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1 Introduction
Fractional differential equations and integrals are valuable tools in the modeling of many
phenomena in various fields of science and engineering. Indeed, numerous applications
have been addressed in viscoelasticity, electrochemistry, control, porous media, electro-
magnetism, etc. For examples and details, we refer the reader to the monographs [2, 4, 5,
16, 19, 21], and a series of recent research articles; see [23–27] and the references therein.
Recently, many researchers studied different fractional problems involving the Caputo and
Hadamard derivatives; see, for example, [3, 6, 7]. Some classes of fractional differential
equations on unbounded domains have been considered in [13]. Sufficient conditions for
the oscillation of solutions of ordinary and fractional differential equations are given in
[15, 22]. On the other hand, oscillation and nonoscillation solutions of impulsive equa-
tions have been discussed in [11, 12, 14].

The method of upper and lower solutions has been successfully applied to the study of
the existence of solutions for ordinary and fractional differential equations and inclusions.
See the monograph [20] and the paper [1, 10], and the references therein.

This paper deals with the existence of oscillatory and nonoscillatory solutions for the
following class of initial value problems for the Caputo–Hadamard impulsive fractional
differential inclusion:

HcDα
tk

y(t) ∈ F
(
t, y(t)

)
, a.e. t ∈ J = (tk , tk+1), (1)

y
(
t+
k
)

= Ik
(
y
(
t–
k
))

, k = 1, . . . , (2)

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-2026-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2026-3&domain=pdf
http://orcid.org/0000-0002-4099-8077
mailto:yzhou@xtu.edu.cn


Benchohra et al. Advances in Difference Equations         (2019) 2019:74 Page 2 of 15

y(1) = y∗, (3)

where HcDα
tk

is the Caputo–Hadamard fractional derivative of order 0 < α ≤ 1, F : J ×
R → P(R) is a multivalued map, P(R) is the family of all nonempty subsets of R, y∗ ∈ R,
Ik ∈ C(R,R), 1 = t0 < t1 < · · · < tm < tm+1 < · · · < ∞, y(t+

k ) = limh→0+ y(tk + h) and y(t–
k ) =

limh→0+ y(tk – h) represent the right and left limits of y(t) at t = tk , k = 1, . . . .
This paper initiates the study of oscillatory and nonoscillatory solutions for impulsive

fractional differential inclusions involving the Caputo–Hadamard fractional derivative.

2 Preliminaries
In this section, we introduce notations, definitions, and preliminary facts that will be used
in the remainder of this paper.

Let C(J ,R) be the space of all continuous functions from J into R.

‖y‖∞ = sup
t∈J

∣∣y(t)
∣∣.

Let BC(J ,R) be the Banach space of all continuous and bounded functions from J into R

with the norm

‖y‖∞ = sup
t∈J

∣∣y(t)
∣∣,

and let L1(J ,R) be the Banach space of Lebesgue integrable functions y : J −→ R with the
norm

‖y‖L1 =
∫ T

1

∣∣y(t)
∣∣dt.

By L∞(J ,R) we denote the Banach space of measurable functions y : J −→ R which are
essentially bounded, with the norm

‖y‖L∞ = inf
{

c > 0 :
∣
∣y(t)

∣
∣ ≤ c, for a.e. t ∈ J

}
.

Denote by AC(J ,R) the space of absolutely continuous functions from J into R.
For a given Banach space (X,‖ · ‖), we set

Pcl(X) =
{

Y ∈P(X) : Y closed
}

,

Pb(X) =
{

Y ∈P(X) : Y bounded
}

,

Pcp(X) =
{

Y ∈P(X) : Y compact
}

,

Pcp,cv(X) =
{

Y ∈P(X) : Y compact and convex
}

.

A multivalued map G : X → P(X) is convex (closed) valued if G(X) is convex (closed)
for all x ∈ X. G is bounded on bounded sets if G(B) =

⋃
x∈B G(x) is bounded in X for all

B ∈ Pb(X) (i.e. supx∈B{sup{|y| : y ∈ G(x)}}).
G is called upper semicontinuous (u.s.c.) on X if, for each x0 ∈ X, the set G(x0) is a

nonempty closed subset of X, and for each open set N of X containing G(x0), there exists
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an open neighborhood N0 of x0 such that G(N0) ⊂ N . G is said to be completely continuous
if G(B) is relatively compact for every B ∈ Pb(X). If the multivalued map G is completely
continuous with nonempty compact values, then G is u.s.c. if and only if G has a closed
graph (i.e. xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). G has a fixed point if there is
x ∈ X such that x ∈ G(x). The fixed point set of the multivalued operator G will be denote
by Fix G. A multivalued map G : J → Pcl(R) is said to be measurable if for every y ∈R, the
function

t → d
(
y, G(t)

)
= inf

{|y – z| : z ∈ G(t)
}

is measurable.

Lemma 2.1 ([17]) Let G be a completely continuous multivalued map with nonempty com-
pact values, then G is u.s.c. if and only if G has a closed graph.

Definition 2.2 A multivalued map F : J ×R →P(R) is said to be Carathéodory if:
(1) t → F(t, u) is measurable for each u ∈R;
(2) u → F(t, u) is upper semicontinuous for almost all t ∈ J .

For each y ∈ C(J ,R), define the set of selection of F by

SF◦y =
{

v ∈ L1([1, T],R
)

: v(t) ∈ F
(
t, y(t)

)
a.e. t ∈ [1, T]

}
.

Let (X, d) be a metric space induced from the normed space (X, | · |). The function Hd :
P(X) ×P(X) →R+ ∪ {∞} given by

Hd(A, B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(A, b)
}

is known as the Hausdorff–Pompeiu metric. For more details on multivalued maps see
the books of Hu and Papageorgiou [17].

Let us recall some definitions and properties of Hadamard fractional integration and
differentiation. Let δ = t d

dt , and set

ACn
δ (J ,R) =

{
y : J −→ R, δn–1y(t) ∈ AC(J ,R)

}
.

Definition 2.3 ([19]) The Hadamard fractional integral of order r > 0 for a function h ∈
L1([1, +∞),R) is defined as

HIrh(t) =
1

Γ (r)

∫ t

1

(
log

t
s

)r–1 h(s)
s

ds,

provided the integral exists for a.e. t > 1.

Example 2.4 Let q > 0. Then

HIq
1 ln t =

1
Γ (2 + q)

(ln t)1+q; for a.e. t ∈ [1, +∞).
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Definition 2.5 ([19]) The Hadamard fractional derivative of order r > 0 applied to the
function h ∈ ACn

δ ([1, +∞),R) is defined as

(HDq
1h

)
(t) = δn(HIn–r

1 h
)
(t),

where n – 1 < r < n, n = [r] + 1, and [r] is the integer part of r.

Definition 2.6 ([18]) For a given function h ∈ ACn
δ ([a, b],R), such that 0 < a < b, the

Caputo–Hadamard fractional derivative of order r > 0 is defined as follows:

HcDry(t) = HDr

[

y(s) –
n–1∑

k=0

δky(a)
k!

(
log

s
a

)k
]

(t),

where Re(α) ≥ 0 and n = [Re(α)] + 1.

Lemma 2.7 ([18]) Let y ∈ ACn
δ ([a, b],R) or Cn

δ ([a, b],R) and α ∈ C. Then

HIr(HcDry
)
(t) = y(t) –

n–1∑

k=0

δky(a)
k!

(
log

t
a

)k

.

3 Main results
we consider the space,

PC(J ,R) =
{

y : J →R, y ∈ C
(
(tk , tk+1],R

)
, k = 0, . . . ,

and there exist, y
(
t+
k
)

and y
(
t–
k
)
, k = 1, . . . , with y

(
t–
k
)

= y(tk)
}

.

This set is a Banach space with the norm

‖y‖PC = sup
t∈J

∣∣y(t)
∣∣.

Let us start by defining what we mean by a solution of problem (1)–(3).

Definition 3.1 A function y ∈ PC ∩ AC((tk , tk+1),R), k = 0, . . . , is said to be a solution
of (1)–(3) if y satisfies the inclusion HcDα

tk
y(t) ∈ F(t, y(t)) a.e. on (tk , tk+1) and conditions

y(t+
k ) = Ik(y(t–

k )), k = 1, . . . , y(1) = y∗.

The following concept of lower and upper solutions was introduced by Benchohra and
Boucherif [8, 9] for initial initial value problems for impulsive differential inclusions of first
order. This will the basic tool in the approach that follows.

Definition 3.2 A function u ∈ PC ∩ AC((tk , tk+1),R), k = 0, . . . , is said to be a lower
solution of (1)–(3) if there exists v1 ∈ L1(J ,R) such that v1(t) ∈ F(t, u(t)) a.e. t ∈ J ,
HcDα

tk
u(t) ≤ F(t, u(t)) on (tk , tk+1) and u(t+

k ) ≤ Ik(u(tk)), k = 1, . . . . Similarly, a function
v ∈ PC ∩ AC((tk , tk+1),R), k = 0, . . . , is said to be an upper solution of (1)–(3) if there ex-
ists v2 ∈ L1(J ,R) such that v2(t) ∈ F(t, v(t)) a.e. t ∈ J , HcDα

tk
v(t) ≥ F(t, v(t)) on (tk , tk+1) and

v(t+
k ) ≥ Ik(v(tk)), k = 1, . . . .
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For the study of this problem we first list the following hypotheses:
(H1) F : J ×R −→ Pcp,cv(R) is a Carathéodory multivalued map.
(H2) For all r > 0 there exists a function hr ∈ L∞(J ,R+) with

∣
∣F(t, y)

∣
∣ ≤ hr(t) for a.e. t ∈ J and all |y| ≤ r.

(H3) There exist u and v ∈ PC((tk , tk+1),R), k = 0, . . . , lower and upper solutions for the
problem (1)–(3) such that u ≤ v.

(H4)

u
(
t+
k
) ≤ min

y∈[u(t–
k ),v(t–

k )]
Ik(y) ≤ max

y∈[u(t–
k ),v(t–

k )]
Ik(y) ≤ v

(
t+
k
)
, k = 1, . . . .

(H5) There exists l ∈ L1(J ,R+) such that

Hd
(
F(t, y), F(t, ȳ)

) ≤ l(t)|y – ȳ|; for every y, ȳ ∈R,

and

d
(
0, F(t, 0)

) ≤ l(t); a.e. t ∈ J .

Theorem 3.3 Assume that hypotheses (H1)–(H4) hold. Then the problem (1)–(3) has at
least one solution y such that

u(t) ≤ y(t) ≤ v(t) for all t ∈ J .

Proof The proof will be given in several steps.

Step 1: Consider the following problem:

HcDα
t0 (t) ∈ F

(
t, y(t)

)
, t ∈ J1 := [t0, t1], (4)

y(1) = y∗. (5)

Transform the problem (4)–(5) into a fixed point problem. Consider the modified problem

HcDα
t0 (t) ∈ F

(
t, (τy)(t)

)
, t ∈ J1, (6)

y(1) = y∗, (7)

where τ : C(J1,R) −→ C(J1,R) be the truncation operator defined by

(τy)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

u(t), y(t) < u(t),

y(t), u(t) ≤ y(t) ≤ v(t),

v(t), y(t) > v(t).
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A solution to (6)–(7) is a fixed point of the operator G : C([t0, t1],R) −→ Pcp,cv(C([t0, t1],R))
defined by

G(y) =
{

h ∈ C
(
[t0, t1],R

)
: h(t) = y∗ +

1
Γ (α)

∫ t

t0

(
log

t
s

)α–1

g(s)
ds
s

}
,

where g ∈ S̃1
F ,τy and

S̃1
F ,τy =

{
g ∈ S1

F ,τy : g(t) ≥ v1(t) on A1 and g(t) ≤ v2(t) on A2
}

,

S1
F ,τy =

{
g ∈ L1(J1,R) : g(t) ∈ F

(
t, (τy)(t)

)
for a.e. t ∈ J1

}
,

A1 =
{

t ∈ J1 : y(t) < u(t) ≤ v(t)
}

, A2 =
{

t ∈ J1 : u(t) ≤ v(t) < y(t)
}

.

Remark 3.4
(i) For each y ∈ C([t0, t1],R), the set S̃1

F ,τy is nonempty. In fact, (H1) implies there exists
g3 ∈ S1

F ,τy, so we set

g = v1χA1 + v2χA2 + v3χA3 ,

where

A3 =
{

t ∈ J1 : α(t) ≤ y(t) ≤ β(t)
}

.

Then, by decomposability, g ∈ S̃1
F ,τy.

(ii) By the definition of τ it is clear that for all r > 0 there exists a function
hr ∈ L∞(J1,R+) with

∣∣F(t, (τy)(t)
∣∣ ≤ hr(t) for a.e. t ∈ J1 and all

∥∥τ (y)
∥∥∞ ≤ r.

We shall show that G satisfies the assumptions of the nonlinear alternative of Leray–
Schauder type. The proof will be given in several steps.

Claim 1 A priori bounds on solutions.

Let y ∈ λG(y) for some λ ∈ (0, 1). Then there exists g ∈ S̃1
F ,τy such that for some λ ∈ (0, 1)

we have, for each t ∈ J1,

y(t) = λ

[
y∗ +

1
Γ (α)

∫ t

t0

(
log

t
s

)α–1

g(s)
ds
s

]
.

This implies by (H2) that for each t ∈ J1 we have

∣
∣y(t)

∣
∣ ≤ |y∗| +

1
Γ (α)

∫ t

t0

(
log

t
s

)α–1∣
∣g(s)

∣
∣ds

s

≤ |y∗| +
(log t1

t0
)α

Γ (α + 1)
‖hr1‖L∞ := M.
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Set

U =
{

y ∈ C
(
[t0, t1],R

)
: ‖y‖∞ < M + 1

}
.

From the choice of U there is no y ∈ ∂U such that y = λG(y) for some λ ∈ (0, 1). We first
show that G : U → Pcp,cv(C([t0, t1],R)) is compact.

Claim 2 G(y) is convex for each y ∈ C([t0, t1],R).

Indeed, if h1, h2 belong to N(y), then there exist g1, g2 ∈ S̃1
F ,τy such that for each t ∈ J1

hi = y∗ +
1

Γ (α)

∫ t

t0

(
log

t
s

)α–1

gi(s)
ds
s

, i = 1, 2.

Let 0 ≤ d ≤ 1. Then for each t ∈ J1 we have

(
dh1 + (1 – d)h2

)
(t) =

1
Γ (α)

∫ t

t0

(
log

t
s

)α–1[
dg1(s) + (1 – d)g2(s)

ds
s

]
.

Since S̃1
F1,τy is convex (because F(·, (τy)(·)) has convex values),

dh1 + (1 – d)h2 ∈ G(y).

Claim 3 G maps bounded sets into sets in C([t0, t1],R).

Indeed, it is enough to show that for each q > 0 there exists a positive constant 
q such
that for each y ∈ Bq = {y ∈ C([t0, t1],R) : ‖y‖∞ ≤ q} one has ‖G(y)‖P ≤ 
q.

Let y ∈ Bq and h ∈ N(y) then there exists g ∈ S̃1
F ,τy such that for each t ∈ J1 we have

h(t) = y∗ +
1

Γ (α)

∫ t

t0

(
log

t
s

)α–1

g(s)
ds
s

.

By (H2) we have for each t ∈ J1

∣
∣h(t)

∣
∣ ≤ |y∗| +

1
Γ (α)

∫ t

t0

(
log

t
s

)α–1∣
∣g(s)

∣
∣ds

s

≤ |y∗| +
(log t1

t0
)α

Γ (α + 1)
‖hq‖L∞ := 
q.

Claim 4 G maps bounded set into equicontinuous sets of C([t0, t1],R).

Let u1, u2 ∈ J1, u1 < u2 and Bq be a bounded set of C([t0, t1],R) as in Step 2. Let y ∈ Bq

and h ∈ G(y) then there exists g ∈ S̃1
F ,τy such that for each t ∈ J1 we have

h(t) = y∗ +
1

Γ (α)

∫ t

t0

(
log

t
s

)α–1

g(s)
ds
s

.
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Then

∣
∣h(u2) – h(u1)

∣
∣ =

∣∣
∣∣

1
Γ (α)

∫ u2

t0

(
log

u2

s

)α–1

g(s)
ds
s

–
1

Γ (α)

∫ u1

t0

(
log

u1

s

)α–1

g(s)
ds
s

∣∣
∣∣

≤ (log u2
u1

)α

Γ (α + 1)
‖hq‖L∞ .

As u2 −→ u1 the right-hand side of the above inequality tends to zero. As a consequence
of Steps 1 to 3 together with the Arzela–Ascoli theorem we can conclude that G : U →
Pcp,cv(C([t0, t1],R)) is a compact multivalued map.

Claim 5 N is upper semicontinuous map.

Let yn → y∗, hn ∈ G(yn) and hn → h∗. We need to show that h∗ ∈ G(y∗). hn ∈ G(yn) means
that there exists gn ∈ S̃1

τ (y) such that, for each t ∈ J ,

hn(t) = y∗ +
1

Γ (α)

∫ t

t0

(
log

t
s

)α–1

gn(s)
ds
s

.

We must show that there exists g∗ ∈ S̃1
τ (y∗) such that, for each t ∈ J ,

h∗(t) = y∗ +
1

Γ (α)

∫ t

t0

(
log

t
s

)α–1

g∗(s)
ds
s

.

Since F(t, ·) is upper semicontinuous, for every ε > 0, there exists a natural number n0(ε)
such that, for every n ≥ n0, we have

gn(t) ∈ F
(
t, τyn(t)

) ⊂ F
(
t, y∗(t)

)
+ εB(0, 1), a.e. t ∈ J .

Since F(·, ·) has compact values, there exists a subsequence gnm (·) such that

gnm (·) → v∗(·) as m → ∞,

and

g∗(t) ∈ F
(
t, τy∗(t)

)
, a.e. t ∈ J .

For every w ∈ F(t, τy∗(t)), we have

∣
∣gnm (t) – g∗(t)

∣
∣ ≤ ∣

∣gnm (t) – w
∣
∣ +

∣
∣w – g∗(t)

∣
∣.

Then

∣∣gnm (t) – g∗(t)
∣∣ ≤ d

(
gnm (t), F

(
t, τy∗(t)

))
.
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We obtain an analogous relation by interchanging the roles of gnm and g∗, and it follows
that

∣
∣gnm (t) – g∗(t)

∣
∣ ≤ Hd

(
F
(
t, τyn(t)

)
, F

(
t, τy∗(t)

))

≤ l(t)
∥∥yn – y∗∥∥∞.

Then

∣
∣hnm (t) – h∗(t)

∣
∣ ≤ 1

Γ (α)

∫ t

t0

(
log

t
s

)α–1∣
∣gnm (s) – g∗(s)

∣
∣ds

s

≤ (log t1
t0

)α

Γ (α + 1)
(log T)α

∫ t1

t0

l(s) ds
∥∥ynm – y∗∥∥∞.

Thus

∥
∥hnm – h∗∥∥∞ ≤ (log t1

t0
)α

Γ (α + 1)
(log T)r

∫ T

1
l(s) ds

∥
∥ynm – y∗∥∥∞ −→ 0, as m → ∞.

Hence, Lemma 2.1 implies that G is upper semicontinuous. As a consequence of the non-
linear alternative of Leray–Schauder type, we deduce that G has a fixed point y in U which
is a solution of the problem (6)–(7).

Claim 5 Every solution y of (6)–(7) satisfies

u(t) ≤ y(t) ≤ v(t); for all t ∈ J1.

Let y be a solution of (6)–(7). We prove that

u(t) ≤ y(t); for all t ∈ J1.

Suppose not. Then there exist τ1, τ2 with τ1 < τ2 such that u(τ1) = y(τ1) and

u(t) > y(t); for all t ∈ (τ1, τ2).

In view of the definition of τ one has

HcDαy(t) ∈ F
(
t, u(t)

)
; for all t ∈ (τ1, τ2).

An integration on (τ1, t], with t ∈ (τ1, τ2) and there exists g(·) ∈ F(·, u(·)) yields

y(t) – y(τ1) =
1

Γ (α)

∫ t

τ1

(
log

t
s

)α–1

g(s)
ds
s

.

Since u is a lower solution to (4)–(5),

u(t) – u(τ1) ≤ 1
Γ (α)

∫ t

τ1

(
log

t
s

)α–1

g(s)
ds
s

; t ∈ (τ1, τ2).
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It follows from y(τ1) = u(τ1) that

u(t) ≤ y(t); for all t ∈ (τ1, τ2),

which is a contradiction, since u(t) > y(t) for all t ∈ (τ1, τ2). Consequently

u(t) ≤ y(t); for all t ∈ J1.

Analogously, we can prove that

y(t) ≤ v(t) for all t ∈ J1.

This shows that

u(t) ≤ y(t) ≤ v(t) for all t ∈ J1.

Consequently, the problem (4)–(5) has a solution y satisfying u ≤ y ≤ v. Denote this
solution by y0.

Step 2: Consider the following problem:

HcDα
t1 y(t) ∈ F

(
t, y(t)

)
, t ∈ J2 := [t1, t2], (8)

y
(
t+
1
)

= I1
(
y0

(
t–
1
))

. (9)

Consider the modified problem

HcDα
t1 y(t) ∈ F1

(
t, y(t)

)
, a.e. t ∈ J2, (10)

y
(
t+
1
)

= I1
(
y0

(
t–
1
))

. (11)

A solution to (10)–(11) is a fixed point of the operator G1 : C([t1, t2],R) −→ Pcp,cv(C([t1, t2],
R)) defined by

G1(y) =
{

h ∈ C
(
[t1, t2],R

)
: h(t) =

1
Γ (α)

∫ t

t1

(
log

t
s

)α–1

g(s)
ds
s

+ I1
(
y0

(
t–
1
))

}
,

where g ∈ S̃1
τ (y). Since y0(t1) ∈ [u(t–

1 ), v(t–
1 )], (H4) implies that

u
(
t+
1
) ≤ I1

(
y0

(
t–
1
)) ≤ v

(
t+
1
)
,

that is

u
(
t+
1
) ≤ y

(
t+
1
) ≤ v

(
t+
1
)
.

Claim 1 A priori bounds on solutions.
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Let y ∈ λG1(y) for some λ ∈ (0, 1). Then there exists g ∈ S̃1
F ,τy such that for some λ ∈ (0, 1)

we have, for each t ∈ J2,

y(t) = λ

[
y∗ +

1
Γ (α)

∫ t

t1

(
log

t
s

)α–1

g(s)
ds
s

+ I1
(
y0

(
t–
1
))

]
.

This implies by (H2) that for each t ∈ J1 we have

∣
∣y(t)

∣
∣ ≤ |y∗| +

1
Γ (α)

∫ t

t1

(
log

t
s

)α–1∣
∣g(s)

∣
∣ds

s

≤ |y∗| +
(log t2

t1
)α

Γ (α + 1)
‖hq‖L∞ + v

(
t+
1
)

:= M.

Set

U =
{

y ∈ C
(
[t1, t2],R

)
: ‖y‖∞ < M + 1

}
.

From the choice of U there is no y ∈ ∂U such that y = λG1(y) for some λ ∈ (0, 1). Using the
same reasoning as that used for problem (4)–(5), we can conclude the existence of at least
one solution y to (10)–(11).

Claim 5 Every solution y of (10)–(11) satisfies

u(t) ≤ y(t) ≤ v(t); for all t ∈ J1.

Let y be a solution of (10)–(11). We prove that

u(t) ≤ y(t); for all t ∈ J2.

Suppose not. Then there exist τ3, τ4 with τ3 < τ4 such that u(τ3) = y(τ4) and

u(t) > y(t); for all t ∈ (τ3, τ4).

In view of the definition of τ one has

HcDαy(t) ∈ F
(
t, u(t)

)
; for all t ∈ (τ3, τ4).

An integration on (τ3, t], with t ∈ (τ3, τ4) and there exists g ∈ F(t, u(t)) yields

y(t) – y(τ3) =
1

Γ (α)

∫ t

τ3

(
log

t
s

)α–1

g(s)
ds
s

.

Since u is a lower solution to (4)–(5),

u(t) – u(τ3) ≤ 1
Γ (α)

∫ t

τ3

(
log

t
s

)α–1

g(s)
ds
s

; t ∈ (τ3, τ4).
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It follows from y(τ3) = u(τ3) that

u(t) ≤ y(t); for all t ∈ (τ3, τ4),

which is a contradiction, since u(t) > y(t) for all t ∈ (τ3, τ4). Consequently

u(t) ≤ y(t); for all t ∈ J2.

Analogously, we can prove that

y(t) ≤ v(t) for all t ∈ J2.

This shows that

u(t) ≤ y(t) ≤ v(t) for all t ∈ J2.

Denote this solution by y1.
Step 3: We continue this process and take into account that ym := y|[tm–1,tm] is a solution

to the problem

HcDα
tm–1 y(t) ∈ F

(
t, y(t)

)
, a.e. t ∈ Jm := [tm–1, tm], (12)

y
(
t+
m
)

= Im
(
ym–1

(
t–
m–1

))
. (13)

Consider the following modified problem:

HcDr
tm–1 y(t) ∈ F1

(
t, y(t)

)
, a.e. t ∈ Jm, (14)

y
(
t+
m
)

= Im
(
ym–1

(
t–
m–1

))
. (15)

A solution to (14)–(15) is a fixed point of the operator

Gm : C
(
[tm–1, tm],R

) −→ Pcp,cv
(
C

(
[tm–1, tm],R

))

defined by

Gm(y) =
{

h ∈ C
(
[tm–1, tm],R

)
: h(t) =

1
Γ (α)

∫ t

tm

(
log

t
s

)α–1

g(s)
ds
s

+ Im
(
y
(
t–
m–1

))}
.

Using the same reasoning as that used for problems (4)–(5) and (8)–(9) we can conclude
the existence of at least one solution y to (12)–(13). Denote this solution by ym–1.

The solution y of the problem (1)–(3) is then defined by

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0(t), t ∈ [t0, t1],

y2(t), t ∈ (t1, t2],
...

ym–1(t), t ∈ (tm–1, tm],
...

The proof is complete. �
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3.1 Nonoscillation and oscillation of solutions
The following theorem gives sufficient conditions to ensure the nonoscillation of solutions
of problem (1)–(3).

Theorem 3.5 Let u and v be lower and upper solutions, respectively, of (1)–(3) with u ≤ v
and assume that

(H5) u is eventually positive nondecreasing, or v is eventually negative nonincreasing.
Then every solution y of (1)–(3) such that y ∈ [u, v] is nonoscillatory.

Proof Assume that u is eventually positive. Thus there exists Tu > t0 such that

u(t) > 0 for all t > Tu.

Hence y(t) > 0 for all t > Tu, and t = tk , k = 1, . . . . For some k ∈ N and t > tu, we have y(t+
k ) =

Ik(y(tk)). From (H4) we get y(t+
k ) > u(t+

k ). Since for each h > 0, u(tk + h) ≥ u(tk) > 0, then
Ik(y(tk)) > 0 for all tk > Tu, k = 1, . . . , which means that y is nonoscillatory. Analogously, if
v is eventually negative, then there exists Tv > t0 such that

y(t) < 0 for all t > Tv,

which means that y is nonoscillatory. This completes the proof. �

The following theorem discusses the oscillation of solutions to problem (1)–(3).

Theorem 3.6 Let u and v be lower and upper solutions, respectively, of (1)–(3), and assume
that the sequences u(tk) and v(tk), k = 1, . . . , are oscillatory. Then every solution y of (1)–(3)
such that y ∈ [u, v] is oscillatory.

Proof Suppose on the contrary that y is a nonoscillatory solution of (1)–(3). Then there
exists Ty > 0 such that y(t) > 0 for all t > Ty, or y(t) < 0 for all t > Ty. In the case that y(t) > 0
for all t > Ty we have v(tk) > 0 for all tk > Ty, k = 1, . . . , which is a contradiction since v(tk)
is an oscillatory upper solution. Analogously in the case y(t) < 0 for all t > Ty we have
u(tk) < 0 for all tk > Ty, k = 1, . . . , which is also a contradiction, since u(tk) is an oscillatory
lower solution. �

3.2 An example
We consider the following impulsive fractional differential equation:

HcDαy(t) ∈ F
(
t, y(t)

)
, a.e. t ∈ J = (tk , tk+1), 0 < α < 1, k = 1, . . . , (16)

y
(
t+
k
)

= Ik
(
y
(
t–
k
))

, k = 1, . . . , (17)

y(1) = y∗, (18)

where

F(t, y) =
{

v ∈ R : f1(t, y) ≤ v ≤ f2(t, y)
}

,
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f1, f2 : J ×R →R. We assume that for each t ∈ J , f1(t, ·) is lower semicontinuous (i.e., the set
{y ∈ R : f1(t, y) > δ} is open for each δ ∈ R), and assume that for each t ∈ J , f2(t, ·) is upper
semicontinuous (i.e., the set the set {y ∈ R : f2(t, y) < δ} is open for each δ ∈ R). Assume
that there are z ∈ L∞([0, T],R+) such that

max
(∣∣f1(t, y)

∣∣,
∣∣f2(t, y)

∣∣) ≤ z(t), t ∈ J , and all y ∈R.

It is clear that F is compact and convex-valued, and it is upper semicontinuous. Assume
that there exist g1(·), g2(·) ∈ L1(J ,R) such that

g1(t) ≤ max
(∣∣f1(t, y)

∣∣,
∣∣f2(t, y)

∣∣) ≤ g2(t) for all t ∈ J , and y ∈R,

and for each t ∈ J

∫ t

1
g1(s)

ds
s

≤ Ik

(∫ t

1
g1(s)

ds
s

)
, k ∈N,

∫ t

1
g2(s)

ds
s

≥ Ik

(∫ t

1
g2(s)

ds
s

)
, k ∈N.

Consider the functions

u(t) :=
∫ t

1
g1(s)

ds
s

, v(t) :=
∫ t

1
g2(s)

ds
s

.

Clearly, u and v are lower and upper solutions of the problem (16)–(18), respectively; that
is,

HcDαu(t) ≤ f
(
t, u(t)

)
for all t ∈ J and all y ∈ R,

and

HcDαv(t) ≥ f
(
t, v(t)

)
for all t ∈ J and all y ∈R.

Since all the conditions of Theorem 3.3 are satisfied, the problem (16)–(18) has at least one
solution y on J with u ≤ y ≤ v. If g1(t) > 0 then u is positive and nondecreasing, thus y(t) is
nonoscillatory. If g2(t) < 0 then v is negative and nonincreasing, thus y(t) is nonoscillatory.
If the sequences u(tk) and v(tk) are both oscillatory, then y(t) is oscillatory.
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