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Abstract

A powerful analytical approach, namely the fractional residual power series method
(FRPS), is applied successfully in this work to solving a class of fractional stiff systems.
The methodology of the FRPS method gets a Maclaurin expansion of the solution in
rapidly convergent form and apparent sequences based on the Caputo sense
without any restriction hypothesis. This approach is tested on a fractional stiff system
with nonlinearity ranging. Meanwhile, stability and convergence study are presented
in the domain of interest. lllustrative examples justify that the proposed method is
analytically effective and convenient, and it can be implemented in a large number of
engineering problems. A numerical comparison for the experimental data with
another well-known method, the reproducing kernel method, is given. The graphical
consequences illuminate the simplicity and reliability of the FRPS method in the
determination of the RPS solutions consistently.

Keywords: Residual power series method; Fractional stiff system; Caputo derivative;
Residual error; Generalized Taylor series

1 Introduction

Initial value problems of fractional order often appear during the modeling of many issues
in the major scientific disciplines, leading us to a deeper understanding, quantification ca-
pability, and simulation of a particular feature of the real-world problems, including the
disciplines of physics, biology, chemistry, engineering, and economics. Unfortunately, it
seldom happens that these equations have solutions that can be expressed in closed form,
so it is common to seek approximate solutions by means of numerical methods. As a mat-
ter of terminology, stiff systems form a class of mathematical problems that appear fre-
quently in the study of many real phenomena. They were first highlighted by Curtiss and
Hirschfelder [1]. They are observed in the study of chemical kinetics, aerodynamics, bal-
listics, electrical circuit theory and other areas of applications [2]. The mathematical stiff-
ness of a problem reflects the fact that various processes in the considered physical models
have different rates. It results from the decaying of some of the solution components being
more rapidly than other components as they contain the term e™*/, A > 0. However, many
numerical and analytical techniques have been employed recently for solving stiff systems
of ordinary differential equations including the homotopy perturbation method [3], the
block method [4], the multistep method [5], and the variational iteration method [6]. Ex-
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amples of another mathematical models and effective numerical solutions can be found
in [7-9].

In the last decades, the topic of fractional calculus has attracted the attention of nu-
merous researchers for its considerable importance in many applications such as fluid
dynamics, viscoelasticity, physics, entropy theory and vibrations [10—14]. In this regard,
many differential equations of integer order were generalized to fractional order, as well
as various methods were developed to solve them. Recently, the Atangana-Baleanu frac-
tional concept has been suggested as a novel fractional operator in the Liouville—Caputo
sense based on the generalized Mittag-Leffler function; such fractional operator is with
a non-singular and non-local kernel that has been introduced in order to better describe
complex physical problems that follow at the same time the power and exponential de-
cay law; see for example [15—19]. Thereby, approximate and analytical techniques have
been introduced to obtain solutions of fractional stiff systems such as the homotopy anal-
ysis method [20], the homotopy perturbation method [21], and the multistage Bernstein
polynomial method [22].

For the first time, this paper aims to utilize the residual power series (RPS) algorithm for
solving fractional order stiff systems of the following form:

DPivy(t) = fi(t, ur (£), ua(O), ..., um(t)), n-1<p;<mneN, (1.1)
subject to the initial condition
u;(0) = a; 0, (1.2)

where ¢ > 0, a; are real finite constants, f; : [0,00) x R” — R, i=1,2,...,m, are continuous
real-valued functions on the domain of interest, which can be linear or nonlinear, D? is
the Caputo derivative fractional order 8;, i = 1,2,...,m, m € N, and u;(¢) are unknown
analytical functions to be determined. Here, we assume that the fractional stiff systems
(1.1) and (1.2) has unique smooth solution for ¢ > 0.

The RPS technique has been used in providing approximation numerical solutions for
certain class of differential equations under uncertainty [23]. Later, the generalized Lane-
Emden equation has been investigated numerically by utilizing the RPS method. Also,
the method was applied successfully in solving composite and non-composite fractional
DEs, and in predicting and representing multiplicity solutions to fractional boundary value
problems [24, 25]. Furthermore, [26—29] assert that the RPS method is easy and powerful
to construct power series solution for strongly linear and nonlinear equations without
terms of perturbation, discretization, and linearization. Unlike the classical power series
method, the FRPS method distinguishes itself in several important aspects such that it
does not require making a comparison between the coefficients of corresponding terms
and a recursion relation is not needed and provides a direct way to ensure the rate of
convergence for series solution by minimizing the residual error related.

Bearing these ideas in mind, this work is organized as follows. In the next section, some
basic definitions and preliminary remarks related to fractional calculus and generalized
Taylor’s formula are described. Section 3 is devoted to establishing the FRPS algorithm for
obtaining the approximate solutions for a class of stiff system of fractional order. Mean-
while, a description of the proposed method is presented. Stability and convergence anal-
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yses are also presented. Several numerical applications are given in Sect. 4 to illustrate
the simplicity, accuracy, applicability and reliability of the presented method. Further, a
comparison between the numerical results of the FRPS method and another approximate
method, namely, the reproducing kernel Hilbert space method, has been given. Finally, a
brief conclusion is given in the last section.

2 Fundamentals concepts

The purpose of this section is to present some basic definitions and facts related to frac-
tional calculus and fractional power series, which are used in subsequent sections of this
study.

Definition 2.1 ([30]) The Riemann-Liouville fractional integral operator of order 8 > 0
is defined by

U0 =15 [ wee-9 e, 150 @1

For 8 =0, it yields (]fu)(t) = u(t).

Definition 2.2 ([30]) For n—1 < 8 < n, n € N. The Caputo fractional derivative operator
of order $ is defined by

BNy o L ey pyrBel
a%@m_Fm_mﬁLtgm £) de, t>0. (2.2)

Specially, D u(t) = u™(¢) for B=n.
The operators Df and J? satisfy the following properties:

° Dgc =0 forany constant c € R. (2.3)
I'(g+1) _
° Df(t—a)qzi(t—a)qﬂ forn-1<B<ng>n-1,
Flg-p+1) 1
and is equal to zero otherwise. (2.4)

o JNu=J u=J"u. (2.5)
° ]fc = %(t —a)?  for any constant ¢ € R. (2.6)

n-1 5]

u(a)

o (IDu)®)=ur)-)_ o (- a)*

k=0

forue C"la,bland n—1< B <n,withneN.

Moreover, if 8 > 0, u € Cla, b], then DPJPu(t) = u(t). (2.7)

Definition 2.3 ([26]) A power series (PS) expansion at ¢ = £, of the following form:

o0
D amt—t0)" = ag+ ay(t - to) + ar(t — 1) + - -

m=0

forn—1<pB <nneNandt <, is called the fractional power series (FPS).
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Theorem 2.1 ([25]) There are only three possibilities for the FPS Y > (¢ — to)™P, which
are:
(1) The series converges only for t = ty. That is; the radius of convergence equals zero.
(2) The series converges for all t > ty. That is; the radius of convergence equals co.
(3) The series converges for t € [ty, ty + R), for some positive real number R and diverges
for t >ty + R. Here, R is the radius of convergence for the FPS.

Theorem 2.2 ([25]) Suppose that u(t) has a FPS representation at t = ty of the form

o0
u(t) =Y cmlt - to)"™". (2.8)
m=0
Ifu(t) € Clto, to + R), and D”’f’u( t) € C(tg, to + R), form =0,1,2,..., then the coefficients c,,

will be of the form c,, = r[(mgff)) , where D" = DB . DF ... DF (m times).

3 Fractional residual power series method

In this section, we are intending to use the FRPS method for solving a class of stiff systems
of fractional order described in (1.1) and (1.2) through substituting the FPS expansions
within truncation residual functions will be used. To do so, we assume that the FPS solu-
tion of the fractional stiff systems (1.1) and (1.2) at ¢ = O has the following form:

t”ﬁz

ui(t) = Zﬂzn[,(l ) (3.1)

The aim of the FRPS algorithm is obtaining a supportive approximate solution to the
proposed model. Thus, by using the initial conditions in Eq. (1.2), #;(0) = a;,, as initial
iterative approximation of u;(¢), Eq. (3.1) can be written as

t”ﬁt

ui(t) = a,o+Zﬂm T(+nB) (3.2)

Consequently, the suggested solution u;(t) can be approximated by the following kth-
truncated series:

t’lﬁl

ulk(t) apo + Za”" F(l + nﬁl) (33)

According to the RPS algorithm, the residual function will be defined as

Resu;(t) = DPiuy(t) - fi(t, un (8), ua(®), ..., um(2)),  i=1,2,...,m0<t<R. (3.4)
Therefore, the kth-residual function Res u; (), for k =1,2,3,...,n, can be given by

Res u; i (t) = DPiug(t) - f; (t, uy(t), us k(2),..., um,k(t)), i=1,2,...,m. (3.5)

As in [25-27], we have Res u;(£) = 0, and limy_, o, Res u;(t) = Res u;(¢), for each ¢ > 0.
As a matter of fact, this yields D"FiRes uix(t)=0forn=0,1,2,...,k, i =1,2,...,m, and
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D"Ai Res u;(0) = D"Pi Res u; 1 (0) = 0. As a result, to determine the unknown coefficients of

Eq. (3.3), one can seek the solution of the following fractional equation:
D% VBiResu; 1 (0)=0, i=1,2,...,mk=1,2,3,.... (3.6)

To illustrate the basic idea of the FRPS algorithm for finding the first unknown coefti-

cient a; 1, we substitute u;1(£) = a;0 + a1 % _ i the kth-residual function Eq. (3.5) with

r(1+p;)
k=1, Resu;;(t), to get

Resu;, 1(t)

= DPiuy (8) — fits ur,1(8), w21 (B), - .., 1 (2))

thi
=D’ (ﬂi,o +ai) 7)

r+p)
tBi thi thm
—filtaro+ai1——,arpotay1—————, ..., Ao+ A1 ———— |.
f’( S AT ) M AU M ”“F(uﬁm))

Based on Eq. (3.6) and then using the fact Resu;;(0) = 0, it yields a;; = f;(0, 1,0, d2,0,
..o»amp)- Therefore, the first FRPS approximated of IVPs (1.1) and (1.2) will be

thi
u;1(t) =a;o + f;(0,a10,a20,...,a _
i1(t) = aio +£i(0,a1,0, a2 m,o)r(1 )
Likewise, to obtain the second unknown coefficient a;,, we substitute u;5(¢) = a;0 +

Bi 2B; . . . .
ai, F(t“ 77+ i F(t1+2 77 in the kth-residual function Eq. (3.5) with k = 2, Res u;(¢), to get

Res u;, 2(t) = DPiuin(t) = fi(t, u1,2(0), U (8), -, U2 (2))

, tBi i
“Dilao+a +a;
< i0 T il r'(1+8) " 1+ 2,&'))

B 28
—f. t’ + + ooy
f’( BT T gy TP T+ 28)

tﬂm tzﬁi
a +a +a .
O AL B,) TP (1 2;3,»))

Therefore, applying the operator Df on Res u;, 2(¢) will show that

5 28 B £26i
DFiResu;, 2(t) = D% | a;o + a; +a;
i ( ) ( i,0 i1 1_,(1 +,3i) 0,2 F(l +2ﬂi)>

5 tBi £2Bi
-DPi{fil t,a1o+a +a yeees
<ﬁ< WAy g) T T T 26)

tﬁm tzﬂi
Ao+ Oml ———— +amr————— | |
O L By T (1 2@)))

Consequently, by using the fact DPFiRes u;5(0) = 0, the second unknown coefficient u;,
will be given by u;5 =£i(0,a1,1,42,1,...,am1). Therefore, the second FRPS approximated of
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IVPs (1.1) and (1.2) will be as

thi 2B

ui1(t) =a;o+ fi(0,a10,a20,...,a — +f(0,a11,a21,...,a _
i1(8) = aio + £i(0,a1,0, a2 m'O)F(1+/3i) fi(0,a1,1,a2,1 m’l)F(1+2,3i)

By repeating the same routine until arbitrary order, the other unknown coefficients, ;,
will be obtained [31, 32].

Lemma 3.1 Suppose that u(t) € Clto,tp + R), R >0, l)igu(t) € Cltg,to + R), and 0 < 8 < 1.
Then, for any j € N, we have

D ulto)

iB ~B (1+1ﬁ (+1)B
(T Dlyu) (@) = (1) "D u)(6) = TG 1)

g (= t)”.
Proof Using property (2.5) of the fractional integral operator, we can write

(i D) (&) = (7™ Dy u) () = (g Dify ) (8) = Ul Dlg Dig14) ©)
= (/i Dlyw)(®) - (s U8 DY) Dl ) ()

= 1o [(Dly ) )= (75 Dlg) (D) 0
Applying (2.7) for (]ﬁD'ﬁ)(Dﬂ u)(t), we get
Uiy Dlgu) @) = (T "Dy ) @)
= Jio (Digu)(®) = (Dlgue) (t) + Dy u(to)]

Dlto u(to)
r(p+1)

Theorem 3.1 Let u(t) has the FPS in (2.8) with radius of convergence R > 0, and suppose
that u(t) € Clto, to + R), D’ o Uu(t) € Clto, to + R) for j=0,1,2,...,N + 1. Then

:]i[ (to)] (¢ - 5P, by using (2.6) with ¢ = D/ o U(to)- 0

u(t) = un(t) + Rn(2), (3.7)

D ueo) DBy
N 0
where uy(t) = Z] -0 ptwﬂl) (t—to)? and Ry (¢) = W(t to)N+VB, for some ¢ € (to, t).

Proof First, we notice that

N
M(t) ( té\Hl ﬂDg)\Hl)ﬁ Z IgD/}£3 (t) _ (]t({;l)ﬁDg:l)ﬂu)(t)].

Using Lemma 3.1, we get

N D ulty) .
(N+1)B ~(N+1)B _ P\ i
u(t) = (Jry " Dy M)(t)_j:ZO—F(j,B+1)(t to)”. (3.8)
So,
N iB
u(t) = l)]tou(to) (t— to)lﬁ ((N+1),3DN+1 )(t)

— (B +1)
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But

(]té\Hl N+1)ﬁu)(t)
]té\]+1 ( (N+1)B )(t)

(N+1)B _ \N+D)B-1
7N+1)ﬂ),/ D u(r)(t T) dr

N+1
Dy, ”(f / (N+1)-1
=0 > | (¢-1) dt (by the mean value theorem for integrals)
" TN+ 1)) Y &

DPug) (¢ - )N

TT((N+1)B) (N+1)B
DY Pu(e)

_ _ 4 \(N+D)B
_F((N+1)ﬁ+1)(t to) '

Finally, we substitute in (3.8) to get (3.7). O

Remark 1 The formula of uy(t) in the previous theorem gives an approximation of u(t),

and Ry/(¢) is the truncation (the remainder) error that results from approximating u(t) by

uy(t). Moreover, if |D (N+DB u(Z)| < M on [£y, to + R), then the upper bound of the error can
be computed by
(t _ to) (N+1)B
Rn(2) sup
R W e

Remark 2 For solving stiff system in (1.1) using the FRPS technique, we put

> 1B
it = M4 N V‘=1;27~"; . 3.9

wi(t) ;a'l“(1+n,3,-) ! " (39)
So, if we assume that each u;(¢) has the FPS in (3.9) with radius of convergence R; > 0,
and that u;(¢t) € C[0,R;), Dgg"ui(t) € C(O,R;) for j=0,1,2,...,N + 1, then u;(£) = u;n(t) +
Rin(Z), Vi. The approximate solution Uy(t) = (uyn(2), uon(2), ..., tun(£))T converges to
the exact solution U(¢) = (u1(¢), ux(2),...,u(£))T as N — oo, Vt € [0,R), where R =

min{R;, Ry, ..., R,,} and the remainder error equals

R (2) = max{Rin(8), Ron(£); .., Run () }.

4 Numerical applications

To confirm the high degree of accurateness and efficiency of the proposed FRPS method
for solving stiff systems of fractional order, numerical patterns and examples are applied in
this section. Also, we make a comparison with another numerical technique, namely, the
reproducing kernel Hilbert space method. The reader can find a description and applica-
tions for this method in [33-36]. Computations were performed by using the Mathematica

package.
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Example 4.1 Consider the following fractional-order stiff system:

Diu(t) = —u(t) + 95v(t), O<a <1,

Dyv(t) = —u(t) - 97v(t),
subject to the initial conditions
u(0) =1, v(0) = 1.

The exact solution of this system when « = 1 is

1

- (488—96t _ e—Zt)'

1
u(t) = E(%e‘z’ - 48¢7%%), v(t)

For k = 1, the first truncated power series approximations from Eq. (3.3) have the forms

d

C1 o
i) =1+ ———t
1®) r'l+a)

Ml(t)=1+ mt )

and the first residual functions are

Resu;(¢) = Dyuy (t) + up(£) — 95v1(£)

d
e (1h = )1t o514 L),
I'l+a) I'l+a) I'l+a)

Resvi(t) = DFvi(E) + up(t) — 95v1(2)

pef1s M )1 @ eor(14 b e
= et )+l 1"+ +—t).
0 r'l+a) r'l+a) I'l+a)

From (3.6), Res#;(0) = 0 and Resv;(0) = 0, which gives ¢; = 94 and d; = -98. So

94 98t
ut)=1+ —— and n(t)=1- ————.
'l +al I'(1+«a]

For k = 2, the second truncated power series approximations have the forms

94 Cy 98 dy

w()=1+ %+ £, wt)=1- 4 £
2(t) Fl+a)  I'(1+2a) 2(0) Fl+a)  I'(1+2a)
and the second residual functions are
Res uy(t) = Dgua(t) + us(t) — 95vo(t)
94, Cy 2%

94
=Dj| 1+ t* + 2 )iy t +
I'l+a) (1 +2a) r'l+a) '(1+2x)

98 d
-95(1- t* + ),
'l+a) I (1+2ax)

Page 8 of 15
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Res vy (t) = Dy uy(t) + ua(t) — 95v,(2)
94 94
=Dg(1+ g —— S P
'l+a) ' (1+2a) Ir'l+a) I'(1+2ax)

98 d
+97(1- t* + 2 2 ).
'l+a) I'(1+2a)

From (3.6), D§ Res1,(0) = 0 and D§ Res v,(0) = 0, which gives ¢, = —9404 and d, = 9412.

So
94¢* 94041
u(t) =1+ - and
I'l+a] TI'[1+2a]
98¢* 9412
va(t) =1- + .
I'l+a] TI'[1+2ax]
Continuing this process, we get
94¢* 9404t% 903,544t
uz(t) =1+ - + ,
I'll+a] I'[1+2x] TI'[1+3«]
98t* 9412t 903,560t
vs(t)=1- + - ,
I'll+a] TI'[1+2x] TI'[1+3«]
94¢* 9404t>  903,544t%  86,741,744t*
ug(t)=1+ - + -
I'l+a] I[1+2a] I'[1+3c] I'[1+4a]
98t* 9412t%  903,560t% 86,741,776t
vy(t)=1- + - +
I'll+a] TI'[1+2x] TI[1+3«] I'[1+4«]
94¢* 9404t%  903,544t%®  86,741,744t*  8,327,210,464t>
us(t)=1+ - + - +
I'l+a] T'[1+2a] TI'[1+3a] I'[1+4a] I'[1+5a]
98t* 9412t%  903,560t%®  86,741,776t*  8,327,210,528t°
vs(t)=1- + - + -
'l+a] T'[1+2¢] I'[1+3a] (1 +4a] I'[1+5a]

Some numerical results and tabulated data for & = 1 and k = 200 are given in Table 1 us-
ing the FRPS method. In Table 2, numerical results for the same example using the RKHS
method have been given. Figures 1 and 2 show the comparison between the behavior of
the exact solution and the approximate solution using the FRPS and the RK methods, re-

spectively, for & = 1 with step size 0.2.

18} 1or
0.8
1ol u(t) v(t)
0.6
1.4}
05}
1.2
0.2
1.0 R R R . - Sy N . N - 1
0.05 0.10 0.15 020 025 0.05 0.10 0.15 0.20 0.25
Figure 1 The behavior of FRPS solution of Example 4.1: __exact; ... approximated
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u(t)

08

06

04

02

v(t)

0.05 0.10 0.15

020 025

Figure 2 The behavior of RK solution of Example 4.1: __

0.05 0.10

exact; ... approximated

020 025

Table 1 Numerical results of the FRPS solutions at different values of t of Example 4.1

t

Exact u(t)

Approximation u(t)

Absolute Error

Relative Error

0.000 1. 1. 0. 0.

0.025 1830049650419 1.8300496504186 6.661338147751 x 10716 3.639976732996 x 10716
0.050 1.820521847980 1.8205218479801 4218847493576 x 107> 2.317383610780 x 1071°
0.075 1.7389664179059 1.7389664179059 1.998401444325 x 107> 1.149189210181 x 1071°
0.100 1.6548121396395 1.6548121396396 6.017408793468 x 10714 3636309312294 x 10714
0.125 1574165520630 1.5741655206310 1418198891656 x 10712 9.009210740996 x 10713
0.150 1.4973979619154 1.4973979619805 6.508638072944 x 1071 4346632116834 x 107!
0.175 1.4243694914073 1.4243694910746 3326674491433 x 10710 2.335541803936 x 10710
0.200 1.3549022160256 1.3549022084615 7.564062487475 x 107° 5582736818944 x 107°
0.225 1.2888228592360 1.2888227498472 1.093887884718 x 107/ 8487495988131 x 1078
0.250 1.2259662270401 1.2259657966770 4303631988556 x 107/ 3.510400118400 x 10~/
t Exact v(t) Approximation v(t) Absolute Error Relative Error

0.000 1. 1. 0. 0.

0.025 0.0724091985828 0.0724091985828 2.3592239273 x 107! 3.2581826253 x 1071°
0.050 -0.010847011908 -0.010847011908 3.2734231992 x 10715 3.0178110130 x 10713
0.075 -0.0175504650558 -0.0175504650558 13850032232 x 1074 78915471403 x 10713
0.100 -0.0173506334835 ~0.0173506334839 3.6409417148 x 10713 2.0984488654 x 10711
0.125 -0.0165639544868 ~0.0165639544956 88100464424 x 10712 53188062364 x 10710
0.150 -0.0157615205520 -0.0157615206823 13034362131 x 10710 8.2697364688 x 107°
0.175 -0.0149933119699 -0.0149933122356 26574836429 x 10710 1.7724460401 x 1078
0.200 -0.0142621239543 ~0.0142621227122 12421122308 x 1079 87091672654 x 1078
0.225 -0.0135665559925 -0.0135665780247 22032217302 x 1078 16240096100 x 1076
0.250 -0.0129049076149 ~0.0129052984430 3.9082809609 x 10~/ 3.0285230070 x 107

Table 2 Numerical results of the RK solutions at different values of t of Example 4.1

t

Approximation u(t)

Approximation v(t)

Absolute Error u(t)

Absolute Error v(t)

0.

0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250

1
1.831067484
1.820045141
1.738843886
1.654770941
1574138216
149737419
1424347792
1.354882302
1.288804592
1.225949491

1

0.07135645072
-0.01040257192
-0.01745772685
-0.01733692021
-0.01656198091
-0.01576107085
-0.01499306097
-0.01426191185
-0.01356636344
-0.01290473142

0.
1.017833134 x 1073
4767065702 x 107
1.225318916 x 1074
4119853098 x 10~
2.730470746 x 107
2.377144355 x 107
2169909736 x 107
1.991383853 x 107
1.826725615 x wo 5
167357026 x 107

0.
1.052747859 x 1073
4444399909 x 107
9.273820249 x 107
1371327217 x 107
1.973578751 x 107°
4497046152 x 10~/
2510022328 x 107/
212102572 x 10~/

1925535892 x 10~/
1.761929954 x 10~/

Page 10 of 15
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Example 4.2 Consider the nonlinear fractional-order stiff system:

Dgu(t) = —1002u(t) + 1000v*(£), O<a <1

DEv(t) = u(t) —v(t) —v*(t), tel0,2],

subject to the initial conditions u(0) = 1, v(0) = 1.

The exact solution of this system when o = 1 is u(t) = e%, v(t) = 7.

For k = 1, the first truncated power series approximations have the forms
d

%, t)=1+ ——t“
n®=1+ 5070

(4]

Ml(t)=1+ m

and the first residual functions are

Resu;(t)

= D%uy (£) + 10021 (£) — 1000v3 (£)

c c d 2
=D¢(1+ ——1) +1002( 1+ ———*) =1000( 1 + ——— %) ,
I'l+a) r'l+a) rl+a)
Res v (¢)

= DEvi(8) — 1 () + i () + V2(2)
=D¢ (1 + Lt‘*) - (1 + Cilta)
0 I'(l+a) Ir(l+a)

e N e N ’
+< "Tl+a )+( "Tl+a )

From (3.6), Res#;(0) = 0 and Res v;(0) = 0, which gives ¢; = -2 and d; = —1. So

2t¥ t*

Ml(t)=1—m and V1(t)=1—m.

For k = 2, the second truncated power series approximations have the forms

2
uy(t) = 1 t @

1 d, »
- +
I'(l+aw) I'(l+2ax)

£, v(t)=1- £+ £,
2(t) IF'l+a)  I'(1+2a)

and the second residual functions are

Resu,(t)

= D%uy(t) + 1002w, (¢) — 1000v5(2)

2 2
-pe(1- 2y — 2 2 11002(1- LR
ril+a) I'(1+2a) I'l+a) I'(1+2a)

1 d» 2
-1000( 1 - o+ 2,
'l+a) I'(1l+2a)

Res v, (¢)

= DEvy(t) — ua(t) + vo(t) + vi(t)
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1 d 2
=pg(1- £ + 2 pe) _(1- oy 2 g
I'l+a) I'(1l+2ax) I'l+aw) 'l +2a)

1 d 1 d 2
+1- &+ 2 ey (1= £+ 2 g
I'l+a) I'(l+2a) I'l+a) r'(l+2a)

From (3.6), D§ Resu2(0) = 0 and D§ Resv,(0) = 0, which gives ¢c; =4 and dy = 1. So

2" 467 t >
- + and () =1- + .
I'l+a] T[1+2cx] I'l+a] TI'[1+2a]

I/tz(t) =1

Continuing this process, we get

2t 4% 8325117 [1 + ]? — 12571 + 2a])
I/tg(t) =1- + — ,
I'l+a] I'[1+2a] I'[l+a]?l' 1+ 3a]
te 2 B[ +al?-T[1+2a])
v3(t)=1- + +
I'l+a] TI[1+2¢] I'[1+a]?T"[1+ 3«]
2t% 4% 83 (25117 [1 + «]?> — 1257171 + 2a])
I/l4(t) =1- + -
'l+a] I'[1+2a] 'l +a]?2I'[1+ 3]

+ (166 (12,5876 '[1 + «]*T'[1 + 2at]
~ 62,7500 [1 + 20]* = 125 [1 + &]I'[1 + 3]))
/(T[1+al’T[1+2][1 +4a]),

* 2 Bl +a>-T[1+2a])
TTll+a] T[l+2a]  T[1+aPl[l+ 3]
4 (=20117[1 + @]?>T[1 + 2] + 10037 [1 + 2¢]? + 2T [1 + ] T'[1 + 3a])
* [+l [1+2a][1 +4a]

V4(lf) =1

Some numerical results and tabulated data using the FRPS method for « = 1 and k = 20
are given in Table 3 and Fig. 3.

To show the accuracy of this method, the RKHS method for the same example with
k = 1000 are applied and the results are summarized in Table 4 and Fig. 4. For fractional
derivatives, we take k = 10 and apply the RPS method for «; = 0.95 + 0.005, i = 0, 1,...,9

as shown in Fig. 5. Figure 6 shows the results for o; =0.1 +0.14,i=0,1,...,9.

u® v
10 - 10 -
—— The exact solution u(t) —— The exact solution v(t)
s \ | The approximate solution u(t) sl N | The approximate solution v(t)

L L L t L L L -
05 1.0 15 20 05 10 15 20

Figure 3 The FRPS solution behavior of Example 4.2 for ¢ = 1 and k=20
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Table 3 Numerical results of FRPS method of Example 4.2
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t Exact u(t) Approximation u(t) Absolute Error Relative Error

0. 1. 1. 0. 0.

0.2 0.6703200460356 0.67032004603564 0. 0.

04 0.4493289641172 0.44932896411722 55511151231 x 107" 1.2354233905 x 10716
0.6 0.301194211912 0.30119421191220 0. 0.

0.8 0.2018965179947 0.201896517994656 55511151231 x 10716 27494853196 x 1071°
1.0 0.1353352832366 0.135335283236650 3.7581049384 x 10714 27768848215 x 10713
1.2 0.0907179532894 0.090717953291115 1.7021939414 x 10712 1.8763584050 x 107"
14 0.0608100626252 0.060810062667847 42628810204 x 107" 70101572608 x 10710
16 0.0407622039784 0.040762204671022 6.9265617547 x 10710 1.6992608541 x 1078

18 0.0273237224473 0.027323730534706 80874130483 x 107° 2.9598503878 x 10~/

2. 0.0183156388887 0.018315711651223 7.27624886870 x 1078 39726972741 x 107°

t Exact v(t) Approximation v(t) Absolute Error Relative Error

0. 1. 1. 0. 0.

0.2 0.8187307531 0.8187307530780 0. Q.

04 0.6703200460 0.6703200460356 0. 0.

0.6 0.5488116361 0.5488116360940 Q. 0.

0.8 04493289641 0.4493289641172 555111512313 x 107/ 1.23542339053 x 10710

1.0 0.3678794412 0.3678794411714 555111512313 x 1077 1.50894953669 x 1071©

1.2 0.301194212 0.3011942119122 0. 0.

14 0.2465969639 0.2465969639416 1.38777878078 x 10716 5627720465813 x 10716
16 02018965180 0.2018965179947 5551115123126 x 10710 2.74948531964 x 1071°

1.8 0.1652988882 0.1652988882216 421884749358 x 1071° 2.55225400423 x 1074

2. 0.1353352832 0.1353352832367 3.75810493836 x 107 277688482152 x 10713

Table 4 Numerical results and approximated RKHS-solutions of Example 4.2

t

Approximate u(t)

Approximate v(t)

Absolute Error u(t)

Absolute Error v(t)

0.

0.2
04
06
0.8
1.

12
14
1.6
1.8
2.

1

0.6703194887
0.449327762
0.3011928511
0.201895234
0.1353341734
0.09071704242
0.06080934018
0.04076164474
0.02732329734
0.01831532026

1
0.8187299974
0.6703188097
0.5458760657
0.4245696735
0.3032632814
0.1819568893
0.0606504971
-0.06065589505
-0.1819622872
-0.3032686793

0.
5.573444155 x 107/
1.202139499 x 107°
136082079 x 1070

1.284006963 x 107°
1.109822727 x 1076
9.108704336 x 107/
7.224408154 x 107/
5592345995 x 107/
4251088836 x 107/
3.186323165 x 107/

0.
7.556686423 x 107/
1236292949 x 1070
0.002935570398
0.02475929057
0.0646161597
0.1192373227
0.1859464668
0.262552413
03472611754
04386039626

—— The approximate solution u(t)

---- The exact solution u(t)

—— The approximate solution v (t)

~~~~ The exact solution v(t)

Figure 4 The RK solution behavior of Example 4.2 for @ = 1 and k = 1000
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u(t) 0.5 10 : 20
610181
—2x1015 |
4x10'8F
—4x103
2x10!8F
—6x1013
‘ ‘ v(t)
0.5 10 15 20

Figure 5 The solutions behavior of Example 4.2 for a¢; = 0.95 + 0.005/,i=0,1,...,9

15x 102 F

u(t) 5 20

—50x 1020

10x 1024 -

—1ox10?! |
50% 1023 |

—1sx102! |

v(t)

—20x102 [

Figure 6 The solutions behavior of Example 4.2 for; =0.1 +0.1/,i=0,1,...,9

5 Conclusion

In this work, we applied an analytical iterative method depending on the residual power
series to get an approximate solution to a stiff system of fractional order in the Caputo
sense. Numerical examples for both linear and nonlinear fractional stiff systems were given
to show the effectiveness of the proposed method. By comparing our results with the exact
solutions and results obtained by another numerical method, we observe that the RPS

method yields an accurate approximation.
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