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Abstract

By using stochastic analysis, fractional analysis, compact semigroups and the
Schauder fixed-point theorem, we discuss the approximate boundary controllability
of a nonlocal Hilfer fractional stochastic differential system with fractional Brownian
motion and a Poisson jump. In addition, we establish the sufficient conditions for
exact null controllability for the same problem. Finally, an example is given to illustrate
the results obtained.
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1 Introduction

Fractional calculus has been applied to the description of problems that arise in a variety
of fields, including finance, physics, geomagnetics, thermodynamics, and optimal control.
Fractional Brownian motion (fBm) is for a family of Gaussian processes that is indexed
by the Hurst parameter H € (0,1) (see [1]). When H = 1/2, the fBm is a standard Brow-
nian motion. When H # 1/2, it behaves in a way completely different from the standard
Brownian motion, in particular it is neither a semi-martingale nor a Markov process. Espe-
cially, when H > 1/2, fBm has a long range dependence. This property makes this process
useful as driving noise in models appearing in finance markets, physics, telecommunica-
tion networks, hydrology and medicine etc. (see [2—4]). Stochastic differential equations
driven by fractional Brownian motion have been considered extensively by research com-
munity in various aspects due to the salient features for real world problems (see [5-12]).
In addition, controllability problems for different kinds of dynamical systems have been
studied by several authors (see [13-21]), and the references therein. Few authors studied
the controllability for linear and nonlinear systems when the control is on the boundary
(see [22-30]). Also, few authors studied the stochastic fractional differential equations
with Poisson jumps. Muthukumar and Thiagu [31] studied the existence of solutions and
the approximate controllability of fractional nonlocal neutral impulsive stochastic differ-
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ential equations of order 1 < g < 2 with infinite delay and Poisson jumps. Rihan et al. [32]
studied the fractional stochastic differential equations with Hilfer fractional derivative,
with Poisson jumps and optimal control. Chadha and Bora [33] obtained the sufficient
conditions for the approximate controllability of impulsive neutral stochastic differential
equations driven by Poisson jumps. Ahmed and Wang [34] established the sufficient con-
ditions for exact null controllability of Sobolev type Hilfer fractional stochastic differential
equations with fractional Brownian motion and Poisson jumps. However, the approximate
boundary controllability and the null boundary controllability results for Hilfer fractional
stochastic differential system with fractional Browonian motion and Poisson jumps have
not yet been considered in the literature. Motivated by these facts, we in this paper investi-
gate the sufficient conditions for approximate boundary controllability and null boundary
controllability of nonlocal Hilfer fractional stochastic differential systems with fractional

Brownian motion and Poisson jump in the following form:

DY x(t) = o(t) + i (6,2(2)) + ot 5(0) 222 + G, x(1)) L2
+ [, h(t,x(8),v)N(dt,dv), te]=(0,b],

tx(t) = Biu(t), te][0,b],
Iéifv)(lfﬂ)x(

(1.1)
0) + g(x) = xo,

where D(';'f is the Hilfer fractional derivative, 0 < v < 1, % < i < 1, the state x(-) takes
values in the separable Hilbert space X with inner product (,-) and norm | - || and the
control function u(-) is given in L, (J, U), the Hilbert space of admissible control functions
with U a Hilbert space. Let o be a closed, densely defined linear operator with domain
D(o) C C(J,Ly(82,X)) and range R(o) C X and let T : D(7) C C(J, Lo(£2,X)) — R(tr) C X is
a linear operator. Here, By : U — X is a linear continuous operator. Let A : X — X be the
linear operator defined by D(A) = {x € D(0); tx = 0}, Ax = ox, for x € D(A).

Suppose {w(t)};>o is a Wiener process defined on (2, F, {F;};>0, P) with values in the
Hilbert space K and {B'(t)};o is a fractional Brownian motion (fBm) with Hurst param-
eter H € (%, 1) defined on (£2, F, {F;};>0, P) with values in Hilbert space Y. The nonlinear
operators fi: ] X X > X, fo: ] x X - LK, X), h: ] x X x V — X, G:]xX—>Lg(Y,X)
and g: C(J,X) — X are given.

2 Preliminaries

In order to study the approximate boundary controllability and the null boundary con-
trollability of nonlocal Hilfer fractional stochastic differential equations with fractional
Brownian motion and Poisson jumps, we need the following basic definitions and lem-
mas.

Definition 2.1 (see [35]) The fractional integral operator of order p > 0 for a function f
can be defined as

w1 Lfs)
If(t)_F(’u)/O (t_s)wds, £>0,

where I'(-) is the Gamma function.
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Definition 2.2 (see [36]) The Hilfer fractional derivative of order0 <v <landO<pu <1

is defined as

DO =1 S0,
Fix a time interval [0, 5] and let (£2, 7, P) be a complete probability space furnished with
a complete family of right continuous increasing sub o -algebras {n; : t € [0, b]} satisfying
n: C n. Let (V, @, p(dv)) be a o -finite measurable space. Consider the stationary Poisson
point process (p;);>0, which is defined on (£2, n, P) with values in V and with characteristic
measure p. We will denote by N(t,dv) the counting measure of p, such that N, 0) :=
E(N(t,0)) = tp(®) for © € ¥. Define N(¢,dv) := N(t,dv) — tA(dv), the Poisson martingale

measure generated by p;,.

Let X, K and Y be real, separable Hilbert spaces. For the sake of convenience, we shall
use the same notation | - || to denote the norms in X, K, Y, L(K,X) and L(Y,X) where
L(K,X) and L(Y, X) denote, respectively, the space of all bounded linear operators from
K into X and Y into X. Let Q € L(Y, Y) be an operator defined by Qe, = X,e, with finite
trace Tr(Q) = Y oo, A, < 0o where 4, > 0 (n = 1,2,...) are non-negative real numbers and
{e,} (n=1,2,...) is a complete orthonormal basis in Y.

We define the infinite dimensional fBm on Y with covariance Q as
B (6) = BY(6) = Y Ve 1),
n=1

where ,Bf are real, independent fBm’s. The Y-valued process is Gaussian, starts from 0,

and has mean zero and covariance:
E(BH(t),x)<BH(s),y> =R(s, t)(Q(x),y) forallx,y € Yand t,s € [0, D].
In order to define Wiener integrals with respect to the Q-fBm, we introduce the space

LY := LY(Y, X) of all Q-Hilbert Schmidt operators ¥ : Y — X. We recall that ¢ € L(Y, X) is
called a Q-Hilbert-Schmidt operator, if

o0
W17 2= D IV Rnren < 00
n=1

and that the space L9 equipped with the inner product (¥, 1//)Lg =Y i (Pen e, is a
separable Hilbert space.

Let ¢(s); s € [0,b] be a function with values in LI(Y, X), the Wiener integral of ¢ with
respect to B is defined by

| 60a86)=3" [ Vigwe,dsll =3 [ ViK' Gens)dpo) 1)
0 n=1"0 n=1"0

where g, is the standard Brownian motion.
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Lemma 2.1 (see [1]) Ify : [0,b] — L3(Y, X) satisfies fob ||w(s)||i0 < 00 then the above sum
in (2.1) is well defined as an X-valued random variable and we have

t 2 t
E /0 Y (s)dB(s)| < 2H2H! fo ||1/I(S)Higds.

The collection of all strongly measurable, square-integrable, X-valued random variables,
denoted by Ly(§2,X), is a Banach space equipped with norm

1
%0y = Elx ) ),
where the expectation, E, is defined by E(x) = [, x

Let C(J, L,(£2, X)) be the Banach space of all continuous maps from J into L,(£2, X) sat-
isfying the condition sup,; E||x(£)||* < co. Define C = {x : -0-0-1x(.) € C(J, L,(£2, X))},
with norm | - || defined by

ST

I-lle = (supE«=x(0)])

Obviously, C is a Banach space.
Like [35], we denote C"**"* = {x:x € C,Dy* x € C}, C"* = {x:x € C,Dy"x € C}.
Obviously, CVHivie C OV,
Also, let us introduce the set B, = {v € C: ||v||% < r}, where r > 0.
To establish the results, we need the following hypotheses.
(H1) D(o) C D(t) and the restriction of t to D(o) is continuous relative to graph norm
of D(o).
(H2) The operator A is the infinitesimal generator of a compact semigroup 7'(¢) on X
and there exists a constant M > 0 such that || T(¢)|| < M.
(H3) There exists a linear operator B: U — X such that for all u € U we have
Bu € D(0), T(Bu) = Biu and ||Bu|| < C||B1ul|, where C is a constant.
(H4) Forall £ € (0,0] and u € U, T(t)Bu € D(A). Moreover, there exists a positive
constant M; > 0 such that ||AT(¢)|| < M;.
(H5) The function f; :J x X — X satisfies the following two conditions:
(i) The function f; :J x X — X is continuous;
(ii) for each positive number r € N, there is a positive function p,(-) : ] = R* such
that

sup E|[fi (£:x0) | < pr(2),

llel|? <r

the function s — p,(s) € L'([0, ], R*), and there exists a §; > 0 such that

() ds
lim inffo o)

r—00 14

—51<OO, tE].

(H6) The function f : ] x X — L(K, X) satisfies the following two conditions:
(i) The function f;:J x X — L(K, X) is continuous;

Page 4 of 23
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(ii) for each positive number r € N, there is a positive function #,(-) : ] — R* such
that

sup E|lfs(t,2(0) | < e (8),

llcl|2 <r

the function s — &,(s) € L1([0,¢], R*), and there exists a 8, > 0 such that

t -1
t—s)* .(s)d
lim inffo( 9 ) S_s

r—00 v

<00, tej.

(H7) The function G:J x X — L3(Y, X) satisfies the following two conditions:
(i) The function G:J x X — L3(Y, X) is continuous;
(ii) for each positive number r € N, there is a positive function k,(-) : ] = R* such
that

sup E[G(6:x(0)] 19 < k),

lll2<r
the function s — k,(s) € L1([0,¢],R*), and there exists a 85 > 0 such that

t
t—8)* k.(s)d
lim nf 06 =" k(9 ds

r—00 r

=53<OO, tE].

(H8) The function &:J x X x V — X satisfies the following two conditions:
(i) The function #:J x X x V — X is continuous;
(i) for each positive number r € N, there is a positive function x,(-) : ] = R* such
that

sup /V E|[htt, )| 2(@v) < x,(0),

llcl|2 <r

the function s — (£ —s)* ! x,(s) € L*([0, £], R*), and there exists a 84 > 0 such
that

lim in =9 X (5)ds

r—00 r

:54<OO, tE].

(H9) The function g: C(J,X) — X satisfies the following two conditions:
(i) There exist positive constants M, and M3 such that ||g(x)|| < Ma|x|| + M3 for
allx € X;
(ii) g is completely continuous map.
Let x(¢) be the solution of the system (1.1). Then we can define a function z(¢) = x(¢) —
Bu(t) and from our assumption we see that z(¢) € D(A). Hence (1.1) can be written in terms
of A and B as

DU 2(t) = Az(t) + o Bult) — BDY ul®) + fi (& x(0)) + fo (£, x(£)) 22

+ Glt,x(6) B0 ¢ [t x(),v)N(dt,dv), te] =(0,b], (2:2)

170 12(0) + Bu(0)] = I8 %(0) = %o — g(x).

+

Page 5 of 23
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Lemma 2.2 From (2.2), problem (1.1) is equivalent to the integral equation

xo — g(x)
F(v + L= V)

1
/(t s o - A]Bu(s)ds+r( )/(t sH ﬁ(sxs))

- IR S S PR
x(t) = t Wy F(M)/ (t— )" Ax(s)ds

F()

+ M /(; ) s 2(s,x(s)) dw(s) +

+ ﬁ /0 t(t—s)“’l fv h(s, x(s), v)N(ds, dv). (2.3)

) /0 (t- s)”“‘lG(s,x(s)) dBH (s)

Proof Applying I* to both sides of (2.2), we obtain

dw(t)

1Dyl [z(t) + Bu(t)] = I [Az(t) +0Bu(t) + f(t,%(t)) + fo(t, %(2)) %

H
+G(t,x(2)) dBdt(t) +/ h(t,x(t),v)N(dt,dv)].
v

Since I*Dy" [z(t) + Bu(t)] = IV D™ ™" [z(¢) + Bu(t)],

dow(z)

1M DT [2(8) + Budt)] = I [Az(t) + o Bu(t) + i (t,2(2)) + f2(¢,%(2)) %

+ G(t,x(t)) 4B (1)

+ / h(t, x(2), V)N(dt, dv)] .
1%

From properties of fractional integral, we obtain

L 2(0) + Bu(0)] (0 .
z(t) + Bu(t) = Tt v £ W F( ) / (t—s)* " Ax(s)ds
+ m /Ot(t—s)“l[o — A]Bu(s) ds + M /0 (t-s)* 1A (s,x(s)) ds
! -1
+ F(M)/o (t - )" o (s,x(5)) dew(s)

+ %/L) /Ot(t —s)"’lG(s,x(s)) dB™(s)

+ F(IM) /Ot(t—s)l*—l/Vh(s,x(s),v)]([(ds,dv).

Since z(t) + Bu(t) = x(¢),

_ %080 - 1
0= T g [ 9t

* ﬁ /(;t(t - )" o — AlBu(s) ds + X /0 (t -5/ fi(s,x(s)) ds
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L
I (n)

+ ﬁ /0 t(t—s)"’l /V h(s, x(s), V)N (ds, dv).

1
I (w)

/t(t —s)H1f (s,x(s)) dw(s) + /t(t - s)”“‘lG(s,x(s)) dBH (s)
0 0

For more details see [37]. O

Lemma 2.3 [fthe integral equation (2.3) holds, then we have

x(t) = S0, ()0 — g@)] + /0 t[PM(t —5)o — AP, (t - 5)|Bu(s) ds
+ /0 tPM(L‘ — 5)fi (s,x(5)) ds + /0 tPM(L‘ — 5)fs(s,%(5)) de(s)
+ /0 tpﬂ(t —$)G(s,x(s)) dB"(s)
+ /0 tPu(t—s) /V h(s, x(s),v)N(ds, dv), (2.4)
where
Su0=L R0, BO-0T,0,  T,0- " 6w, 0)T(10) db,

with

oy o
v, (0) = ;:1: m, 0<u<1,0 €(0,00),

is a function of Wright-type which satisfies

I'(l1+3$6)

0w, (0)do = ——— 6> 0.
/0 WO iy 0
Proof The proof of this lemma similar to the proof of Lemma 2.12 in [38]. g

Lemma 2.4 (see [38]) The operator S, , and P, have the following properties:
(i) {Pu(t):t >0} is continuous in the uniform operator topology.
(ii) Forany fixedt>0,S, ,(t) and P,(t) are linear and bounded operators, and

-1 (v=1)(1-p)

M
bl [Suu(0x] < F(t—nxn.

M
I2.0] < V(= 1)+ )

()

(iii) {P,(t):t>0}and (S, ,(t):t> 0} are strongly continuous.

Lemma 2.5 If the assumption (H4) is satisfied, then | AP, (t)x|| < M}igl Ilx]l.
Proof We have
o0 [o¢]
P (t)x:ut“‘I/ wow, ()T (t40)de, / 0w, (0)do = ———.
1% 0 122 ( ) 0 1% I—v(l + M)
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By using (H4),

WMt Myt
< llxll = Ixl. O
I'(p+1) I (w)

|AP.(0)x] = H ! / N 1%, (0)AT (£"6)x do
0

Definition 2.3 We say x € C is a mild solution to (1.1) if it satisfies

x(2) = S,,.(8) [xo —g(x)] + /0 [P,L(t —s)o —AP,(t - s)]Bu(s) ds
+ / P,(t-9s)A (s,x(s)) ds + / P,(t-s)f (s,x(s)) dw(s)
0 0

t t
+ / P,(t- s)G(s,x(s)) dB(s) + / P,(t- s)[ h(s,x(s), V)N(ds, dv).
0 0 v
3 Approximate boundary controllability
In this section, we discuss the approximate controllability for the system (1.1), so we intro-
duce the following linear Hilfer fractional differential system with control on the bound-

ary:

Dyl'x(t) = ox(t), te]=(0,b],

tx(t) = Biu(t), te]j, (3.1)
Iélfv)uf”)x(O) = X.

It is convenient at this point to introduce the operators associated with (3.1) as

b
ry= f (b - )" V[T, (b-s)o — AT, (b ~5)]
0
. 1
X BB*[TM(b —-s)o — AT, (b —s)] ds, 5 <p<l,
and
R(b,IY)=(bI+1Y), b>o,

where B* and [T}, (b—s)o — AT}, (b—s)]* denote the adjoint of Band [T, (b—s)o —AT,,(b-s)],
respectively.

Let x(b; xo, u) be the state value of (1.1) at terminal state b, corresponding to the control
u and the initial value x. Denote by R(b, xo) = {x(b;x0,u) : u € Ly(J, U)} the reachable set

of system (1.1) at terminal time b, its closure in X is denoted R(b, xo).

Definition 3.1 (see [19]) The system (1.1) is said to be approximately controllable on the

interval J if R(b,xq) = L,(£2,X).

Lemma 3.1 (see [19]) The fractional linear control system (3.1) is approximately control-
lable on ] if and only if »(\I + IP)™ — 0 as A — 0.
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Lemma 3.2 Forany %, € Ly(£2, X) there exist | € Ly(2;Lo(J; LQ)) and ¢ € Ly($2; Lo(J; LY)
such that

b b
Xp = EXp + / U (s)dw(s) + / @(s)dB(s).
0 0
Now for any k >0 and x;, € L,(52,X), we define the control function in the following form:

u*(t) = B[ Ty(b- o — AT, (b—t)]" (A + rob)’1 {Exb = Sy (b)[%0 - g(x)]

b

b
- / P,(b-s)fi (s, x(s)) ds — / P,(b-s)fs (s,x(s)) dw(s)
0 0
b b
- / P,(b- S)G(s,x(s)) dB(s) - / P,(b- s)f h(s,x(s), V)N(ds, dv) }
0 0 1%

Theorem 3.1 If the assumptions (H1)—-(H9) are satisfied, then system (1.1) has a mild
solution on ], provided that

36M2[ M? pr20-0A-)[8) + §, Tr(Q) + 2Hb* 185 + 54]]

+
2l —puw) +w) nI?(w)
6L% || BII|IB* |2 (M?||o ||* + M3)?
x |1+ <1.
A2(2p — 1) ()

(3.2)
Proof For any « >0, consider the map @, on C defined by
(Px)(t) = S,,.(2) [xo —g(x)] + /(; [P“(t —s)o —AP,(t - s)]BuK (s)ds
+ / P,(t-9s)A (S,x(s)) ds + / P,(t-3s)f (s,x(s)) dw(s)
0 0
+ /tP,L(t —$)G(s,x(s)) dB"(s)
0
+ /0 P,(t-s) /Vh(s,x(s), V)N(ds, dv), te].
For ¢t € J, we have

Elluw @]’

B[Tu(b-t)o - AT, (b-0)] (M + 1Y)

b b
y [fcb— fo J(5) deo(s) - /0 ¢(s)dBH<s)]

+6E|| B [T\ (b - t)o — AT, (b= )] (M + ) 'S0, (B) [0 - g@)]|*

§6E‘

2

2

b
+ 6E’ B*[Tu(b-t)o - AT, (b-0)]' (M + 1Y) / P, (b~ s)fi (s, x(s)) ds
0

2

b
+6E|B*[T,(b—t)o — AT, (b—0)]" (M + IY)™! / P, (b~ s)fs(s, x(s)) d(s)
0
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2
+6E

B*[Tu(b-t)o — AT, (b-0)]' (M + )™ / P, (b~ 5)G(s,x(s)) dB" (s)

+ 36E‘

B Tu(b-t)o — AT, (b-0)] (M + )™

2

b
x / P,(b~s) /V h(s, x(s), v)N(ds, dv)

_ SIBIP(M?|lo || + M7)
- A2 ()

[Enxbn +Tr(Q) / E|[ ()] ds

MDD oo ||2 + Mir + M3)
I2(v(1—p) +p)

b
+ 2HpH! /(; E||<,5(s)”ig ds +

M [P . M2 (b B

+ m/() b =35)*"1p,(s) dS+Tr(Q)m/O (b -8 h,(s)ds
2HM2b2H—1+p, b . Mzb”' b .

+ Wfo (b=s)"""k(s)ds + m/; (b—s)* Xq(s)ds:|.

It will be shown that the operator @, from C into itself has a fixed point.

We claim that there exists a positive number r such that @, (B,) C B,. If it is not true,
then, for each positive number 7, there is a function x,(-) € B,, but @(x,) ¢ B,, that is,
||<D,(x,||26 > r for some ¢ = £(r) € J, where £(r) means that ¢ is dependent of r.

From our hypotheses together with Lemma 2.4, Lemma 2.5, the Holder inequality and
Burkholder—Gungy’s inequality, we obtain

_ _ 2
r < 1 @exlIZ = sup 2V HE | @, (x,)(2) |
te]

5 2 2 2 20=11 BII4( M2l o |2 2
- 36M [§||x0|| + Mar + M3] ) 216H% 2||B|| (M ||20|| +M1)[b21 (1 ,L)<E”xb”2
21— ) + 1) M2@u =12

b b 2
+Tr(Q) fo E|9 ()|, ds + 2HD*" ! / E||<ﬁ(s)||Lgds>

M2[E||xo||? + M3r+ M2]  M2pr+20-v)0-1)
+
r2(l-p) + p) W2()

/ (b -5/ py(s)ds

2 +2(1-v)(1-
+Tr(Q)M/‘ (b-s)*"h,(s)ds

2HM2b2H 1+pu+2(1-v)(1-p)

nI2(p)
MZb;L+2(1 v)(1 /
t——————— | (b=9)""x, () ds]
() 1

36M2bﬂ+2 (1-v)(1-p)

t—s)""p.(s)d

200 / (t=9)""py(s)ds

36M2b;4+2 (1-v)(1-p) TI‘(Q)
uI2(p)

72HM2b2H—l+u_+2(l—v)(1—pL) b
) / (¢ — )"k, (s) ds
150 150 0

36M2b/4+2 (1-v)(1-p)
+ Wl / (t—s)"~ 1)( (s)d (3.3)

/(b )1k, (s) ds

t— )Y~ h,(s) ds

Page 10 of 23
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Dividing both sides of (3.3) by r and taking the lower limit » — +00, we get

36 2[ Mj bﬂ+2<1*V><1fﬂ> (81 + 8, Tr(Q) + 2HD* 185 + 54]]
M- +u) uI?(p)
2/-1 * 2 2 212
o, 00 IBI*IB* (M |o|1* + M3) -
A2(2u — 1) ()

This contradicts (3.2). Hence, for positive r, @, (B,) C B, for positive number r.

In fact, the operator @, maps B, into a compact subset of B,. To prove this, we first
show that the set V,(¢) = {(®,x)(¢) : x € B,} is precompact in X, for every fixed t € J. This
is trivial for ¢ = 0, since V,(0) = {xo}. Let £, 0 < t < b, be fixed.

For 0 < € <t and arbitrary § > 0, take

(D5%x) (1)

) M/ / (£~ 5)" 0541, (0) T (s0) [0 — g(x)] 4O dis

+ Mff ef (£ — sy ', O[T ((t - 5)"0)0 — AT((t - 5)"6) |Bu* (s) d0 ds
+,U~/ 7 / Q(t—s)“—llllu(e)T((t_s)Me) 1(5;96(5))6190[5
0 8
+ M‘/'t—e /‘X’Q(t—s)H—IWM(G)T((t—s)HQ) z(s,x(s)) do dw(s)
0 8
+ ’u/‘f—e /OoQ(t—S)“—lEPM(@)T((t—S)ltg)G(S’x(S)) do dBH(s)
0 8

i / H/ oo f Ot - 510, (O)T((¢ - 9)"0)h(5,2(5), v) N (ds, dv)

,uT (e"s

+ ,uT(e" ) G(t—s)“_llIJM(Q)[T((t—s)"O —6“8)0

) e —u)-1_p-1 HO _ M —
)/ / ', (0)T (56 — €"8)[x0 — g(x) ]| dO ds
TN
—AT((t —s)"o — e“S)]Bu" (s)do ds
8 /_ /ooe(t—s)"“‘lllfu(e)T((t—s)“@—6“8) 1(s,x(s))d9ds
0 s
+ ,uT(e“(S)/O /(;
5 / t

+uT (")
6(t-s)“w, O)T((t- )"0 — T(€"8))fa(s,x(s)) d6 deo(s)

+uT (") /;O 0@t — )W, ()T ((t - 5)"0 — €"8)G(s,x(s)) d0 dB" (s)

0
+MT(€M5)/(:6/Boov/‘/e(t—s)”_lllfu(e)T((t—s)“@—6“5)

h(s, x(s), V)N (ds, dv).

Since u*(s) is bounded and T(e"§), €*8 > 0 is a compact operator, then the set V() =
{(@5°x)(t) : x € B,} is a precompact set in X for every €, 0 < € < ¢, and for all § > 0. More-
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over, for every x € B,, we have

LESLAE
= sup 2VIE|(8,2)(2) — (@) (8) |
te]
- 36> S 2(1-v)(1-p)
- r 2(V(l 1))

8 2
0(t —s5)"7 s 1y, ()T (s6) [x0 — g(x)] d6 ds

+36sup 20-VI-WE H / / (t—s)* g (9)[T((t—s)“9)a

te]

—AT((t - )"0)|Bu*(s)db ds

2

+?>6supt21 RIS ” / / ot —s)*~ IW,L(G)T((t—s)“ )1(S,x(s))d9ds

te]

+ 36 sup (21710

te]

X EHM/t /ooe(t—s)”_llI/M(Q)T((t—s)"@) g(s,x(s)) db dw(s)

+ 36 sup (21710

te]
2

X EH,u/t /Ooe(t—s)”“‘llll,t(e)T((t—s)“@)G(s,x(s)) do dBH (s)

(1-v)(1-p)

+36sup 2

te]

t oo 2
X EHM / / / 0(t —s)" W, (0)T ((¢ - 9)"0)h(s, x(s), v)N(ds, dv)
t— J§ \4

36/4% sup,; 20-v)(A-p)
2w - )

2

E /t /00 ot - s)”(l_")_ls“_lII/M(G)T(S“G) [xo —g(x)] do ds
t—e J§

t pé
+36sup 2 VI-WE Hu/ / 0@t — )", O)[T((t-5)0)o
0 Jo

te]

2
— AT ((t - 9)"0)|Bu*(s) db ds

t s 2
+36sup 21V~ E H/L/ / Q(t—s)“’lwu(Q)T((t—s)“Q) l(s,x(s)) do ds
o Jo

te]

2

t s
+36sup 20-VI-WE H/L/ / 9(t—s)"_1lI/M(9)T((t—s)“9) z(s,x(s)) db dw(s)
o Jo

te

+ 36 sup 217111

te]
2

t pé
xEHu / / Ot — )" "W, (0)T((t - 9)"0) G(s, x(s)) d6 dB" (s)
0 Jo
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+ 36 sup 217111
te]

2

t ps
_qu-1 _ Q)M N
><EH,u/O /0 ‘/‘/Q(t s) W,L(Q)T((t s) G)h(s,x(s),v)N(ds,dv)

We see that, for each x € By, ||®x — (Dlj"sxnza — 0as € — 0" and § — 0*. Therefore, there
are precompact sets arbitrarily close to the set V,(¢) and so V,(t) is precompact in X.

Next we prove that the family {®,x : x € B,} is an equicontinuous family of functions.
Letx € B, and t1,t, € J such that 0 < 1 < £, then

E|(@:2)(t:) - (@0)(11) |

< 36E(Suu(t2) = Su () [0 — @] 2

ty 2
+36E / [Pu(ta = s)o — AP, (ts — 5)|Bu* (s) ds|
5] C
ty 2
+36E / P, (t2 = s)fi(s,x(s)) ds|
5] C
ty 2
+ 36E / P, (t2 - s)fa(s,%(s)) dew(s) |
5] C
iy 2
+36E / Py (ty - 5)G(s, x(s)) dB™ (s) |
5] C
12} - 2
+36E ftl P,(tr—s) /Vh(s,x(s), v)N(ds, dv) .
+ 36E /0 l[(P,L(tg —s)o —AP,(t, - s))

2
— (P.(t1 — )0 — AP, (t1 — 5)) |Bu“ (s) ds

C

2

+ 36E / 1 [Pu(tz —8) =Pyt - s)]f1 (s,x(s)) ds
0

2

+ 36E / 1 [P,L(tz —8)=P,(t1 - s)]fz(s,x(s)) dw(s)
0

C
151 2
+ 36E / [P,L(tz —8) =P, (t; - s)]G(s,x(s)) dBH (s)
0

C
2

+ 36E /:l [Pu(tg —8) =Pyt - s)] /Vh(s,x(s), V)N(ds, dv)

C

From the above fact, we see that E||(®,x)(t;) — (D.x)(t1)||? tends to zero independently of
x € B, asty — t;. Thus, @, (B,) is both equicontinuous and bounded. By the Arzela—Ascoli
theorem @, (B,) is precompact in X. Hence @, is a completely continuous operator on X.
From the Schauder fixed point theorem, @, has a fixed point in B,. Any fixed point of @,
is a mild solution of (1.1) on J. The proof is completed. O

Theorem 3.2 Assume that (H1)—(H9) are satisfied. Further, if the functions f1, f>, G and h
are uniformly bounded, then the system (1.1) is approximately controllable on J.
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Proof Let x, be a fixed point of @,. By using the stochastic Fubini theorem, it can easily
be seen that

b
x(b) = xp — A(AI + Fob)f1 {Ea'cb - Sw(b)[xg —g(x’()] - /0 P,(b-5s) 1(s,xK(s)) ds

b b
- /0 P, (b-s)fs (s, X (s)) dw(s) — /0 P,(b- S)G(s, x" (s)) dB(s)

b ~
- / P,(b-s) / h(s,x(s), v)N(ds, dv)

0 1%
b b
- - H
+ /0 Y(s)dw(s) + /0 @(s)dB (s)}. (3.4)
It follows from the assumption on fi, f2, G and % that there exists D > 0 such that

liGsx@)|* <D, [Alsx6)|, <D

|G @)y <D  [h(sx©).v)|* <D.

Consequently, the sequences {fi(s,x“(s))}, {f2(s,2°(s))}, {G(s,x(s))}, {h(s,x“(s),v)} are
weakly compact in Ly(/, X), Ly(Lo(K, X)), Ly(L3(Y, X)) and Ly(J, X), so there are subse-
quences, still denoted by {fi(s,x(s))}, {f2(s,2(s))}, {G(s,%(s))}, {h(s,x“(s),v)}, that are
weakly convergent to {fi(s)}, {f2(s)}, {G(s)}, {h(s,v)} in Lo(J, X), Lo(Lo(K, X)), Ly(LS(Y, X))
and L, (J, X).

From Eq. (3.4), we have

Ellx(6) -
< 9| (A + 1Y) (E%y - S (B)[ x5 - g(+)]) |

b
+9E k(M+ Fob)flfo PM(b—s)(fl(s,x"(s)) —ﬁ(s)) ds

2

b 2
+9E A(M+F0b)7l/‘ P, (b-s)fi(s)ds
0

2

b
+9E A(M + Foh)_l /0 P,(b —s)(fz(s,x’( (s)) —fz(s)) daw(s)

b 2
+9E|A(M + YY) / P,(b - s)fs(s) doo(s)
0

2

b
+9E|a(M + YY) / P, (b-s5)(G(s,x(s)) — G(s)) dB"(s)
0

2

b
+9E | A(M + Fob)_l/ P, (b —s)g(s)dB"(s)
0

b
+9E A(AI+F0b)_1/ Pu(b—s)(‘/. s, 4%(s), v /hs,v)) ds,dv)

+9E|A(A + ) / P,(b~s) / h(s,v)N(ds,dv)
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On the other hand, by Lemma 3.1, the operator A(AI + I?)~' — 0 strongly as A — 0* for
all0<s<b,and ||A(ML + 1"0[’)’l | <1 together with the Lebesgue dominated convergence
theorem and the compactness of P, (t) implies that E|x, (b) — x,||* — 0 as A — 0*. This
proves the approximate controllability of (1.1). d

4 Null boundary controllability
In this section, we investigate the sufficient conditions for exact null controllability for the
system (1.1), so we consider the fractional stochastic linear system with fractional Brow-

nian motion and control on the boundary in the form

Dyy(e) = o (@) + £i(8) + (6) 222 + GO ELL,  te]=(0,b],

ty(t) = Biu(t), tej, (4.1)
I (0 = 5o,

associated with the system (1.1).

Consider
b
Lbu-= / [P.(b—s5)oB—AP,(b-s)Blu(s)ds: L,(J,U) — X,
0

where Lgu has a bounded inverse operator (Ly)~* with values in Ly(J, U)/ ker(LS), and

Ng(y:ﬁy 2 G)
b

b
:Sw(b)y+/(; P“(b—s)ﬁ(s)ds+/0 P (b= s)fa(s)dw(s)

b
+/ Pu(b—s)G(s)dBH(s):XxLz(],X)—>X.
0

Definition 4.1 (see [16]) The system (4.1) is said to be exactly null controllable on J if
Im L% 5 Im N? or there exists a y > 0 such that [|(L5)*y[|?> > y [|[(N¢)*y||? for all y € X.

Lemma 4.1 (see [39]) Suppose that the linear system (4.1) is exactly null controllable

on J. Then the linear operator (Lo)‘lNé’ : X x Ly(J,X) = L,(J, U) is bounded and the con-

trol
b b
u(t) = —(Lo)™* [Su,u(b)yo + / P, (b-s)fi(s)ds + f P (b-s)fa(s)dw(s)
0 0
b
+/ P, (b-s)G(s) dBH(s):|(t)
0

transfers the system (4.1) from y, to 0, where Ly is the restriction of L5 to [ker L3]*.

To prove the null controllability for the system (1.1), we need in addition the hypothesis:
(H10) The linear system (4.1) is exactly null controllable on /.
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Theorem 4.1 Ifthe hypotheses (H1)—(H10) are satisfied, then the boundary control system
(1.1) is exactly null controllable on J provided that

36 2[ Mj bﬂ+20vﬂlHnal-kaznj(cg)+-2f{b2H'153-r54]}
I2(v(1 = p) +p) uI?(p)

-1 -1 2(Af2 2 2
X[1+b I(Lo) L I2IBI> M2 o | +M1)]<1, (4.2)

(u—-1)I*(n)

Proof For an arbitrary x(-) define the operator @ on C as follows:
(Px)(t) = S,,.(2) (xo —g(x)) + /(; [Pu(t —s)o —AP,(t - s)]Bu(s) ds
+ / P,(t-s)h (s,x(s)) ds + / P,(t-s)f (s,x(s)) dw(s)
0
/ P,(t- S)G(s,x(s)) dBM(s)
+ /0 P,(t-5) fv h(s,x(s), vV)N(ds,dv), te],

where

b
u(t) = —(Lo) ™ {Sv,u(b)(xo —g(x)) + /o Py(b-s) 1(s,x(s)) ds

b

b
+/ P“(b—s)fg(s,x(s)) da)(s)ds+/ P (b—s)g(s,x(s)) dB(s)
0

/ - s)/ s,2(s), V)N (ds, dv)}(t)

It will be shown that the operator @ from C into itself has a fixed point.

We claim that there exists a positive number r such that @ (B,) C B,. If itis not true, then,
for each positive number r, there is a function x,(-) € B,, but @(x,) ¢ B,, thatis, || (Dxrllzc >r
for some ¢ = £(r) € ], where £(r) means that ¢ is dependent of r.

From our hypotheses together with Lemma 2.4, Lemma 2.5, the Holder inequality and

Burkholder—Gungy’s inequality, we obtain
r < 1@x]1% = sup 21 WE | @ (x,) (1) |
te]

36MP[El|lxoll” + M3r + M3] 3661 (Lo) ' IPIBIP (Ml ||* + M?)

< 2wl -p)+p) 20— DI
M2[E||xo||? + M3r+ M2]  M2pr+20-)0-1) 1

b—s)*1p.(s)d

{ 2wl -p)+pw) wI2(u) / (b—=s)""pp(s)ds

27 ur2(1-v)(1
+Tr(Q)M/ (b-3s)*h,(s)ds

2HM2b2H 1+p+2(1-v)(1-p)
+ M) f (b-s)*"k.(s)ds
n
MZb;L+2 (1-v)(1

uI2(p)

/ (£ =5/ 1y(9) ds}

Page 16 of 23



Ahmed et al. Advances in Difference Equations (2019) 2019:82 Page 17 of 23

36M2b;4+2(1—u)(1—;/.)
uI?(p)
36M2 20011 T(
N @ /(t—s)" Uiy (s) d
ul ()
72HM2b2H—l+u+21 v)(1-p)
uI?(w)

36M2bﬂ+2 (1-v)(1-p)
+ M) /(t ) xy(s) d. (4.3)

/(t 9971 py(s)ds

/(t )k (s) ds

Dividing both sides of (4.3) by r and taking the lower limit » — +00, we get

36M2|: M% bﬂ+2(17v)(17”') [81 + 82 TI'(Q) + 2H]92H7153 + 54]]

M- +p) u ()
§ [1 P PIBIP M o | +M%)] -
u-1)I*(n)

This contradicts (4.2). Hence, for positive r, @ (B,) C B, for positive number .

In fact, the operator @ maps B, into a compact subset of B,. To prove this, we first show
that the set V,.(¢) = {(®x)(¢) : x € B,} is precompact in X, for every fixed ¢ € J. This is trivial
for t = 0, since V,(0) = {xo}. Let £, 0 < t < b, be fixed.

For 0 < € <t and arbitrary 8§ > 0, take
(@°x)(2)
- m/o /5 0(t )", (0) T (6) [0~ g(w)] b dis
» /t—e foo ot - S)}rllpﬂ(@)[T((t _ S)u@)a —AT((t — s)“@)]Bu(s) do ds
o Js
o / / "0 O (¢ - 96)fi (5:3(5) o ds
o Js
[ b e o) ) s oty
o Js
i / ) / "0t 5 O)T((¢ - 96) G(s.2(5)) do dBH (5)
o Js
‘o /H /00/ 0(t )" W, (O)T((¢ - 5)“0)h(s, x(s), ) dON (ds, dv)
) MT ) /t 6/ (¢ —5)" 4P 151y (0)T (546 — €8)[xo — g(x)] d6 ds

+MT(€“5)/ 7 / 0@t - )" W, O)[T((t-9)"0 - €"8)o
0o Js
—AT((t —s)"0 - 6”8)]Bu(s) do ds

b T () /O o /6 (=9 IOV T((t - 50 — €6)fi (s.2()) dO ds

+MT(€”3)/O _ /(; 0t — )W, (O)T ((t - )"0 — T (") )fa (s, %(s)) d6 dew(s)
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b T () /0 o /8 T 0= 9, O)T((E - 0 — €6) G(s,(5)) dO dB(5)

+uT (") /:_é /500/VQ(t—s)“’llI/H(O)T((t—s)"@—6“5)

x h(s, x(s),v) dON (ds, dv).

Since T'(¢"8), €8 > 0 is a compact operator, the set V() = {(@“°x)(¢) : x € B,} is a pre-
compact set in X for every €, 0 < € < ¢, and for all § > 0. Moreover, for every x € B,, we
have

[ ®x - @

= sup 2EVIWE(@2)(8) — (@) (1) ||
te]

36 2 t2(1—v)(1—u)
< K SUD;ey
2(w(l-p)

2
x E

t )
/ / (¢ —s5)" 711, ()T (s6) [x0 — g(x)] d6 ds
0 JO

+36|1B1%[ (Lo)™* stupﬂ(l-“)“-“)EHu / t / Ooe(t—s)“‘l%(e)[T((t—s)"e)a
te] t—e J§
b
—AT((t—s)“e)]{sv,u(w[xo )]+ fo P (b 0)fi(6,x(0)) de
b b
. / P - 0)fs(¢,2(0)) deo(@) + / P (b-0)G(¢,x(2)) dB"(¢)
0 0

2

b
+/0 P,L(b—s)/\/h((,x({),v)N(d{,dv)}d@ds

2

t o0
+36sup tz(l“’)(l"”EH n / / 0t —s)" W, (O)T ((¢— 9)"0)fi (s, %(s)) dO ds
t— J§

te]

+ 36 sup 2171w
te]

2

xEH i / t /5 w@(t—s)“’llI/M(H)T((t—s)“@) 5(s,%(5)) 46 dw(s)

+ 36 sup 2171w
te]

t o] 2
X EH,u f /5 0@t - )W, (0)T((t - 5)"0)G(s,x(s)) 40 dB" (s)

+ 36 sup F21-v)(A-p)
te]

2

XEH,U,/t /Sooe(t—s)”_lllf,t(é’)T((t—s)"@) d@fvh(s,x(s),v)]([(ds,dv)

t )
+ 361B12] o) | sup tz(l‘”)(l‘“)EH,u | [ oe-srwm@lr(c-sro)o
te] 0 JO

b
—AT((t—S)“f))]{Sv,u(b)[xo—g(x)]+/0 Pu(b— ) (¢, x(¢)) ds

Page 18 of 23
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b b
. / Pu(b-0)fs(¢,2(0)) deo(@) + / P(b—-)G(¢,x(0)) dB™ ()
0 0

2

b
+/(; Pu(b—s)/“/h({,x(g),v)N(dg,dv)}d@ds

t s 2
+36supt (1-v)(i-u) p H/L/ / G(t—s)"_lwﬂ(G)T((t—s)"Q) 1(s,x(s)) do ds

te]

+36supt21 Va-Wp ” / / o(t —s)~ 1l,I/,L(Q)T((t s)“@)fz(s,x(s)deda)(s)

te]

+ 36 sup (21711

te]

2

t 8
xEH,u f / 0t - )W, (0)T((t - 5)"0)G(s,x(s)) 40 dB" (s)

+ 36 sup (2171w

te]

t b
xEH,u/O /0 Q(t—s)“’ldfu(Q)T((t—s)"@)d@/Vh(s,x(s),v)]([(ds,dv)

2

We see that, for each x € B,, | ®x — <1§€"3x||26 — 0ase — 0" and § — 0*. Therefore, there
are precompact sets arbitrarily close to the set V,(¢) and so V,(t) is precompact in X.

Next we prove that the family {@x : x € B,} is an equicontinuous family of functions. Let
x € B, and t1,t, € J such that 0 < £; < £, then

E|[(@x)(t2) - (@x)(21)]’
< 36| (Suu(t2) — Sup(t) [0~ g@)] |

+36BI%| (Lo) ! |’E

/ ’ [Pu(t2 - $)o — AP, (t2 - )] {Su,u(b)[xo -g()]

b b
+/ Pu(b—cn@,x(;))du/ Pulb - )5 (6,2(0)) doo(c)
0 0

2

b b .
+ / Pu(b-0)G(¢,x(0)) dB™ () + f P(b-2) / h(;,x@),v)N(d;,dv)}ds
0 0 174

2
+ 36E

2

+ 36E /tz P, (Lt - s)fi (s,x(s)) ds

t1

/ i P, (ts - 8)fa(s,%(s)) doo(s)

t1

1) 2
+36E / P, (t - 5)G(s,x(s)) dB"(s)

t1

+ 36E / (Lo —s)/ s, %(s), V)N (ds, dv)

+36BI*| (Lo) ' |E

[Pu(tz =)o —P,(ty —s)o — AP, (t, —s) + AP, (t; — s)]
0
b
X {SU,[L(b)[‘xO _g(x)] + /; P/l,(b - é-)fl(é-’x(g)) d;-

b
N / Pu(b - 0)fs (£,%(0)) do(?)
0

Page 19 of 23
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2

b b ~
. f Pu(b-0)G(¢,%(0)) dB () + / Pu(b-1) f h(c,x@),v)N(dc,dv)}ds
0 0 174

2

+ 36E / 1 [P#(tz —8)—=Pyu(t; - s)]f1 (S,x(s)) ds
0

2

+ 36E /0 1 [Pu(tz —8) =Pyt — s)]fz(s,x(s)) dw(s)

2

+ 36E / ! [Pu(ts — ) = Pu(t1 — )] G(s,x(s)) dB"(s)
0

2

+ 36E /tl [Pﬂ(tz —8)=P,(t1 - s)] / h(s,x(s),v)N(ds, dv)
0 v

From the above fact, we see that E||(®x)(t;) — (®x)(1)]|? tends to zero independently of
x € B, as t; — t1. Thus, @(B,) is both equicontinuous and bounded. By the Arzela—Ascoli
theorem @(B,) is precompact in X. Hence @ is a completely continuous operator on X.
From the Schauder fixed point theorem, @ has a fixed point in B,. Any fixed point of @ is
a mild solution of (1.1) on /. Therefore the system (1.1) is exact null controllable on J. [

5 Applications
Let us consider the nonlocal Hilfer fractional stochastic partial differential system with

fractional Brownian motion and Poisson jump in the following form:

Dy (e(6,6)) = Lyn(t,6) + F1(6,2(0,6)) + Falt, (2, ) %42

+ F3(t,x(,§)) 20

+ [y, Fa(t,x(t,€),v)N(dt, dv), te]=(0,bl,&€1l, (5.1)
x(t,E)=u(t,§), tel§el,

3(1-v)

Iy,” x(0,€) + Y0 et €) =x0(§), & €11,

where D;;% is the Hilfer fractional derivative, 0 <v <1, u = %, m is a positive integer,
O<ti<ty<---<tly<b, Il is a bounded and open subset of R” with sufficiently smooth
boundary I', w(t) is Wiener process, B is a fractional Brownian motion with Hurst pa-
rameter H € (%, 1)and u € Ly(I').

The functions x(¢)(§) = x(£,§), fi(t,x(2))(&) = F1(t,x(t,§)), fo(t,x(£))(§) = Fa(t, %(£,§)),
G(t, x(2))(§) = F3(t,%(t, £)), h(t,x(t), v)(§) = Fi(t, x(¢,&),v), and g(x)(§) = "1 cix(t;, §).

Let X =Y =K = Ly(IT), U = Ly(I") By =1, the identity operator and ox = % with do-

9E2
main D(c) = {x € L,(IT) : géi’; e Ly(IT)}.
The operator 6 is the trace operator such that 6x = x| is well defined and belongs to
H-Y2(I") for each x € D(o).
Define the operator A : D(A) C X — X given by Ax = Ax with domain D(A) = H}(IT) U
H?(IT) where H*(IT), H*(I") and H}(IT) are the usual Sobolev spaces on IT, I'. Then A

can be written as

o]

Ax = Z(—nz)(x, X%, %€ D(A),

n=1

where x,(y) = /2 sin ny,n=1,2,3,..., is the orthogonal set of eigenvectors of A.
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It is well known that A generates a compact semigroup {7 (¢),t > 0} in X and

o0 7’12
T(t)x = Zemt(x,xn)xn, xeX,

n=1

with
IT@®)| <e* <1

Moreover, the two operators SU’% (t) and P% (¢) can be defined by

4

S
3v
7r(%)
)

v,

(t)x =

t o0
/ / 0t —s)%l-ls%g%(e)T(ﬁe)xde ds,
0 0

s

P%(t)ngfo 0(t-5)7&4(O)T((¢ -5)70)xdo.

Clearly,

t7 £70-D)

3
7

Define the fractional Brownian motion in Y by
o0
B(6) =Y V" (B)en,
n=1

where H € (%, 1) and {B%},.cn is a sequence of one-dimensional fractional Brownian mo-
tions that are mutually independent.

Also, we define the linear operator B : Ly(I") — Ly(I7) by Bu = v, where v, is the unique
solution to the Dirichlet boundary value problem,

Av,=0 inl[I,

vy=u inl.

We consider the fractional linear system

4
\),7

Dy, (x(t,&)) = %x(t,é) + (1) + Fa(t, £) %20

+F(6)E 0, tef=(0blE €T, .
x(t, &) =ut,€), te]EeTl, )
3(1-v)

Ly, %(0,&) =x0(§), &ell.

The system (5.2) has exact null controllability if there is a y > 0, such that

b b
/0 HB*[p%(b_s)a-Ap%(b—s)]*ynzdszy[||s;j%(b)y||2+/o ||P’é(b—s)y||2ds],

Page 21 of 23
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or equivalently

b b
/0 HB[P;;(b—s)o—AP;;(b—s)]szdszy[||SV,z7;(b)yH2+ fo ||Pz7;(b—s)yH2ds].

Hence, the linear fractional system (5.2) is exactly null controllable on J. So the hypothesis
(H10) is satisfied. Hence, all the hypotheses of Theorem 4.1 are satisfied and

36M2[ Mj b 200§y 1§ Tr(Q) + 2HD? 185 + 54]}

- +pm) u2(0)
[1 bZH||(Lo>-1||2||B||2<M2||o||2+M%)]
+ <1.

(2u-1)I?(n)

Then the system (5.1) is exactly null controllable on J.
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