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Abstract
In this paper, by using the least action principle, an existence result of nontrivial weak
solutions for a class of fractional impulsive coupled systems with (p,q)-Laplacian is
obtained if the nonlinear term has sub-(p,q) linear growth, and by using an extension
of Clark’s theorem, infinitely many solutions of the system are obtained if the
nonlinear term has partial sub-(p,q) linear growth.
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1 Introduction and main results
In recent years, because of the important applications of fractional differential equations
to engineering, physics, chemistry and biology, the existence and multiplicity of solutions
for fractional differential equations have been investigated extensively by different meth-
ods such as fixed point theory, degree theory, monotone iterative technique and upper
and lower solutions method (for example, see [1–4] and the references therein). It is well
known that the variational method is an effective tool to deal with existence and multi-
plicity of solutions for integer-order ordinary differential equations which have variational
structures. For the fractional ordinary differential equation, a pioneering work by a vari-
ational method was presented by Jiao and Zhou in [5], where they studied the following
fractional differential equations with the left and right Riemann–Liouville fractional inte-
grals:

⎧
⎨

⎩

d
dt ( 1

2 0D–β
t (u′(t)) + 1

2 tD–β

T (u′(t))) + ∇F(t, u(t)) = 0, a.e. t ∈ [0, T],

u(0) = u(T) = 0,
(1)

where T > 0, 0D–β
t and tD–β

T denote the left and right Riemann–Liouville fractional inte-
grals of order 0 ≤ β < 1, respectively, F : [0, T] ×R

N →R and ∇F(t, x) is the gradient of F
at x. They established the variational structure of system (1), some embedding relations of
working spaces, and some existence results of solutions for system (1) under subquadratic
and superquadratic conditions, respectively. Subsequently, some authors applied a varia-
tional method to different kinds of fractional differential equations and some interesting
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results were given (for example, see [6–15] and the references therein). Especially, in [9],
Zhang and Li considered the following fractional differential equation:

⎧
⎨

⎩

tDα
T (c

0Dα
t u(t)) = ∇W (t, u(t)), t ∈ [0, T],

u(0) = u(T) = 0,
(2)

where c
0Dα

t is the left Caputo fractional derivative, and they obtained the following theo-
rem.

Theorem A ([9], Theorem 1.1) Suppose that the following conditions hold:
(A1) W (t, 0) = 0 for all t ∈ [0, T], W (t, u) ≥ a(t)|u|θ and |∇W (t, u)| ≤ b(t)|u|θ–1 for all

(t, u) ∈ [0, T] ×R
N , where 1 < θ < 2 is a constant, a : [0, T] →R

+ is a continuous
function and b : [0, T] →R

+ is a continuous function;
(A2) there is a constant 1 < σ ≤ θ < 2 such that

(∇W (t, u), u
) ≤ σW (t, u) for all t ∈ [0, T] and u ∈ R

N ;

(A3) W (t, u) = W (t, –u) for all t ∈ [0, T] and u ∈R
N .

Then (2) has infinitely many nontrivial solutions.

Impulse phenomena exist extensively in the real world and impulsive differential equa-
tions are often used to describe these phenomena. In the last decade, by using the varia-
tional methods, the problems on existence and multiplicity of solutions for integer-order
impulsive differential equations with different boundary value conditions have been stud-
ied deeply. We refer to the papers in [16–21] and the references therein. In comparison
to the integer-order impulsive differential equations, there are less results for the frac-
tional impulsive differential equations by variational methods. In 2014, Rodrìguez-López
et al. [22] and Bonanno et al. [23] considered the fractional impulsive differential equation
with the right Riemann–Liouville fractional derivative and left Caputo fractional deriva-
tive:

⎧
⎪⎪⎨

⎪⎪⎩

tDα
T (c

0Dα
t u(t)) + a(t)u(t) = λf (t, u(t)), t �= ti, a.e. t ∈ [0, T],

�(tDα–1
T (c

0Dα
t u))(ti) = μQi(u(ti)), i = 1, 2, . . . , l,

u(0) = u(T) = 0,

(3)

where α ∈ ( 1
2 , 1], both λ and μ are positive parameters, f ∈ C([0, T] ×R,R), Qi ∈ C(R,R)

and a ∈ C([0, T],R). By using variational methods, they found that Eq. (3) has at least
one or three solutions. Subsequently, in [24–27], several results are given along this direc-
tion by variational methods. For example, recently, Heidarkhani etc. [12] considered the
following perturbed impulsive fractional differential system:

⎧
⎪⎪⎨

⎪⎪⎩

tD
αi
T (ai(t)0Dαi

t ui(t)) = λFui (t, u) + μGui (t, u) + hi(ui), t �= tj, t ∈ (0, T),

�(tD
αi–1
T (c

0Dαi
t ui))(tj) = Iij(ui(tj)), j = 1, 2, . . . , m,

ui(0) = ui(T) = 0,

(4)
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for 1 ≤ i ≤ N , where u = (u1, . . . , uN ), 0 < αi ≤ 1, λ > 0, μ ≥ 0, T > 0, ai ∈ L∞([0, T]),
F , G : [0, T] × R

N → R are measurable with respect to t for all u ∈ R
N and contin-

uously differentiable in u for almost every t ∈ [0, T], and hi : R → R is a Lipschitz
continuous function for 1 ≤ i ≤ N . By using a three critical point theorem due Bo-
nanno and Candito [28], they found that system (4) has at least three distinct weak so-
lutions.

As a natural extension of Eq. (3), Zhao and Tang [29] considered the p-Laplacian frac-
tional impulsive differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

tDα
T (Φp(c

0Dα
t u(t))) + |u(t)|p–2u(t) = f (t, u(t)), t ∈ (0, T),

�(tDα–1
T (Φp(c

0Dα
t u)))(ti) = Qi(u(ti)), i = 1, 2, . . . , l,

u(0) = u(T) = 0,

(5)

where f ∈ C([0, T]×R,R), Qi ∈ C(R,R) and Φp(x) = |x|p–2x (p > 1) for all x ∈ R
N . By using

critical point theory, they obtained two multiplicity results of solutions for Eq. (5) when f
satisfies the superquadratic conditions.

Motivated by the work in [5, 6, 11] and [29], Xie-Zhang [30] investigated the existence of
infinitely many solutions for the following (p, q)-Laplacian fractional impulsive differential
system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tDα
T (ρ(t)Φp(c

0Dα
t u(t))) = ∇uW (t, u(t), v(t)), a.e. t ∈ [0, T],

tDβ

T (γ (t)Φq(c
0Dβ

t v(t))) = ∇vW (t, u(t), v(t)), a.e. t ∈ [0, T],

�(tDα–1
T (ρΦp(c

0Dα
t u)))(ti) = ∇Ii(u(ti)), i = 1, 2, . . . , l,

�(tDβ–1
T (γΦq(c

0Dβ
t v)))(sj) = ∇Hj(v(sj)), j = 1, 2, . . . , m,

u(0) = u(T) = 0, v(0) = v(T) = 0,

(6)

where T > 0, α ∈ ( 1
p , 1] with p > 1, β ∈ ( 1

q , 1] with q > 1, Φs(x) = |x|s–2x (s > 1 and s = p, q),

tDα
T (or tDβ

T ) denotes the right Riemann–Liouville fractional derivative of order α (or β),
c
0Dα

t (or c
0Dβ

t ) is the left Caputo fractional derivative of order α (or β), ρ,γ ∈ L∞([0, T],R+),
Ii, Hj : RN (N ≥ 1) → R are continuously differentiable, i = 1, 2, . . . , l, j = 1, 2, . . . , m, 0 = t0 <
t1 < · · · < tl+1 = T , 0 = s0 < s1 < · · · < sm+1 = T , and

�
(

tD
α–1
T

(
ρΦp

(c
0Dα

t u
)))

(ti) = tDα–1
T

(
ρΦp

(c
0Dα

t u
))(

t+
i
)

– tDα–1
T

(
ρΦp

(c
0Dα

t u
))(

t–
i
)
,

�
(

tD
β–1
T

(
γΦq

(c
0Dβ

t v
)))

(sj) = tDβ–1
T

(
γΦq

(c
0Dβ

t v
))(

s+
j
)

– tDβ–1
T

(
γΦq

(c
0Dβ

t v
))(

s–
j
)
,

where

tDα–1
T

(
ρΦp

(c
0Dα

t u
))(

t+
i
)

= lim
t→t+

i
tDα–1

T
(
ρΦp

(c
0Dα

t u
))

(t),

tDα–1
T

(
ρΦp

(c
0Dα

t u
))(

t–
i
)

= lim
t→t–

i
tDα–1

T
(
ρΦp

(c
0Dα

t u
))

(t),

tDβ–1
T

(
γΦq

(c
0Dβ

t v
))(

s+
j
)

= lim
s→s+

j
tDβ–1

T
(
γΦq

(c
0Dβ

t v
))

(s),

tDα–1
T

(
γΦq

(c
0Dβ

t v
))(

s–
j
)

= lim
s→s–

j
tDβ–1

T
(
γΦq

(c
0Dβ

t v
))

(s),
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W : [0, T] ×R
N ×R

N →R satisfies the following assumption:
(W0) W (t, x, y) is continuously differentiable in (x, y) ∈ R

N ×R
N for a.e. t ∈ [0, T], mea-

surable in t for every (x, y) ∈ R
N × R

N , and there are a1, a2 ∈ C(R+,R+) and
b ∈ L∞([0, T];R+) such that

∣
∣W (t, x, y)

∣
∣ +

∣
∣∇W (t, x, y)

∣
∣ ≤ [

a1
(|x|) + a2

(|y|)]b(t),
∣
∣Ii(x)

∣
∣ +

∣
∣∇Ii(x)

∣
∣ ≤ a1

(|x|), i = 1, 2, . . . , l,
∣
∣Hj(y)

∣
∣ +

∣
∣∇Hj(y)

∣
∣ ≤ a2

(|y|), j = 1, 2, . . . , m

for all (x, y) ∈ R
N ×R

N and a.e. t ∈ [0, T]. They assumed W (t, x, y) = –K(t, x, y) +
F(t, x, y) for a.e. t ∈ [0, T] and all (x, y) ∈ R

N × R
N , where K has sub-(p, q) linear

growth and F has super-(p, q) liear growth. By using the symmetric mountain pass
theorem, they obtained system (6) has infinitely many weak solutions.

In this paper, we investigate the existence and multiplicity of solutions for system (6).
Different from [30], we use the least action principle and an extension of Clark’s theorem
to prove our results. We assume W has sub-(p, q) linear growth on (x, y) ∈ R

N × R
N so

that system (6) has at least one weak solution, and we assume W has partially sub-(p, q)
linear growth on (x, y) ∈ R

N × R
N and is even for all (x, y) ∈ R

N × R
N so that system (6)

has infinitely many weak solutions. To be precise, we obtain the results below.

Theorem 1.1 Suppose that (W0) and the following conditions hold:
(A) ρ– := essinf[0,T] ρ(t) > 0, γ – := essinf[0,T] γ (t) > 0;

(W1) there exist constants d1 ∈ [0, ρ–

pCp
α

), d2 ∈ [0, γ –

qCq
β

), γ1 ∈ (0, p], γ2 ∈ (0, q] and g1, g2, g3 ∈
L1([0, T],R+) such that

W (t, x, y) ≤ d1|x|p + d2|y|q + g1(t)|x|p–γ1 + g2(t)|y|q–γ2 + g3(t)

for a.e. t ∈ [0, T] and all (x, y) ∈R
N ×R

N , where Cα = Tα

Γ (α+1) and Cβ = Tβ

Γ (β+1) ;
(I1) there exist positive constants k1, k2 and ν1 ∈ [0, p) such that

Ii(x) ≥ –k1|x|ν1 – k2

for a.e. t ∈ [0, T] and all x ∈R
N , i = 1, . . . , l;

(H1) there exist positive constants k3, k4 and ν2 ∈ [0, q) such that

Hj(y) ≥ –k3|y|ν2 – k4

for a.e. t ∈ [0, T] and all y ∈ R
N , j = 1, . . . , m.

Then system (6) has at least one weak solution.

Remark 1.1 There exist examples of functions satisfying the assumptions in Theorem 1.1.
For example, let p > 1, q > 1, ρ(t) = γ (t) = et + 1, Ii(x) = – ln(1 + |x|p), i = 1, . . . , l, Hj(y) =
– ln(1 + |y|q), j = 1, . . . , m, and

W (t, x, y) =
(
et + 1

)[
ln

(
1 + |x|p) + ln

(
1 + |y|q)]

for all (x, y) ∈R
N ×R

N and a.e. t ∈ [0, T].
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Theorem 1.2 Assume that (W0), (A), (I1), (H1) and the following conditions hold:
(W1)′ there exist constants δ1 > 0, δ2 > 0, μ1 ∈ [0, p), μ2 ∈ [0, q) and f1, f2 ∈ L1([0, T];R+)

such that

W (t, x, y) ≤ f1(t)|x|μ1 + f2(t)|y|μ2

for a.e. t ∈ [0, T] and all (x, y) ∈R
N ×R

N with |x| ≤ δ1 and |y| ≤ δ2;
(W2) W (t, 0, 0) = 0 and W (t, x, y) = W (t, –x, –y) for a.e. t ∈ [0, T] and all (x, y) ∈ R

N ×
R

N ;
(W3)

lim|x|+|y|→0

W (t, x, y)
|x|p + |y|q = +∞ uniformly for a.e. t ∈ [0, T];

(I1)′ there exist positive constants l1, l2, δ3 and ν3 ∈ [0, p) such that

Ii(x) ≥ –l1|x|ν3 – l2

for a.e. t ∈ [0, T] and all x ∈R
N with |x| ≤ δ3, i = 1, . . . , l;

(H1)′ there exist positive constants l3, l4, δ4 and ν4 ∈ [0, q) such that

Hj(y) ≥ –l3|y|ν4 – l4

for a.e. t ∈ [0, T] and all y ∈R
N with |y| ≤ δ4, j = 1, . . . , m;

(I2) there exists a constant b1 > 0 such that

lim|x|→0

Ii(x)
|x|p < b1, i = 1, . . . , l;

(H2) there exists a constant b2 > 0 such that

lim|y|→0

Hj(y)
|y|q < b2, j = 1, . . . , m;

(I3) Ii(0) = 0 and Ii(x) is even in x ∈R
N , i = 1, . . . , l;

(H3) Hj(0) = 0 and Hj(y) is even in y ∈R
N , j = 1, . . . , m.

Then system (6) has infinitely many weak solutions.

Remark 1.2 There exist examples of functions satisfying the assumptions in Theorem 1.2.
For example, let p = 4, q = 5, ρ(t) = γ (t) = et +1, Ii(x) = –e|x|4 +1, i = 1, . . . , l, Hj(y) = –e|y|5 +1,
j = 1, . . . , m, and W (t, x, y) = (t2 + 1)(|x|3 + |y|3) for all (x, y) ∈R

N ×R
N and a.e. t ∈ [0, T].

It is easy to obtain similar theorems to Theorem 1.1 and Theorem 1.2 for the p-Laplacian
fractional impulsive differential system:

⎧
⎪⎪⎨

⎪⎪⎩

tDα
T (ρ(t)Φp(c

0Dα
t u(t))) = ∇uW (t, u(t)), a.e. t ∈ [0, T],

�(tDα–1
T (ρΦp(c

0Dα
t u)))(ti) = ∇Ii(u(ti)), i = 1, 2, . . . , l,

u(0) = u(T) = 0.

(7)



Liu et al. Advances in Difference Equations        (2019) 2019:100 Page 6 of 14

Theorem 1.3 Suppose that the following conditions hold:
(W0)′ W (t, x) is continuously differential in x ∈ R

N for a.e. t ∈ [0, T], measurable in t
for each x ∈ R

N , and there are functions a ∈ C(R+,R+) and b ∈ L1([0, T];R+) such
that

∣
∣W (t, x)

∣
∣ +

∣
∣∇W (t, x)

∣
∣ ≤ a

(|x|)b(t),
∣
∣Ii(x)

∣
∣ +

∣
∣∇Ii(x)

∣
∣ ≤ a

(|x|), i = 1, 2, . . . , l,

for all x ∈ R
N and a.e. t ∈ [0, T];

(A)′ ρ– := essinf[0,T] ρ(t) > 0;
(W1)′′ there exist constants d ∈ [0, ρ–

pCp
α

), γ ∈ (0, p], and g1, g2 ∈ L1([0, T],R+) such that

W (t, x, y) ≤ d|x|p + g1(t)|x|p–γ + g2(t)

for a.e. t ∈ [0, T] and all (x, y) ∈R
N ×R

N ;
(I1)′′ there exist positive constants k1, k2 and ν1 ∈ [0, p) such that

Ii(x) ≥ –k1|x|ν1 – k2

for a.e. t ∈ [0, T] and all x ∈R
N , i = 1, . . . , l.

Then system (7) has at least one weak solution.

Theorem 1.4 Assume that (W0)′, (A)′, (I1)′′ and the following conditions hold:
(W1)′′′ there exist constants δ1 > 0, μ ∈ [0, p) and f ∈ L1([0, T];R+) such that

W (t, x) ≤ f (t)|x|μ

for a.e. t ∈ [0, T] and all x ∈R
N with |x| ≤ δ1;

(W2)′ W (t, 0) = 0 and W (t, x) = W (t, –x) for a.e. t ∈ [0, T] and all x ∈ R
N ;

(W3)′

lim|x|→0

W (t, x)
|x|p = +∞;

(I1)′′′ there exist positive constants l1, l2, δ2 and ν2 ∈ [0, p) such that

Ii(x) ≥ –l1|x|ν2 – l2

for a.e. t ∈ [0, T] and all x ∈R
N with |x| ≤ δ2, i = 1, . . . , l;

(I2)′ there exists a constant b > 0 such that

lim|x|→0

Ii(x)
|x|p < b, i = 1, . . . , l;

(I3)′ Ii(0) = 0, Ii(x) is even in x ∈R
N , i = 1, . . . , l.

Then system (7) has infinitely many weak solutions.
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Remark 1.3 If p = 2, ρ(t) ≡ 1 and Ii(x) ≡ 0 for a.e. t ∈ [0, T] and all x ∈R
N , i = 1, . . . , l, then

Theorem 1.3 reduces to Theorem 5.46 in [31]. Hence, Theorem 1.3 generalizes Theorem
5.46 in [31]. In Theorem A (Theorem 1.1 in [9]), W is required to satisfy the subquadratic
condition for all x ∈ R

N while (W1)′′′ is a partial sub-p linear growth condition, which is
only for all x ∈ R

N with |x| ≤ δ. Hence, Theorem 1.4 is still different from Theorem A even
if p = 2 and Ii(x) ≡ 0 for all x ∈ R

N , i = 1, . . . , l. Moreover, in Theorem 1.4, a condition like
(A2) in Theorem A ((W2) in Theorem 1.1 in [9]) is not required. There exist examples of
functions satisfying the assumptions in Theorem 1.4 with p = 2 but not satisfying those in
Theorem A. For example, let N = 1, p = 2 and

W (t, x) =

⎧
⎨

⎩

(t2 + 1)|x| 3
2 , if |x| ≤ 1,

(t2 + 1)|x|3, if |x| > 1.

2 Preliminaries
Let E be a real Banach space and Φ ∈ C1(E,R). If any sequence {uk} possesses a convergent
subsequence, where {uk} satisfies Φ(uk) is bounded and Φ ′(uk) → 0 as k → ∞, then one
say that Φ satisfies the Palais–Smale (PS) condition (see [32]). We use the following two
lemmas to prove our results.

Lemma 2.1 ([32]) Let E be a real Banach space and Φ ∈ C1(E,R) satisfy the (PS) condition.
If Φ is bounded from below, then c = infE Φ is a critical value of Φ .

Lemma 2.2 ([33]) Assume that (E,‖ · ‖) is a Banach space and Φ ∈ C1(X,R). Suppose that
Φ satisfies the (PS) condition, is even and bounded from below, and Φ(0) = 0. If for any
k ∈ N, there exists a k-dimensional subspace Xk of E and ρk > 0 such that supXk∩Sρk

Φ < 0,
where Sρ = {u ∈ E|‖u‖ = ρ}, then at least one of the following conclusions holds:

(i) there exists a sequence of critical points {uk} satisfying Φ(uk) < 0 for all k and
‖uk‖ → 0 as k → ∞;

(ii) there exists r > 0 such that for any 0 < a < r there exists a critical point u such that
‖u‖ = a and Φ(u) = 0.

Next we recall the definitions of Riemann–Liouville fractional derivatives and Caputo
fractional derivatives and some related lemmas. Assume a, b ∈R. Suppose that AC([a, b])
denote the space which consists of all absolutely continuous functions u : [a, b] → R

N .
Set

C∞
0

(
[0, T],RN)

:=
{

u|u ∈ C∞(
[0, T],RN)

, u(0) = u(T) = 0
}

and the norm ‖u‖∞ = max[0,T] |u(t)| and for s > 1,

Ls([0, T],RN)
:=

{

u|u : [0, T] → R
N ,

∫ T

0

∣
∣u(t)

∣
∣s dt < ∞

}

and the norm ‖u‖Ls = (
∫ T

0 |u(t)|s dt)1/s.
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Definition 2.1 ([31, 34]) Assume that f ∈ AC[a, b] and θ ∈ (0, 1). Define

aDθ
t f (t) =

1
Γ (1 – θ )

d
dt

∫ t

a
(t – s)–θ f (s) ds, t > a,

tDθ
bf (t) = –

1
Γ (1 – θ )

d
dt

∫ t

a
(s – t)–θ f (s) ds, t < b.

Then aDθ
t and tDθ

b are called the left and right Riemann–Liouville fractional derivatives of
order θ of the function f , respectively.

Definition 2.2 ([31, 34]) Assume that f ∈ AC[a, b] and θ ∈ (0, 1). Define

c
aDθ

t f (t) = aDθ–1
t f ′(t) =

1
Γ (1 – θ )

∫ t

a
(t – s)–θ f ′(s) ds,

c
t Dθ

bf (t) = tDθ–1
b f ′(t) =

1
Γ (1 – θ )

∫ b

t
(s – t)–θ f ′(s) ds.

Then c
aDθ

t and c
t Dθ

b are called the left and right Caputo fractional derivatives of order θ of
the function f , respectively.

Let Eθ ,s
0 (0, T) be the closure of C∞

0 ([0, T],RN ) with the norm:

‖u‖s =
(∫ T

0

∣
∣c
0Dθ

t u(t)
∣
∣s dt +

∫ T

0

∣
∣u(t)

∣
∣s dt

)1/s

, ∀u ∈ Eθ ,s
0 (0, T),

where θ ∈ (0, 1] and s > 1. Then Eθ ,s
0 is reflexive and separable Banach space and u, c

0Dθ
t u ∈

Ls([0, T],R) if u ∈ Eθ ,s
0 (0, T) (see [5]).

Proposition 2.1 ([5]) Assume that θ ∈ (0, 1] and s > 1. For any u ∈ Eθ ,s
0 (0, T),

‖u‖Ls ≤ Cθ‖c
0Dθ

t u‖Ls ,

where Cθ = Tθ

Γ (θ+1) . If θ > 1
s , then

‖u‖∞ ≤ Cθ ,s,∞‖c
0Dθ

t u‖Ls ,

where Cθ ,s,∞ := Tθ– 1
s

Γ (θ )(θs–s′+1)
1
s′

and s′ = s
s–1 .

Proposition 2.2 ([5]) Assume that 1
p < θ ≤ 1 and 1 < p < ∞, and the sequence {uk} con-

verges weakly to u in Eθ ,p
0 . Then uk → u in C([0, T],RN ).

Define E = Eα,p
0 (0, T) × Eβ ,q

0 (0, T) with the norm ‖(u, v)‖E = ‖u‖p + ‖v‖q for all (u, v) ∈ E,
where α,β ∈ (0, 1]. Then E is a reflexive and separable Banach space.
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Definition 2.3 ([30]) For any (h, w) ∈ E, if the following conditions hold:

∫ T

0

(
ρ(t)

∣
∣c
0Dα

t u(t)
∣
∣p–2c

0Dα
t u(t), c

0Dα
t h(t)

)
dt +

l∑

i=1

(∇Ii
(
u(ti)

)
, h(ti)

)

–
∫ T

0

(∇uW
(
t, u(t), v(t)

)
, h(t)

)
dt = 0,

∫ T

0

(
γ (t)

∣
∣c
0Dβ

t v(t)
∣
∣q–2c

0Dβ
t v(t), c

0Dβ
t h(t)

)
dt +

m∑

j=1

(∇Hj
(
v(sj)

)
, w(sj)

)

–
∫ T

0

(∇vW
(
t, u(t), v(t)

)
, h(t)

)
dt = 0,

then (u, v) ∈ E is defined as a weak solution of (6).

Define the functional Φ : E →R by

Φ(u, v) =
1
p

∫ T

0
ρ(t)

∣
∣c
0Dα

t u(t)
∣
∣p dt +

1
q

∫ T

0
γ (t)

∣
∣c
0Dβ

t v(t)
∣
∣q dt

+
l∑

i=1

Ii
(
u(ti)

)
+

m∑

j=1

Hj
(
v(sj)

)
–

∫ T

0
W

(
t, u(t), v(t)

)
dt. (8)

Then Φ ∈ C1(E,R) and

〈
Φ ′(u, v), (h, w)

〉

=
∫ T

0

(
ρ(t)

∣
∣c
0Dα

t u(t)
∣
∣p–2c

0Dα
t u(t),c0 Dα

t h(t)
)

dt

+
∫ T

0

(
γ (t)

∣
∣c
0Dα

t v(t)
∣
∣q–2c

0Dβ
t v(t),c0 Dα

t w(t)
)

dt

–
∫ T

0

(∇uW
(
t, u(t), v(t)

)
, h(t)

)
dt –

∫ T

0

(∇vW
(
t, u(t), v(t)

)
, w(t)

)
dt

+
l∑

i=1

(∇Ii
(
u(ti)

)
, h(ti)

)
+

m∑

j=1

(∇Hj
(
v(sj)

)
, w(sj)

)
.

A critical point of Φ is a weak solution of system (6) (see [29–31]).

3 Proofs of theorems
Lemma 3.1 Assume that (W0), (A), (W1), (I1) and (H1) hold. Then Φ is bounded from
below on E.

Proof It follows from (W0), (A), (W1), (I1) and (H1) that

Φ(u, v) =
1
p

∫ T

0
ρ(t)

∣
∣c
0Dα

t u(t)
∣
∣p dt +

1
q

∫ T

0
γ (t)

∣
∣c
0Dβ

t v(t)
∣
∣q dt +

l∑

i=1

Ii
(
u(ti)

)

+
m∑

j=1

Hj
(
v(sj)

)
–

∫ T

0
W

(
t, u(t), v(t)

)
dt
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≥ ρ–

p

∫ T

0

∣
∣c
0Dα

t u(t)
∣
∣p dt +

γ –

q

∫ T

0

∣
∣c
0Dβ

t v(t)
∣
∣q dt –

l∑

i=1

(
k1

∣
∣u(ti)

∣
∣ν1 + k2

)

–
m∑

j=1

(
k3

∣
∣v(sj)

∣
∣ν2 + k4

)
–

∫ T

0

(
d1

∣
∣u(t)

∣
∣p + d2

∣
∣v(t)

∣
∣q + g1(t)

∣
∣u(t)

∣
∣p–γ1

+ g2(t)
∣
∣v(t)

∣
∣q–γ2 + g3(t)

)
dt

≥ ρ–

p
∥
∥c

0Dα
t u

∥
∥p

Lp +
γ –

q
∥
∥c

0Dβ
t v

∥
∥q

Lq – k1l‖u‖ν1∞ – k2l – k3m‖v‖ν2∞ – k4m

– d1Cp
α

∥
∥c

0Dα
t u

∥
∥p

Lp – d2Cq
β

∥
∥c

0Dβ
t v

∥
∥q

Lq –
∫ T

0
g1(t) dt‖u‖p–γ1∞

–
∫ T

0
g2(t) dt‖v‖q–γ2∞ –

∫ T

0
g3(t) dt

≥
(

ρ–

p
– d1Cp

α

)
∥
∥c

0Dα
t u

∥
∥p

Lp +
(

γ –

q
– d2Cq

β

)
∥
∥c

0Dβ
t v

∥
∥q

Lq

– k1lCν1
α,p,∞

∥
∥c

0Dα
t u

∥
∥ν1

Lp – k3mCν2
β ,q,∞

∥
∥c

0Dβ
t v

∥
∥ν2

Lq

– Cp–γ1
α,p,∞

∫ T

0
g1(t) dt

∥
∥c

0Dα
t u

∥
∥p–γ1

Lp – Cq–γ2
β ,q,∞

∫ T

0
g2(t) dt

∥
∥c

0Dβ
t v

∥
∥q–γ2

Lq

–
∫ T

0
g3(t) dt – k2l – k4m. (9)

Note that d1 ∈ [0, ρ–

pCp
α

), d2 ∈ [0, γ –

qCq
β

), ν1 ∈ [0, p), ν2 ∈ [0, q), γ1 ∈ (0, p) and γ2 ∈ (0, q).

Moreover, by Proposition 2.1, it is easy to see that ‖c
0Dα

t u‖Lp and ‖c
0Dβ

t v‖Lq are equiva-
lent to ‖u‖p and ‖v‖q, respectively, which shows that ‖(u, v)‖E is equivalent to the norm
‖(u, v)‖L := ‖u‖Lp + ‖v‖Lq . Thus (9) and Proposition 2.1 imply that Φ(u, v) → +∞ as
‖(u, v)‖E → ∞ and so Φ is bounded from below on E. �

Lemma 3.2 Assume that (W0), (A), (W1), (I1) and (H1) hold. Then Φ satisfies the Palais–
Smale condition.

Proof The proof is standard (see, for example, [29, 30] and [31]). For any sequence
{(un, vn)}∞n=1 ⊂ E, suppose that there is a positive constant C1 such that

∣
∣Φ(un, vn)

∣
∣ ≤ C1,

(
1 +

∥
∥(un, vn)

∥
∥

E

)∥
∥Φ ′(un, vn)

∥
∥

E∗ ≤ C1, for all n ∈N, (10)

where E∗ is the dual space of E. Then (9) implies that ‖(u, v)‖L is bounded and then ‖(u, v)‖E

is bounded. So there is a subsequence (un, vn) such that un ⇀ u in Eα,p
0 (0, T) and vn ⇀ v in

Eβ ,q
0 (0, T). Then Proposition 2.2 implies that ‖un – u‖∞ → 0 and ‖vn – v‖∞ → 0, and then

‖un – u‖Lp → 0 and ‖vn – v‖Lq → 0. With a similar proof to Lemma 3.1 in [29], we have
‖c

0Dα
t un(t) – c

0Dα
t u(t)‖Lp → 0 and ‖c

0Dα
t vn(t) – c

0Dα
t v(t)‖Lq → 0. Hence ‖un – u‖p → 0 and

‖vn – v‖q → 0 as n → ∞. �

Proof of Theorem 1.1 By combining Lemma 3.1, Lemma 3.2 with Lemma 2.1, the proof is
easy to complete. �
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Proof of Theorem 1.2 We follow the basic idea of the proof in [33]. We first investigate the
following modified system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tDα
T (ρ(t)Φp(c

0Dα
t u(t))) = ∇uŴ (t, u(t), v(t)), a.e. t ∈ [0, T],

tDβ

T (γ (t)Φq(c
0Dβ

t v(t))) = ∇vŴ (t, u(t), v(t)), a.e. t ∈ [0, T],

�(tDα–1
T (ρΦp(c

0Dα
t u)))(ti) = ∇ Îi(u(ti)), i = 1, 2, . . . , l,

�(tDβ–1
T (γΦq(c

0Dβ
t v)))(sj) = ∇Ĥj(v(sj)), j = 1, 2, . . . , m,

u(0) = u(T) = 0, v(0) = v(T) = 0,

(11)

where Îi, Ĥj : RN → R are continuously differentiable, where i = 1, . . . , l and j = 1, . . . , m,
and Ŵ : [0, T] ×R

N ×R
N →R satisfies (W0) and the following conditions:

(i) Ŵ (t, x, y) = Ŵ (t, –x, –y) for a.e. t ∈ [0, T] and all (x, y) ∈ R
N ×R

N ,
Ŵ (t, x, y) = W (t, x, y) for a.e. t ∈ [0, T] and all (x, y) ∈R

N ×R
N with |x| ≤ δ1 and

|y| ≤ δ2, and Ŵ (t, x, y) ≡ 0 for a.e. t ∈ [0, T] and all (x, y) ∈ R
N ×R

N with |x| > δ1

and |y| > δ2;
(ii) Îi(x) = Îi(–x) for a.e. t ∈ [0, T] and all x ∈ R

N , Îi(x) = Ii(x), i = 1, . . . , l for all x ∈ R
N

with |x| ≤ δ3, and Îi(x) ≡ 0 for all x ∈R
N with |x| > δ3;

(iii) Ĥj(y) = Ĥj(–y), j = 1, . . . , m for all y ∈R
N , Ĥj(y) = Hj(y), j = 1, . . . , m for all y ∈R

N

with |y| ≤ δ4, and Ĥi(x) ≡ 0 for all y ∈R
N with |y| > δ4.

Then the solutions of system (11) correspond to the critical points of the functional
Ψ̂ : E →R defined by

Φ̂(u, v) =
1
p

∫ T

0
ρ(t)

∣
∣c
0Dα

t u(t)
∣
∣p dt +

1
q

∫ T

0
γ (t)

∣
∣c
0Dβ

t v(t)
∣
∣q dt +

l∑

i=1

Îi
(
u(ti)

)

+
m∑

j=1

Ĥj
(
v(sj)

)
+

∫ T

0
Ŵ

(
t, u(t), v(t)

)
dt. (12)

By (W0) and (W1)′, it is easy to see that Φ̂ is well defined and Φ̂ ∈ C1(E,R). It follows from
(W1)′, (I1)′, (H1)′ and the definitions of Ŵ , Î and Ĥ that Ŵ , Î and Ĥ satisfy (W1), (I1) and
(H1), respectively. Hence, by the argument of Lemma 3.1, Φ̂(u, v) → +∞ as ‖(u, v)‖E → ∞
and then it is bounded from below. Similar to the argument of Lemma 3.2, Φ̂ satisfies the
Palais–Smale condition.

Let Xk be a k-dimensional subspace of X for any k ∈ N. Then all norms are equivalent
in Xk . Hence, there exist positive constants C2 and C3 such that

‖u‖p
Lp ≥ C2‖u‖p

p, ‖v‖q
Lq ≥ C3‖v‖q

q. (13)

It follows from (W3), (I2) and (H2) that, for any given

M > max

{
1

C2

(
ρ+

p
+ b1lCp

α,p,∞

)

,
1

C3

(
γ +

p
+ b2mCq

β ,q,∞

)}

, (14)

where ρ+ = esssup[0,T] ρ(t) and γ + = esssup[0,T] γ (t), there exists δ0 := δ0(M) > 0 such that

W (t, x, y) ≥ M
(|x|p + |y|q), (15)
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for all (x, y) ∈R
N ×R

N with |x| + |y| ≤ δ0, and

Ii(x) ≤ b1|x|p, Hj(y) ≤ b2|y|q, (16)

for all x ∈R
N with |x| ≤ δ0 and all y ∈R

N with |y| ≤ δ0, where i = 1, . . . , l and j = 1, . . . , m.
For any given 0 < ρk ≤ min{δ0,δ1,δ2,δ3,δ4}

max{Cα,p∞ ,Cβ ,q,∞} , define

Sρk =
{

(u, v) ∈ E|∥∥(u, v)
∥
∥

E = ρk
}

.

Then, by Proposition 2.1, we have

‖u‖∞ + ‖v‖∞ ≤ Cα,p,∞‖u‖p + Cβ ,q,∞‖v‖q ≤ max{Cα,p,∞, Cβ ,q,∞}∥∥(u, v)
∥
∥

E

≤ min{δ0, δ1, δ2, δ3, δ4} (17)

for all (u, v) ∈ Sρk . Then (13), (15), (16), (17) and the definitions of Ŵ , Îi and Ĥj (i = 1, . . . , l,
j = 1, . . . , m) imply that

Φ̂(u, v) ≤ ρ+

p

∫ T

0

∣
∣c
0Dα

t u(t)
∣
∣p dt +

γ +

q

∫ T

0

∣
∣c
0Dβ

t v(t)
∣
∣q dt + b1

l∑

i=1

∣
∣u(ti)

∣
∣p

+ b2

m∑

j=1

∣
∣v(sj)

∣
∣q – M

∫ T

0

(∣
∣u(t)

∣
∣p +

∣
∣v(t)

∣
∣q)dt

≤ ρ+

p
‖u‖p

p +
γ +

q
‖v‖q

q + b1l‖u‖p
∞ + b2m‖v‖q

∞ – M‖u‖p
Lp – M‖v‖q

Lq

≤ ρ+

p
‖u‖p

p +
γ +

q
‖v‖q

q + b1lCp
α,p,∞‖u‖p

p + b2mCq
β ,q,∞‖v‖q

q – MC2‖u‖p
p

– MC3‖v‖q
q (18)

for any (u, v) ∈ Sρk . So (14) and (18) imply that Φ̂(u, v)|Sρk ∩Xk < 0. The conditions (i)–(iii),
(W2), (I3) and (H3) imply that Φ̂ is even and Φ̂(0, 0) = 0. Hence, Lemma 2.2 and Lemma 3.2
show that system (11) has infinitely many solutions {(uk , vk)} such that ‖(uk , vk)‖E → 0 as
k → ∞. Then (17) implies that ‖uk‖∞ → 0 and ‖vk‖∞ → 0 as k → ∞. So there exists a
sufficiently large integer k0 > 0 such that |uk(t)|+ |vk(t)| ≤ min{δ0, δ1, δ2, δ3, δ4} for all k ≥ k0.
Then the definitions of Ŵ , Îi (i = 1, . . . , l) and Ĥj (j = 1, . . . , m) imply that (uk , vk) are also
solutions of system (6) for all k ≥ k0. �
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