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Abstract
In this paper, the dynamical behaviors of a discrete-time prey–predator model with
Allee effect on the prey population are investigated. The existence and topological
classification of the fixed points of the model are analyzed. It is shown that the model
can undergo a Neimark–Sacker bifurcation at the unique positive fixed point by
choosing a as a bifurcation parameter. The conditions of the existence for
Neimark–Sacker bifurcation and the direction of bifurcation via bifurcation theory are
presented. Also, some numerical simulations are presented to support of the
analytical finding. Then bifurcation diagrams and phase portraits of the model are
given.
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1 Introduction
The predator–prey models have a theoretical and practical significance. So many authors
have studied the dynamics of these models. The Lotka–Volterra model is the first and the
simplest model of predator–prey interactions. The model was developed independently
by Lotka [1] and Volterra [2]. The Lotka–Volterra model assumes that the prey consump-
tion rate by a predator is directly proportional to the prey abundance. This means that
predator feeding is limited only by the amount of prey in the environment. While this
may be realistic at low prey densities, it is certainly an unrealistic assumption at high prey
densities where predators are limited, for example, by time and digestive constraints. So
a number of changes in the model have been presented by researchers to include Holling
type functional responses and density-dependent prey growth. Another way of modifica-
tion of the Lotka–Volterra model can be considered by introducing the Allee effect. It is
well known that the introduction of the Allee effect into the system is more realistic in
modeling the prey–predator interaction.

The Allee effect is a crucial phenomenon that has drawn considerable attention from
both theoretical and applied ecologists [3–9]. The Allee effect was first described by Allee
in 1931 [10]. It describes a positive correlation between any measure of species fitness and
population numbers. The main causes of the Allee effect are the difficulty in finding mates,
inbreeding depression, social dysfunction at small population sizes, predator avoidance
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and food exploitation [11–14]. Empirical evidence of the Allee effect has been observed
in many natural species, for example, plants [15], insects [16], marine invertebrates [17],
birds and mammals [18]. Recent studies have shown that the Allee effect has important dy-
namical effects on the stability analysis of population models. The system with Allee effect
shows either destabilization [11] or stabilization [19]. The local stability of a positive fixed
point may be changed from stable to unstable or vice versa. In prey–predator systems,
Allee effect may change the dynamics of the system in unexpected ways and induce com-
plex dynamics. So, many authors have investigated the stabilizing or destabilizing effects
on the predator–prey models with the Allee effect. But the bifurcation analysis of these
systems with the Allee effect has been rarely performed. So, in this paper, a predator–prey
system on which is imposed an Allee effect is considered.

In [20], the author has considered the following discrete-time predator–prey model
which was proposed by Smith et al. [21]:

Xt+1 = αXt(1 – Xt) – XtYt ,

Yt+1 =
1
β

XtYt ,
(1)

where Xt and Yt denotes the numbers of prey and predator respectively. The parameters α,
β are positive real numbers. They have studied stability and Neimark–Sacker bifurcation
of a discrete-time predator–prey model. The analysis of bifurcations has already received
much attention during the last few years [20, 22–29]. Bifurcation and stability analysis are
examined in detail in [20, 22–24, 30–41].

In this paper, modification of the model (1) is considered by introducing the Allee effect
for the prey population as follows:

Xt+1 = aXt(1 – Xt) – XtYt

(
Xt

m + Xt

)
,

Yt+1 =
1
β

XtYt ,
(2)

where X
m+X is term for the Allee effect. m > 0 can be defined as Allee effect constant [11–

13]. α and β are the growth rates of the prey and predator, respectively.
The aim of this paper is to investigate the dynamics of a modified a discrete-time

predator–prey model with Allee effect on prey population by using bifurcation theory.
The rest of the paper is organized as follows: In Sect. 2, the existence conditions and sta-
bility of the fixed points are discussed. In Sect. 3, choosing a parameter as bifurcation
parameter, Neimark–Sacker bifurcation analysis is studied. Furthermore, by using normal
form theory direction of Neimark–Sacker bifurcation is obtained. Finally, these theoretical
results are supported by some numerical simulations.

2 The fixed points: existence and stability
In this section, we will study the existence of the fixed points of the discrete system with
Allee effect and analyze the stability of these fixed points. To find the fixed points of the
system (2), we can write

Xt = Xt+1 = X∗, Yt = Yt+1 = Y ∗ (3)
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in the model (2)

X∗ = aX∗(1 – X∗) – X∗Y ∗
(

X∗

m + X∗

)
,

Y ∗ =
1
β

X∗Y ∗.
(4)

It is clear that the fixed points of the model (2) satisfy Eq. (4).

Lemma 1
(i) The system (2) always has an axial fixed point E1 = (0, 0).

(ii) The system (2) has an axial fixed point E2 = ( a–1
a , 0) if a > 1.

(iii) The system (2) has a unique positive fixed point E∗ = (β , (β+m)(a(1–β)–1)
β

) if a > 1
1–β

and β < 1.

In order to analyze the stability of the fixed points of the model (2), we give Definition 1
and Lemma 2 as follows:

Definition 1 A fixed point (N , P) is called
(i) sink if |λ1| < 1 and |λ2| < 1, and it is locally asymptotically stable,

(ii) source if |λ1| > 1 and |λ2| > 1, and it is locally unstable,
(iii) saddle if |λ1| < 1 and |λ2| > 1 or (|λ1| > 1 and |λ2| < 1),
(iv) non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

To investigate the stability of the one nontrivial fixed point of the system (2), we give
Lemma 2.

Lemma 2 Assume F(λ) = λ2 +Bλ+C, where B and C are two real constants and let F(1) > 0.
Suppose λ1 and λ2 are two roots of F(λ) = 0. Then the following statements hold.

(i) |λ1| < 1 and |λ2| < 1 if and only if F(–1) > 0 and C < 1;
(ii) |λ1| > 1 and |λ2| > 1 if and only if F(–1) > 0 and C > 1;

(iii) |λ1| < 1 and |λ2| > 1, or |λ1| > 1 and |λ2| < 1, if and only if F(–1) < 0;
(iv) λ1 and λ2 are a pair of conjugate complex roots and |λ1| = |λ2| = 1 if and only if

B2 – 4C < 0 and C = 1;
(v) λ1 = –1 and |λ2| �= 1 if and only if F(–1) = 0 and B �= 0, 2.

Now we will discuss the topological classification of the fixed points of the model (2)
and we will apply Lemma 2 to prove the following lemmas.

The Jacobian matrix of the planar map in (2) evaluated at any point (x, y) is given by

J(x, y) =

(
a(1 – 2x) – 2xy

x+m + x2y
(x+m)2 – x2

x+m
y
β

x
β

)
, (5)
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and we have

J(E1) =

(
a 0
0 0

)
,

J(E2) =

(
2 – a – (a–1)2

a(ma+a–1)
0 a–1

βa

)
,

J(E∗) =

(
–a + 2 – β(a(β–1)+1)

β+m – β2

m+β

– (β+m)(a(β–1)+1)
β2 1

)
.

Lemma 3 For the fixed point E1(0, 0), following topological classification holds:
(i.1) E1(0, 0) is a sink if a < 1.
(i.2) E1(0, 0) is a saddle if a > 1.
(i.3) E1(0, 0) is a non-hyperbolic if a = 1.

Lemma 4 Assume that a > 1. For the fixed point E2 = ( a–1
a , 0), the following topological

classification holds:
(ii.1) E2 = ( a–1

a , 0) is a sink if 1 < a < min{ 1
1–β

, 3} and 0 < β < 1,
(ii.2) E2 = ( a–1

a , 0) is a saddle if ( 1
1–β

< a < 3 and 0 < β < 2
3 ) or (3 < a < 1

1–β
and 2

3 < β < 1),
(ii.3) E2 = ( a–1

a , 0) is a source if a > max{3, 1
1–β

}, 0 < β < 1,
(ii.4) E2 = ( a–1

a , 0) is a non-hyperbolic if a = 3 or (a = 1
1–β

, 0 < β < 1).

The characteristic equation of matrix J(E∗) can be written as follows:

F(λ) = λ2 – (a11 + a22)λ + (a11a22 – a12a21), (6)

F(λ) = λ2 –
(

–2β – 3m + am + aβ2

m + β

)
λ +

(
aβ – 2aβ2 – aβm + m

m + β

)
. (7)

From Lemma 2, we have

F(1) = –1 + a(1 – β). (8)

Since a > 1
1–β

, F(1) > 0.

Lemma 5 Assume that a > 1
1–β

and β < 1 then for the unique positive fixed point E∗ of the
system (2) the following holds true.

(iii1) E∗ is sink fixed point if the following condition holds:

1
1 – β

< a < min

{
1

1 – 2β – m
,

3β + 5m
3β2 + βm + m – β

}
,

(iii2) E∗ is source fixed point if the following condition holds:

1
1 – 2β – m

< a <
3β + 5m

3β2 + βm + m – β
,

(iii3) E∗ is saddle fixed point if the following condition holds:

a >
1

1 – 2β – m
,
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Figure 1 A stable fixed point for the system (2) for a = 2.5,m = 0.25, β = 0.23 and initial condition
(x0, y0) = (0.15, 2.5)

(iii4) non-hyperbolic fixed point if the following conditions hold:

a =
3β + 5m

3β2 + βm + m – β
and m �= 4

5
–

9
5
β ,

(iii5) the roots of Eq. (7) are complex with modules one if and only if

a =
1

1 – 2β – m
and m <

4
5

–
9
5
β .

Example 1 For the parameter values a = 2.5, m = 0.25, β = 0.23 and initial condi-
tion (x0, y0) = (0.15, 2.5), the positive fixed point of the model (2) is obtained: (x∗, y∗) =
(0.23, 1.930434783). Figure 1 is shown that the fixed point (x∗, y∗) of the model (2) is lo-
cal asymptotically stable where blue and red graphs represent x(t) and y(t) population,
respectively.

3 Bifurcation analysis
3.1 Neimark–Sacker bifurcation at the point E∗
In this section we investigate the conditions for existence of the Neimark–Sacker bifurca-
tion for unique positive fixed point E∗ = (β , (β+m)(a(1–β)–1)

β
) of the model (2). Also, direction

of Neimark–Sacker bifurcation is evaluated. We will take a as bifurcation parameter.
Let us consider the term of ΩNSBE∗ as follows:

ΩNSBE∗ =
{

(a,β , m) ∈ R3 : a =
1

1 – 2β – m
, m <

4
5

–
9
5
β and β <

1
2

}
. (9)

When the parameters change in small neighborhood of ΩNSBE∗ , two eigenvalues of J(E∗)
are complex having magnitude one and Neimark–Sacker bifurcation can go out from the
fixed point E∗. The eigenvalues of Eq. (2) under these conditions are given by

λ,λ =
(–3m + 5β – 2) ± i

√
β + m

√
4 – 5m – 9β

2(2β + m – 1)
. (10)
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It is easy to see that

|λ| = |λ| = 1. (11)

From the transversality condition, we get

d|λi(a)|
da

|a=aNS =
β(1 – 2β – m)

2(β + m)
�= 0, i = 1, 2. (12)

Moreover, the nonresonance condition B = –trJE∗ (aNS) �= 0, 1 leads to

m �= 2
3

–
5β

3
,

3
4

–
7β

4
; (13)

then we have

λk(aNS) �= 1 for k = 1, 2, 3, 4. (14)

Assume that q, p ∈ C
2 are two eigenvectors of J(ΩNSBE∗ ) and transposed matrix

JT (ΩNSBE∗ ) corresponding to λ and λ, respectively. We have

q ∼
(

–
β2

2(m + β)
+

1
2

β2√4 – 5m – 9βi
(m + β)3/2 , 1

)T

(15)

and

p ∼
(

–
(m + β)2

2β2(2β + m – 1)
–

1
2 (m + β)3/2√4 – 5m – 9βi

β2(2β + m – 1)
, 1

)T

. (16)

To achieve the normalization 〈p, q〉 = 1, where 〈 , 〉 means the standard scalar product in
C2, we can take the normalized vectors as

q =
(

–
β2

2(m + β)
+

1
2

β2√4 – 5m – 9βi
(m + β)3/2 , 1

)T

,

p = S1

(
(S1 + β)2

2β2(S1 + 2β – 1)
+

i(S1 + β) 3
2
√

4 – 5S1 – 9β

2β2(S1 + 2β – 1)
, 1

)T

,

(17)

where S1 = (– –5m–9β+4+
√

4–5m–9β
√

m+βi
2(–4+5m+9β) ).

Using the transformation

xt = Xt – β , yt = Yt –
(

m + β

β

)(
a(1 – β) – 1

)
, (18)

the fixed point E∗ is shifted to the point (0, 0). From a Taylor expansion, the system (2)
converts to

(
xt

yt

)
→ J

(
E∗)

(
xt

yt

)
+

(
F1(xt , yt)
F2(xt , yt)

)
, (19)
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where

F1(xt , yt) =
–xt(β4axt + 3β3amxt + 2β2m2axt + m2aβxt + m3axt – ytxt – m3xt

β(β + m)3

+
β4yt + 3β3myt + 2β2m2yt + m2ax2

t + m2x2
t + m2aβx2

t + βm2xtyt)
β(β + m)3

+ O
(
x4

t
)
,

F2(xt , yt) =
1
β

xtyt + O
(
x4

t
)
.

The system (19) can be expressed as

(
xt+1

yt+1

)
= J

(
E∗)

(
xt

yt

)
+

1
2

B(xt , xt) +
1
6

C(xt , xt , xt) + O
(
x4

t
)
, (20)

where B(x, y) =
( B1(x,y)

B2(x,y)
)

and C(x, y, u) =
( C1(x,y,u)

C2(x,y,u)
)

are symmetric multilinear vector func-
tions of x, y, u ∈ R2. These functions are defined as follows:

B1(x, y) =
2∑

j,k=1

∂2F1

∂ξj∂ξk

∣∣∣∣
ξ=0

=
(
2x1y1aβ4 + 2x1y1mβ – 3x1y2mβ3 – 2x1y2β

2m2 – 3x2y1β
3m

– 2x2y1β
2m2 – 2x1y1am3)/

(
β(β + m)3)

+
(
6x1y1xm2a – x1y2β

4 – x2y1β
4 – 6x1y1aβ3m – 4x1y1aβ2m2

– 2x1y1m2aβ + 2x1y1m3)/
(
β(β + m)3),

B2(x, y) =
2∑

j,k=1

∂2F2

∂ξj∂ξk

∣∣∣∣
ξ=0

=
x1y2 + x2y1

β
,

C1(x, y) =
2∑

j,k=1

∂3F1

∂ξj∂ξk∂ξl

∣∣∣∣
ξ=0

= –
(
2m2(–3ax1y1v1 + 3x1y1u1 + 3aβx1y1u1 + βx1y1u2

+ βx1y1v1 + βx2y1u1)
)
/
(
β(β + m)3),

C2(x, y) =
2∑

j,k=1

∂3F2

∂ξj∂ξk∂ξl

∣∣∣∣
ξ=0

= 0.

(21)

∀X ∈R
2 can be uniquely represented near a1 by

X = zq + zq

for some z ∈ C. The explicit formula of z is determined as z = 〈p, X〉.
The system (19) can be transformed for all sufficiently small |a| into the form

z → λ(a)z + g(z, z, a), (22)
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where λ(a) = (1 + ϕ(a))ei arctan(a) with ϕ(aNS) = 0 and g(z, z, a) is smooth complex-valued
function. After taking the Taylor expression of g with respect to (z, z), we obtain

g(z, z, a) =
∑

k+l≥2

1
k!l!

gkl(a)zkzl, with gkl ∈ k, l = 0, 1, . . . (23)

By symmetric multilinear vector functions, the Taylor coefficients gkl can be expressed
by the formulas

g20(aNS) =
〈
p, B(q, q)

〉
,

g11(aNS) =
〈
p, B(q, q)

〉
,

g02(aNS) =
〈
p, B(q, q)

〉
,

g21(aNS) =
〈
p, C(q, q, q)

〉
.

(24)

The coefficient β2(aNS), which determines the direction of the appearance of the invariant
curve in a generic system exhibiting the Neimark–Sacker bifurcation, can be calculated
via

β2(aNS) = Re

(
e–i arctan(aNS)

2
g21

)

– Re

(
(1 – 2ei arctan(aNS))e–2i arctan(aNS)

2(1 – ei arctan(aNS))
g20g11

)

–
1
2
|g11|2 –

1
4
|g02|2 (25)

where ei arctan(aNS) = λ(aNS).
We state the following theorem on the Neimark–Sacker bifurcation.

Theorem 1 Suppose that E∗ is positive fixed point of the model (2). If (13) holds, 1 – 2β –
m �= 0, β2(aNS) �= 0 and the parameter a changes its value in small vicinity of ΩNSBE∗ , then
the model (2) passes through a Neimark–Sacker bifurcation at only fixed point E∗. More-
over, if β2(aNS) < 0 (resp., β2(aNS) > 0), then the Neimark–Sacker bifurcation of model (2) at
a = aNS is supercritical (resp., subcritical) and there exists a unique closed invariant curve
bifurcation from E∗ for a = aNS , which is attracting (resp., repelling).

4 Numerical simulations
In this section, our aim is to present numerical simulations to validate the above the-
oretical results, especially the bifurcation diagrams and phase portraits for system (2)
around fixed point E∗. We will choose a as the bifurcation parameter. The Neimark–
Sacker bifurcation point as aNS = 3.448275862 is obtained. By taking the parameters val-
ues aNS = 3.448275862, m = 0.25 and β = 0.23, the positive fixed point of the model (2) is
evaluated as E∗ = (0.23, 3.454150957).

Using the above the parameters, we get the jacobian matrix as follows:

JE∗ (aNS) =

[
–0.6550835770 –0.1102083333

15.01804764 1

]
.
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The eigenvalues are evaluated as follows:

λ1,2 = 0.1724582115 ± 0.9850322777i.

Let q, p ∈ C2 be complex eigenvectors corresponding to λ1,2, respectively.

q ∼ (–0.06558990232 – 0.05510315377i, i)T

and

p ∼ (8.937911026 – 7.508885793i, –i)T .

To obtain the normalization 〈p, q〉 = 1, we can take normalized vectors as

q = (–0.06558990232 – 0.05510315377i, i)T

and

p =
(
–7.623124629 + 0.2149349453.10–8i, –0.4200582087 + 0.5000000001i

)T .

Because of computing the coefficients of normal form, we transform the point (0, 0) to the
fixed point E∗ by a change of variables,

X = x – 0.23,

Y = y – 3.454150957.

So, we can compute the coefficients of the normal of the system by using Eq. (24) as follows:

g20(δ) = –2.007675632 – 0.1335717640i,

g11(δ) = 2.430928813 + 0.2395789296i,

g02(δ) = 1.186267438 – 2.549712245i,

g21(δ) = 0.1518172527 + 0.1907737437i.

From (25), the critical part is obtained: β2(aNS) = –8.214126411 < 0. Therefore, the
Neimark–Sacker bifurcation is supercritical and it shows the correctness of Theorem 1.
The bifurcation diagram and the phase portrait of the system (2) is shown in Figs. 2 and 3.

The bifurcation diagrams shown in Fig. 2 show that the stability of E∗ holds for a < 3.4482
and loses its stability at a = 3.4482 and an attracting invariant curve appears if a > 3.4482.

The phase portraits of bifurcation diagrams in Fig. 2 for different values of a are dis-
played in Fig. 3, which clearly depicts the process of how a smooth invariant circle bifur-
cates from the stable fixed point E∗ = (0.23, 3.454150957). When a exceeds 3.448275862
there appears a circular curve enclosing the fixed point E∗, and its radius becomes larger
with respect to the growth of a.



Kangalgil Advances in Difference Equations         (2019) 2019:92 Page 10 of 12

Figure 2 Bifurcation diagram for the system (2) for values ofm = 0.25, β = 0.23, a = 3.3 : 0.0001 : 3.4 and initial
value (x0, y0) = (0.2, 3.4)

Figure 3 Phase portraits of the system (2) for different values of a

5 Discussions
This paper is about to stability and bifurcation analysis of a discrete-time predator–prey
model with Allee effect on prey population. We showed that the system (2) has three fixed
points namely E1, E2 and E∗. The topological classifications of these fixed points were
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given. By bifurcation theory [39–41] we showed that the system (2) undergoes a Neimark–
Sacker bifurcation at unique coexistence fixed point if a varies around the set ΩNSBE∗ . The
parametric conditions for existence and direction of Neimark–Sacker bifurcation in posi-
tive fixed point E∗ were given. Also, we verified the theoretical results by presenting some
numerical simulations and phase portrait diagrams using MATLAB. We displayed that
when the bifurcation parameter a passes a critical bifurcation value, stability of the coex-
istence equilibrium point of the model (2) changes from stable to unstable and Neimark–
Sacker bifurcation occurs at this critical value. Therefore, we can say that the parameter a
has a strong effect on the stability of the system so as control two populations.
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12. Kangalgil, F., Ak Gümüş, Ö.: Allee effect and stability in a discrete-time host-parasitoid model. J. Adv. Res. Appl. Math.

7, 1–6 (2016)
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