909× 10–4

0.075 1.738843886 –0.01745772685 1.225318916× 10–4 9.273820249× 10–5

0.100 1.654770941 –0.01733692021 4.119853098× 10–5 1.371327217× 10–5

0.125 1.574138216 –0.01656198091 2.730470746× 10–5 1.973578751× 10–6

0.150 1.49737419 –0.01576107085 2.377144355× 10–5 4.497046152× 10–7

0.175 1.424347792 –0.01499306097 2.169909736× 10–5 2.510022328× 10–7

0.200 1.354882302 –0.01426191185 1.991383853× 10–5 2.12102572× 10–7

0.225 1.288804592 –0.01356636344 1.826725615× 10–5 1.925535892× 10–7

0.250 1.225949491 –0.01290473142 1.67357026× 10–5 1.761929954× 10–7
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Example 4.2 Consider the nonlinear fractional-order stiff system:

Dα
0 u(t) = –1002u(t) + 1000v2(t), 0 < α ≤ 1

Dα
0 v(t) = u(t) – v(t) – v2(t), t ∈ [0, 2],

subject to the initial conditions u(0) = 1, v(0) = 1.
The exact solution of this system when α = 1 is u(t) = e–2t , v(t) = e–t .
For k = 1, the first truncated power series approximations have the forms

u1(t) = 1 +
c1

Γ (1 + α)
tα , v1(t) = 1 +

d1

Γ (1 + α)
tα

and the first residual functions are

Res u1(t)

= Dα
0 u1(t) + 1002u1(t) – 1000v2

1(t)

= Dα
0

(
1 +

c1

Γ (1 + α)
tα

)
+ 1002

(
1 +

c1

Γ (1 + α)
tα

)
– 1000

(
1 +

d1

Γ (1 + α)
tα

)2

,

Res v1(t)

= Dα
0 v1(t) – u1(t) + v1(t) + v2

1(t)

= Dα
0

(
1 +

d1

Γ (1 + α)
tα

)
–

(
1 +

c1

Γ (1 + α)
tα

)

+
(

1 +
d1

Γ (1 + α)
tα

)
+

(
1 +

d1

Γ (1 + α)
tα

)2

.

From (3.6), Res u1(0) = 0 and Res v1(0) = 0, which gives c1 = –2 and d1 = –1. So

u1(t) = 1 –
2tα

Γ [1 + α]
and v1(t) = 1 –

tα

Γ [1 + α]
.

For k = 2, the second truncated power series approximations have the forms

u2(t) = 1 –
2

Γ (1 + α)
tα +

c2

Γ (1 + 2α)
t2α , v2(t) = 1 –

1
Γ (1 + α)

tα +
d2

Γ (1 + 2α)
t2α ,

and the second residual functions are

Res u2(t)

= Dα
0 u2(t) + 1002u2(t) – 1000v2

2(t)

= Dα
0

(
1 –

2
Γ (1 + α)

tα +
c2

Γ (1 + 2α)
t2α

)
+ 1002

(
1 –

2
Γ (1 + α)

tα +
c2

Γ (1 + 2α)
t2α

)

– 1000
(

1 –
1

Γ (1 + α)
tα +

d2

Γ (1 + 2α)
t2α

)2

,

Res v2(t)

= Dα
0 v2(t) – u2(t) + v2(t) + v2

2(t)
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= Dα
0

(
1 –

1
Γ (1 + α)

tα +
d2

Γ (1 + 2α)
t2α

)
–

(
1 –

2
Γ (1 + α)

tα +
c2

Γ (1 + 2α)
t2α

)

+ 1 –
1

Γ (1 + α)
tα +

d2

Γ (1 + 2α)
t2α +

(
1 –

1
Γ (1 + α)

tα +
d2

Γ (1 + 2α)
t2α

)2

.

From (3.6), Dα
0 Res u2(0) = 0 and Dα

0 Res v2(0) = 0, which gives c2 = 4 and d2 = 1. So

u2(t) = 1 –
2tα

Γ [1 + α]
+

4t2α

Γ [1 + 2α]
and v2(t) = 1 –

tα

Γ [1 + α]
+

t2α

Γ [1 + 2α]
.

Continuing this process, we get

u3(t) = 1 –
2tα

Γ [1 + α]
+

4t2α

Γ [1 + 2α]
–

8t3α(251Γ [1 + α]2 – 125Γ [1 + 2α])
Γ [1 + α]2Γ [1 + 3α]

,

v3(t) = 1 –
tα

Γ [1 + α]
+

t2α

Γ [1 + 2α]
+

t3α(Γ [1 + α]2 – Γ [1 + 2α])
Γ [1 + α]2Γ [1 + 3α]

,

u4(t) = 1 –
2tα

Γ [1 + α]
+

4t2α

Γ [1 + 2α]
–

8t3α(251Γ [1 + α]2 – 125Γ [1 + 2α])
Γ [1 + α]2Γ [1 + 3α]

+
(
16t4α

(
12,5876Γ [1 + α]2Γ [1 + 2α]

– 62,750Γ [1 + 2α]2 – 125Γ [1 + α]Γ [1 + 3α]
))

/
(
Γ [1 + α]2Γ [1 + 2α]Γ [1 + 4α]

)
,

v4(t) = 1 –
tα

Γ [1 + α]
+

t2α

Γ [1 + 2α]
+

t3α(Γ [1 + α]2 – Γ [1 + 2α])
Γ [1 + α]2Γ [1 + 3α]

+
t4α(–2011Γ [1 + α]2Γ [1 + 2α] + 1003Γ [1 + 2α]2 + 2Γ [1 + α]Γ [1 + 3α])

Γ [1 + α]2Γ [1 + 2α]Γ [1 + 4α]
.

Some numerical results and tabulated data using the FRPS method for α = 1 and k = 20
are given in Table 3 and Fig. 3.

To show the accuracy of this method, the RKHS method for the same example with
k = 1000 are applied and the results are summarized in Table 4 and Fig. 4. For fractional
derivatives, we take k = 10 and apply the RPS method for αi = 0.95 + 0.005i, i = 0, 1, . . . , 9
as shown in Fig. 5. Figure 6 shows the results for αi = 0.1 + 0.1i, i = 0, 1, . . . , 9.

Figure 3 The FRPS solution behavior of Example 4.2 for α = 1 and k = 20
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Table 3 Numerical results of FRPS method of Example 4.2

t Exact u(t) Approximation u(t) Absolute Error Relative Error

0. 1. 1. 0. 0.
0.2 0.6703200460356 0.67032004603564 0. 0.
0.4 0.4493289641172 0.44932896411722 5.5511151231× 10–17 1.2354233905× 10–16

0.6 0.301194211912 0.30119421191220 0. 0.
0.8 0.2018965179947 0.201896517994656 5.5511151231× 10–16 2.7494853196× 10–15

1.0 0.1353352832366 0.135335283236650 3.7581049384× 10–14 2.7768848215× 10–13

1.2 0.0907179532894 0.090717953291115 1.7021939414× 10–12 1.8763584050× 10–11

1.4 0.0608100626252 0.060810062667847 4.2628810204× 10–11 7.0101572608× 10–10

1.6 0.0407622039784 0.040762204671022 6.9265617547× 10–10 1.6992608541× 10–8

1.8 0.0273237224473 0.027323730534706 8.0874130483× 10–9 2.9598503878× 10–7

2. 0.0183156388887 0.018315711651223 7.27624886870× 10–8 3.9726972741× 10–6

t Exact v(t) Approximation v(t) Absolute Error Relative Error

0. 1. 1. 0. 0.
0.2 0.8187307531 0.8187307530780 0. 0.
0.4 0.6703200460 0.6703200460356 0. 0.
0.6 0.5488116361 0.5488116360940 0. 0.
0.8 0.4493289641 0.4493289641172 5.55111512313× 10–17 1.23542339053× 10–16

1.0 0.3678794412 0.3678794411714 5.55111512313× 10–17 1.50894953669× 10–16

1.2 0.301194212 0.3011942119122 0. 0.
1.4 0.2465969639 0.2465969639416 1.38777878078× 10–16 5.627720465813× 10–16

1.6 0.2018965180 0.2018965179947 5.551115123126× 10–16 2.74948531964× 10–15

1.8 0.1652988882 0.1652988882216 4.21884749358× 10–15 2.55225400423× 10–14

2. 0.1353352832 0.1353352832367 3.75810493836× 10–14 2.77688482152× 10–13

Table 4 Numerical results and approximated RKHS-solutions of Example 4.2

t Approximate u(t) Approximate v(t) Absolute Error u(t) Absolute Error v(t)

0. 1 1 0. 0.
0.2 0.6703194887 0.8187299974 5.573444155× 10–7 7.556686423× 10–7

0.4 0.449327762 0.6703188097 1.202139499× 10–6 1.236292949× 10–6

0.6 0.3011928511 0.5458760657 1.36082079× 10–6 0.002935570398
0.8 0.201895234 0.4245696735 1.284006963× 10–6 0.02475929057
1. 0.1353341734 0.3032632814 1.109822727× 10–6 0.0646161597
1.2 0.09071704242 0.1819568893 9.108704336× 10–7 0.1192373227
1.4 0.06080934018 0.0606504971 7.224408154× 10–7 0.1859464668
1.6 0.04076164474 –0.06065589505 5.592345995× 10–7 0.262552413
1.8 0.02732329734 –0.1819622872 4.251088836× 10–7 0.3472611754
2. 0.01831532026 –0.3032686793 3.186323165× 10–7 0.4386039626

Figure 4 The RK solution behavior of Example 4.2 for α = 1 and k = 1000
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Figure 5 The solutions behavior of Example 4.2 for αi = 0.95 + 0.005i, i = 0, 1, . . . , 9

Figure 6 The solutions behavior of Example 4.2 for αi = 0.1 + 0.1i, i = 0, 1, . . . , 9

5 Conclusion
In this work, we applied an analytical iterative method depending on the residual power
series to get an approximate solution to a stiff system of fractional order in the Caputo
sense. Numerical examples for both linear and nonlinear fractional stiff systems were given
to show the effectiveness of the proposed method. By comparing our results with the exact
solutions and results obtained by another numerical method, we observe that the RPS
method yields an accurate approximation.
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