
Chen and Ma Advances in Difference Equations         (2019) 2019:87 
https://doi.org/10.1186/s13662-019-2036-1

R E S E A R C H Open Access

Developing CRS iterative methods for
periodic Sylvester matrix equation
Linjie Chen1 and Changfeng Ma1*

*Correspondence:
macf@fjnu.edu.cn
1College of Mathematics and
Informatics, Fujian Normal
University, Fuzhou, P.R. China

Abstract
In this paper, by applying Kronecker product and vectorization operator, we extend
two mathematical equivalent forms of the conjugate residual squared (CRS) method
to solve the periodic Sylvester matrix equation

AjXjBj + CjXj+1Dj = Ej for j = 1, 2, . . . ,λ.

We give some numerical examples to compare the accuracy and efficiency of the
matrix CRS iterative methods with other methods in the literature. Numerical results
validate that the proposed methods are superior to some existing methods and that
equivalent mathematical methods can show different numerical performance.
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1 Introduction
We consider the iterative solution of the periodic Sylvester matrix equation

AjXjBj + CjXj+1Dj = Ej for j = 1, 2, . . . , (1.1)

where the coefficient matrices Aj, Bj, Cj, Dj, Ej ∈ Rm×m and the solutions Xj ∈ Rm×m are
periodic with period λ, that is, Aj+λ = Aj, Bj+λ = Bj, Cj+λ = Cj, Dj+λ = Dj, Ej+λ = Ej, and Xj+λ =
Xj. The periodic Sylvester matrix equation (1.1) attracts considerable attention because it
comes from a variety of fields of control theory and applied mathematics [1–12].

In recent years, many efficient iterative methods have been proposed to solve the pe-
riodic Sylvester matrix equation (1.1). For example, Hajarian [13, 14] developed the con-
jugate gradient squared (CGS), biconjugate gradient stabilized (BiCGSTAB) and bicon-
jugate residual methods for solving the periodic Sylvester matrix equation (1.1). Lv and
Zhang [15] proposed a new kind of iterative algorithm for constructing the least square
solution for the periodic Sylvester matrix equation. Hajarian [16] studied the biconjugate
A-orthogonal residual and conjugate A-orthogonal residual squared (CORS) methods for
solving coupled periodic Sylvester matrix equation, and so forth; see [17–28] and the ref-
erences therein.

As we know, by applying Kronecker product and vectorization operator, some iterative
algorithms for solving linear system Ax = b can be extended to solve linear matrix equa-
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tions. Recently, Sogabe et al. [29] proposed a conjugate residual squared (CRS) method
for solving linear systems Ax = b with nonsymmetric coefficient matrix. Independently,
Zhang et al. [30] presented another form of CRS method. It can be proved that these CRS
methods are mathematically equivalent. Chen and Ma [31] used the matrix CRS iterative
method to solve a class of coupled Sylvester-transpose matrix equations. In this work, we
obtain a matrix form of the CRS methods for solving the periodic Sylvester matrix equa-
tion (1.1).

The rest of this paper is organized as follows. In Sect. 2, we extend the CRS methods to
solve the periodic Sylvester matrix equation (1.1). We give some numerical examples and
comparison results in Sect. 3. In Sect. 4, we draw a brief conclusion.

Throughout this paper, we use the following notations. The set of all real m-vectors and
the set of all m×n real matrices are denoted by Rm and Rm×n, respectively. The usual inner
product in Rm is denoted by (u, v) for u, v ∈ Rm. For a matrix A ∈ Rm×n, we denote its trace
and transpose by tr(A) and AT , respectively. The inner product of A ∈ Rm×n and B ∈ Rm×n

is defined by 〈A, B〉 = tr(BT A). Then the norm of a matrix generated by this inner product
is the matrix Frobenius norm ‖ · ‖. For a matrix A ∈ Rm×n, the vectorization operator
is defined as vec(A) = (aT

1 aT
2 · · · aT

n )T , where ai is the ith column of A. The Kronecker
product of matrices A = [aij] ∈ Rm×n and B ∈ Rp×q is defined as A ⊗ B = [aijB] ∈ Rmp×nq.
For matrices A, B, and X of appropriate dimensions, we have the following well-known
property related to the Kronecker product and vectorization operator:

vec(AXB) =
(
BT ⊗ A

)
vec(X).

2 Matrix forms of the CRS iterative methods
In this section, we first briefly recall the CRS iterative methods for solving a large sparse
nonsymmetric linear system Ax = b, where A ∈ RN×N and x, b ∈ RN . As described in the
introduction, the CRS iterative methods are presented in [29] and [30], which are summa-
rized as the following Algorithms 2.1 and 2.2, respectively. For more detail about the CRS
methods, see [32–34].

Algorithm 2.1 (The first form of CRS method (CRS1) [29])
1. x0 is an initial guess; r0 = b – Ax0; choose r∗

0 (for example, r∗
0 = r0).

2. Set e0 = r0, d0 = Ae0, β–1 = 0. Let t = AT r∗
0 .

3. For n = 0, 1, . . . , until convergence Do:

sn = dn + βn–1(fn–1 + βn–1sn–1);

αn = (t, rn)/(t, sn);

hn = en – αnsn;

fn = dn – αnAsn;

xn+1 = xn + αn(en + hn);

rn+1 = rn – αn(dn + fn);

βn = (t, rn+1)/(t, rn);

en+1 = rn+1 + βnhn;
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dn+1 = Arn+1 + βnfn;

4. EndDo.

Algorithm 2.2 (The second form of CRS method (CRS2) [30])
1. Compute r0 = b – Ax0; choose r∗

0 such that (Ar0, r∗
0) �= 0 (for example, r∗

0 = r0).
2. Set p0 = u0 = r0. Let t = AT r∗

0 .
3. For n = 0, 1, . . . , until convergence Do:

αn = (t, rn)/(t, Apn);

qn = un – αnApn;

xn+1 = xn + αn(un + qn);

rn+1 = rn – αnA(un + qn);

βn = (t, rn+1)/(t, rn);

un+1 = rn+1 + βnqn;

pn+1 = un+1 + βn(qn + βnpn);

4. EndDo.

Let

hn ↔ qn, en ↔ un, sn ↔ Apn, dn ↔ Aun, fn ↔ Aqn.

Then we can verify that CRS1 and CRS2 are mathematically equivalent. The CRS methods
were proposed mainly to avoid using the transpose of A in the BiCR algorithm and gain
a faster convergence for roughly the same computational costs [30]. Indeed, in many cases,
the CRS methods converge twice as fast as the BiCR method [33, 35]. On the other hand,
the BiCR method can be derived from the preconditioned conjugate residual (CR) method
[36]. Furthermore, the CR and conjugate gradient (CG) methods exhibit typically similar
convergence [37]. In exact arithmetic, they terminate after a finite number of iterations.
In conclusion, we can expect that the CRS methods also terminate after a finite number
of iterations in exact arithmetic.

In the following, we want to use the CRS algorithms to solve the periodic Sylvester ma-
trix equations (1.1). For this purpose, we can easily show that the periodic Sylvester matrix
equation (1.1) is equivalent to the following generalized Sylvester matrix equation [13]:

AXB + CXD = E, (2.1)

where

A =

⎡

⎢
⎢⎢
⎢
⎣

0 · · · 0 A1

A2 0
. . .

...
0 Aλ 0

⎤

⎥
⎥⎥
⎥
⎦

, B =

⎡

⎢
⎢⎢
⎢
⎣

0 B2 0
...

. . .
0 Bλ

B1 0 · · · 0

⎤

⎥
⎥⎥
⎥
⎦

,
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C = diag[C1, C2, . . . , Cλ], D = diag[D1, D2, . . . , Dλ],

E = diag[E1, E2, . . . , Eλ], X = diag[X2, X3, . . . , Xλ, X1].

Then we need to transform the generalized Sylvester matrix equations (2.1) into a linear
system Ax = b. We should mention that the following derivation borrows much of that
used in [13].

By applying the Kronecker product and vectorization operator we can change the gen-
eralized Sylvester matrix equations (2.1) into the following linear system of equations:

(
BT ⊗ A + DT ⊗ C

)
vec(X) = vec(E). (2.2)

Denote

A := BT ⊗ A + DT ⊗ C, x := vec(X), b := vec(E).

Then (2.2) can be written as

Ax = b,

where A ∈ Rλ2m2×λ2m2 and x, b ∈ Rλ2m2 . Then we are in position to present the matrix forms
of Algorithms 2.1 and 2.2 for solving the generalized Sylvester matrix equation (2.1), and
we just discuss Algorithm 2.1 in detail since the discussion of Algorithm 2.2 is similar.

From Algorithm 2.1 and the linear system of equation (2.2) we have

r0 = b – Ax0 → r0 = vec(E) –
(
BT ⊗ A + DT ⊗ C

)
x0, (2.3)

d0 = Ae0 → d0 =
(
BT ⊗ A + DT ⊗ C

)
e0, (2.4)

t = AT r∗
0 → t =

(
B ⊗ AT + D ⊗ CT)

r∗
0 , (2.5)

Asn → (
BT ⊗ A + DT ⊗ C

)
sn, (2.6)

Arn+1 → (
BT ⊗ A + DT ⊗ C

)
rn+1. (2.7)

According to (2.3)–(2.7), we define

xn = vec
(
X(n)

)
, rn = vec

(
R(n)

)
, sn = vec

(
S(n)

)
, (2.8)

hn = vec
(
H(n)

)
, fn = vec

(
F(n)

)
, en = vec

(
E(n)

)
, (2.9)

dn = vec
(
D(n)

)
, r∗

0 = vec
(
R∗(0)

)
, t = vec(T), (2.10)

where X(n), R(n), S(n), H(n), F(n), E(n), D(n), R∗(0), T ∈ Rλm×λm for n = 0, 1, 2, . . . . Substi-
tuting (2.8)–(2.10) into (2.3)–(2.7), we get

vec
(
R(0)

)
= vec(E) –

(
BT ⊗ A + DT ⊗ C

)
vec

(
X(0)

)
,

vec
(
D(0)

)
=

(
BT ⊗ A + DT ⊗ C

)
vec

(
E(0)

)
,

vec(T) =
(
B ⊗ AT + D ⊗ CT)

vec
(
R∗(0)

)
,
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Asn =
(
BT ⊗ A + DT ⊗ C

)
vec

(
S(n)

)
,

and

Arn+1 =
(
BT ⊗ A + DT ⊗ C

)
vec

(
R(n + 1)

)
.

In addition, for the parameters αn and βn, we have

αn =
〈
R(n), T

〉
/
〈
V(n), T

〉

and

βn =
〈
R(n + 1), T

〉
/
〈
R(n), T

〉
.

From this discussion it follows that the matrix form of CRS1 method for solving the gen-
eralized Sylvester matrix equation (2.1) can be constructed as the following Algorithm 2.3.
Analogously, the matrix form of CRS1 method for solving the generalized Sylvester matrix
equation (2.1) is summarized as Algorithm 2.4.

Algorithm 2.3 (Matrix CRS1 method for solving (2.1))
1. Compute R(0) = E – AX(0)B – CX(0)D for an initial guess X(0) ∈ Rλm×λm. Set

R∗(0) = E(0) = R(0) and D(0) = AE(0)B + CE(0)D. Let β–1 = 0.
2. Set T = AT R∗(0)BT + CT R∗(0)DT .
3. For n = 0, 1, . . . , until convergence Do:

S(n) = D(n) + βn–1
(
F(n – 1) + βn–1S(n – 1)

)
;

αn =
〈
R(n), T

〉
/
〈
S(n), T

〉
;

H(n) = E(n) – αnS(n);

F(n) = D(n) – αn
(
AS(n)B + CS(n)D

)
;

X(n + 1) = X(n) + αn
(
E(n) + H(n)

)
;

R(n + 1) = R(n) – αn
(
D(n) + F(n)

)
;

βn =
〈
R(n + 1), T

〉
/
〈
R(n), T

〉
;

E(n + 1) = R(n + 1) + βnH(n);

D(n + 1) = AR(n + 1)B + CR(n + 1)D) + βnF(n);

4. EndDo.

Algorithm 2.4 (Matrix CRS2 method for solving (2.1))
1. Compute R(0) = E – AX(0)B – CX(0)D for an initial guess X(0) ∈ Rλm×λm. Set

R∗(0) = P(0) = U(0) = R(0).
2. Set T = AT R∗(0)BT + CT R∗(0)DT .
3. For n = 0, 1, . . . , until convergence Do:

V(n) = AP(n)B + CP(n)D;
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αn =
〈
R(n), T

〉
/
〈
V(n), T

〉
;

Q(n) = U(n) – αnV(n);

X(n + 1) = X(n) + αn
(
U(n) + Q(n)

)
;

W(n) = A
(
U(n) + Q(n)

)
B + C

(
U(n) + Q(n)

)
D;

R(n + 1) = R(n) – αnW(n);

βn =
〈
R(n + 1), T

〉
/
〈
R(n), T

〉
;

U(n + 1) = R(n + 1) + βnQ(n);

P(n + 1) = U(n + 1) + βn
(
Q(n) + βnP(n)

)
;

4. EndDo.

From Algorithms 2.3 and 2.4 by using the equivalent relationships of periodic Sylvester
matrix equation (1.1) and generalized Sylvester matrix equation (2.1) we can derive the
CRS methods for solving periodic Sylvester matrix equation (1.1) as Algorithms 2.5 and
2.6, respectively.

Algorithm 2.5 (Matrix CRS1 method for solving (1.1))
1. Choose Xj(0) ∈ Rm×m for j = 1, 2, . . . ,λ and set Xλ+1(0) = X1(0).
2. Compute Rj(0) = Ej – AjXj(0)Bj – CjXj+1(0)Dj and set R∗

j (0) = Ej(0) = Rj(0) for
j = 1, 2, . . . ,λ. Let Eλ+1(0) = E1(0) and R∗

λ+1(0) = R∗
1(0). Set

Dj(0) = AjEj(0)Bj + CjEj+1(0)Dj. Let β–1 = 0.
3. Set Tj = AT

j R∗
j (0)BT

j + CT
j R∗

j+1(0)DT
j for j = 1, 2, . . . ,λ.

4. For n = 0, 1, . . . , until convergence Do:

Sj(n) = Dj(n) + βn–1
(
Fj(n – 1) + βn–1Sj(n – 1)

)
for j = 1, 2, . . . ,λ.

Let Sλ+1(n) = S1(n);

αn =

(
λ∑

j=1

〈
Rj(n), Tj

〉
) / (

λ∑

j=1

〈
Sj(n), Tj

〉
)

;

Hj(n) = Ej(n) – αnSj(n) for j = 1, 2, . . . ,λ;

Fj(n) = Dj(n) – αn(AjSj(n)Bj + CjSj+1(n)Dj for j = 1, 2, . . . ,λ;

Xj(n + 1) = Xj(n) + αn
(
Ej(n) + Hj(n)

)
for j = 1, 2, . . . ,λ;

Rj(n + 1) = Rj(n) – αn
(
Dj(n) + Fj(n)

)
for j = 1, 2, . . . ,λ;

Let Rλ+1(n + 1) = R1(n + 1);

βn =

(
λ∑

j=1

〈
Rj(n + 1), Tj

〉
) / (

λ∑

j=1

〈
Rj(n), Tj

〉
)

;

Ej(n + 1) = Rj(n + 1) + βnHj(n) for j = 1, 2, . . . ,λ;

Dj(n + 1) = AjRj(n + 1)Bj + CjRj+1(n + 1)Dj) + βnFj(n) for j = 1, 2, . . . ,λ;

5. EndDo.
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Algorithm 2.6 (Matrix CRS2 method for solving (1.1))
1. Choose Xj(0) ∈ Rm×m for j = 1, 2, . . . ,λ and set Xλ+1(0) = X1(0).
2. Compute Rj(0) = Ej – AjXj(0)Bj – CjXj+1(0)Dj and set R∗

j (0) = Pj(0) = Uj(0) = Rj(0)
for j = 1, 2, . . . ,λ. Let R∗

λ+1(0) = R∗
1(0).

3. Set Tj = AT
j R∗

j (0)BT
j + CT

j R∗
j+1(0)DT

j for j = 1, 2, . . . ,λ.
4. For n = 0, 1, . . . , until convergence Do:

Let Pλ+1(n) = P1(n);

Vj(n) = AjPj(n)Bj + CjPj+1(n)Dj for j = 1, 2, . . . ,λ;

αn =

(
λ∑

j=1

〈
Rj(n), Tj

〉
) / (

λ∑

j=1

〈
Vj(n), Tj

〉
)

;

Qj(n) = Uj(n) – αnVj(n) for j = 1, 2, . . . ,λ;

Xj(n + 1) = Xj(n) + αn
(
Uj(n) + Qj(n)

)
for j = 1, 2, . . . ,λ;

Let Uλ+1(n) = U1(n) and Qλ+1(n) = Q1(n);

Wj(n) = Aj
(
Uj(n) + Qj(n)

)
Bj + Cj

(
Uj+1(n) + Qj+1(n)

)
Dj for j = 1, 2, . . . ,λ;

Rj(n + 1) = Rj(n) – αnWj(n) for j = 1, 2, . . . ,λ;

βn =

(
λ∑

j=1

〈
Rj(n + 1), Tj

〉
) / (

λ∑

j=1

〈
Rj(n), Tj

〉
)

;

Uj(n + 1) = Rj(n + 1) + βnQj(n) for j = 1, 2, . . . ,λ;

Pj(n + 1) = Uj(n + 1) + βn
(
Qj(n) + βnPj(n)

)
for j = 1, 2, . . . ,λ;

5. EndDo.

Based on the earlier discussion, we know that Algorithms 2.5 and 2.6 are just the ma-
trix forms of the original CRS method. Hence, generally speaking, Algorithms 2.5 and
2.6 have the same properties as Algorithms 2.1 and 2.2. For instance, in exact arithmetic,
Algorithms 2.5 and 2.6 will also terminate after a finite number of iterations.

3 Numerical experiments
In this section, we present two numerical examples to show the accuracy and efficiency
of the proposed methods. We compare the performances of CRS methods to those of the
CGS, BiCGSTAB [13], and CORS [16] methods.

In our experiments, all runs are started from the zero initial guess and implemented in
MATLAB(R2014b) with a machine precision 10–16 on a personal computer with Intel(R)
Core(TM) i7-6500U CPU 2.50 GHz 2.60 GHz, 16.0 GB memory.

Example 3.1 ([13]) Consider the periodic Sylvester matrix equation

Xj + CjXj+1Dj = Ej for j = 1, 2
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Figure 1 The residual for Example 3.1

with parameters

C1 = tril
(
rand(m, m), 1

)
+ diag

(
2 + diag

(
rand(m)

))
,

D1 = triu
(
rand(m, m), 1

)
+ diag

(
1.75 + diag

(
rand(m)

))
,

C2 = triu
(
rand(m, m), 1

)
+ diag

(
1.75 + diag

(
rand(m)

))
,

D2 = tril
(
rand(m, m), 1

)
+ diag

(
2 + diag

(
rand(m)

))
,

E1 = E2 = rand(m, m).

In this example, we set m = 20. The numerical results are shown in Fig. 1, where

rn = log10

√∥
∥E1 – X1(n) – C1X2(n)D1

∥
∥2 +

∥
∥E2 – X2(n) – C2X1(n)D2

∥
∥2.

From Fig. 1 we find that the CRS1 and CRS2 methods are superior to the CGS and CORS
methods, and the BiCGSTAB method is the best among them for Example 3.1. In addition,
the residual history of the CRS1 method seems smoother than that of the CRS2 method.

Example 3.2 ([16]) Consider the periodic Sylvester matrix equations

Xj + CjXj+1Dj = Ej, for j = 1, 2

with parameters

C1 = – triu
(
rand(m, m), 1

)
+ diag

(
1.75 + diag

(
rand(m)

))
,

D1 = tril
(
rand(m, m), 1

)
+ diag

(
1.25 + diag

(
rand(m)

))
,

C2 = triu
(
rand(m, m), 1

)
+ diag

(
1.75 + diag

(
rand(m)

))
,
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Figure 2 The residual for Example 3.2

D2 = tril
(
rand(m, m), 1

)
+ diag

(
2 + diag

(
rand(m)

))
,

E1 = E2 = rand(m, m).

In this example, let m = 40. The numerical results are shown in Fig. 2, where

rn = log10

√∥∥E1 – X1(n) – C1X2(n)D1
∥∥2 +

∥∥E2 – X2(n) – C2X1(n)D2
∥∥2.

From Fig. 2, for Example 3.2, we see that the CRS2 method is the best one among the five
methods mentioned. The BiCGSTAB method can achieve higher accuracy than the CGS,
CORS, and CRS1 methods.

4 Conclusions
In this paper, we present two matrix forms of the CRS iterative method for solving the pe-
riodic Sylvester matrix equation (1.1). Numerical examples and comparison with the CGS,
BiCGSTAB, and CORS methods have illustrated that the CRS methods can work quite well
in some situations. In addition, numerical results show that the CRS1 and CRS2 methods
show different numerical performance, though they are mathematically equivalent.
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