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Abstract
In this paper, we define a characteristic equation of fractional-order linear system with
time delay described by the Caputo–Fabrizio derivative. At the same time, by
applying the Laplace transform and matrix theory we give a necessary and sufficient
stability condition and some brief sufficient stability conditions. The proposed
method is quite different from the other in the literature. In addition, we provide
some examples to demonstrate the effectiveness of our results.
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1 Introduction
Time delay is one of sources of instability and poor performance, so that dynamic systems
with time delay have received extensive attention and research. Meanwhile, fractional-
order systems have gained considerable importance because of many advantages of frac-
tional derivatives. The especially important advantages are that researchers have more
degrees of freedom in the model and that memories of various materials and processes
are included in the model; see [1–3]. There are different definitions of fractional deriva-
tives [4], among which the most commonly used definition is the Caputo definition. In the
literature, it is called a smooth fractional derivative because it is suitable to be treated by
the Laplace transform technique. Analysis of equations generated by different fractional
derivatives has been done; see [5].

Caputo and Fabrizio (CF) proposed a new fractional derivative without a singular ker-
nel [6] in 2015. Its advantages are mainly shown in the following aspects: First, it is less
affected by the past; second, the asymptotic behavior of the new derivative, in contrast to
the Caputo derivative, for the larger of the variable, is linearly increasing and diverging.
A lot of results about this new derivative are reviewed. In [7, 8] the properties of the CF
derivative and fractional integral associated with the CF derivative are studied. Bound-
ary value problems with CF derivatives have been studied in [9, 10]. In [11] a linear fuzzy
model with CF operator is studied, and the (i,α) and (ii,α) differentiable solutions of the
model are obtained. In [12], some good examples presented, which justify that CF deriva-
tives are much more needed to describe real problems. In [13, 14] the kernel and no-index
property of CF derivative separately are studied, which helps us to know more information
on the derivative and its links to other fractional derivatives and real problems.
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In this paper, we establish a new fractional-order system by combining new fractional
derivative and time delay and study the stability and robust stability of the new system. By
using the Laplace transform we establish a characteristic equation and provide some brief
sufficient stability conditions. Finally, we give examples to demonstrate the effectiveness
of results.

2 Problem formulation and preliminaries
In this paper, by CFDα

t we denote the new derivative of order α:

CFDα
t x(t) =

dαx(t)
dtα

=
1

1 – α

∫ t

0
exp

(
–

α

1 – α
(t – τ )

)
ẋ(τ ) dτ , 0 < α ≤ 1.

We mainly consider the following fractional linear system:

CFDαx(t) =
dαx(t)

dtα
= Ax(t) + Bx(t – τ ), (1)

where x(t) ∈R
n, A, B ∈R

n×n, and 0 < α < 1.
Throughout this article, the following conventions are used:

μ(A), the matrix measure of a matrix A, i.e.,μ(A) =
1
2
λmax

(
A + A∗).

ρ(A), the spectral radius of a matrix A.

‖A‖, the spectral norm of a matrix A;‖A‖ =
√

λmax
(
A∗A

)
.

A∗, the conjugate transpose of a matrix A.

(2)

3 Main results
Lemma 3.1 ([15]) Let A, B, C ∈C

n×n and |A| ≤ V . Then

(1) Re
(
λj(A)

) ≤ μ(A), j ∈ 1, 2, . . . , n;

(2) μ(A + B) ≤ μ(A) + μ(B);

(3) μ(A) ≤ ‖A‖, ρ(A) ≤ ‖A‖.

(3)

Lemma 3.2 ([16]) Let C ∈C
n×n, ‖C‖ < 1. Then (I – C)–1 exists, and ‖(I – C)–1‖ ≤ 1

(1–‖C‖) .

Lemma 3.3 ([17]) For a matrix B ∈C
n×n and a positive constant τ ,

μ
(
Be–sτ ) ≤

√
ρ2(Bu) + ρ2(Bl), Re(s) ≥ 0, (4)

where Bu = 1
2 (B + B∗), Bl = i

2 (B – B∗), and i2 = –1.

Definition 3.1 System (1) with x(t0) = x0 is said to be stable if and only if limt→+∞ ‖x(t)‖ =
0.

Next, the stability of system (1) is studied. First, using the Laplace transform to system
(1) for a given initial condition x(t0) = x0, we obtain

L
(

CF Dα
t x(t)

)
= L

(
Ax(t)

) ⇔ 1
1 – α

(
1

s + β

(
sX(s) – x0

))
= AX(s) + Be–sτ X(s), (5)
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where sX(s) = L(x(t)), β = α
1–α

, and L(x(t – τ )) = e–sτ X(s). Simplifying (5), we get

{
s
(
I – (1 – α)

(
A + Be–sτ )) – α

(
A + Be–sτ )}X(s) = x(0). (6)

Setting �(s) � s(I – (1 – α)(A + Be–sτ )) – α(A + Be–sτ ), equation (6) can be written as

�(s)X(s) = x(0). (7)

The distribution of eigenvalues of �(s) totally determine the stability of system (1), so
the following definition is obvious.

Definition 3.2 The characteristic equation of system (1) is det(�(s)) = 0.

Theorem 3.1 System (1) is asymptotically stable if and only if the real parts of roots to the
characteristic equation are negative.

Proof According to (7) and paper [18], this result is easily obtained. �

Remark 3.1 Next, let us make a simple comparison with the traditional Caputo charac-
teristic equations. Obviously, the characteristic equation of the same system described by
the Caputo derivative is

det
(
sαI – A – Be–sτ ) = 0, (8)

which is difficult to solve since this is a fractional-order equation. In addition, without loss
of generality, let A = diag(–9.47, –9.47) and B = diag(1.05, 1.05). Figures 1 and 2 illustrate
that our new characteristic equation det(�(s)) = 0 is less affected by α and τ corresponding
to the traditional Caputo characteristic equation (8). Therefore the result described by the
new derivative is better than that described by the Caputo derivative.

Figure 1 Relations between Re(s) and α when τ = 1 (left is det(�(s)) = 0, right is Eq. (8))
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Figure 2 Relations between Re(s) and τ when α = 0.2 (left is det(�(s)) = 0, right is Eq. (8))

Theorem 3.2 System (1) is asymptotically stable if the following inequalities hold:

(a) (1 – α)
(‖A‖ + ‖B‖) < 1;

(b) μ(A) +
√

ρ2(Bu) + ρ2(Bl) + (1 – α)
‖A2‖ + ‖AB + BA‖ + ‖B2‖

1 – (1 – α)(‖A‖ + ‖B‖)
< 0.

(9)

Proof According to Theorem 3.1, system (1) is asymptotically stable if and only if all roots
of the equation det(�(s)) = 0 lie in the open left half complex plane, and hence we consider
system (1) in Re(s) ≥ 0. In this restricted area, 0 < e–sτ < 1. If inequality (a) holds, then from
Lemma 3.1 we have

ρ
(
(1 – α)

(
A + Be–sτ )) ≤ (1 – α)ρ

(
A + Be–sτ ) ≤ (1 – α)

∥∥(
A + Be–sτ )∥∥

≤ (1 – α)
(‖A‖ +

∥∥Be–sτ∥∥) ≤ (1 – α)
(‖A‖ + ‖B‖) < 1.

From Lemma (3.2) we further know that N = (I – (1 – α)(A + Be–sτ ))–1 exists, and after
premultiplication of det(�(s)) 
= 0 by N , we have

det
(
sI – α

(
I – (1 – α)

(
A + Be–sτ ))–1(A + Be–sτ )) 
= 0, Re(s) ≥ 0.

Employing the well-known relation

(
I – (1 – α)

(
A + Be–sτ ))–1 = I +

(
I – (1 – α)

(
A + Be–sτ ))–1(1 – α)

(
A + Be–sτ ),

we obtain

det
(
sI – α

(
I – (1 – α)

(
A + Be–sτ ))–1(A + Be–sτ ))

= det
(
sI –

(
α
(
A + Be–sτ ) + α(1 – α)

(
I – (1 – α)

(
A + Be–sτ ))–1(A + Be–sτ )2))

= det
(
sI –

(
α
(
A + Be–sτ ) + α(1 – α)

(
I – (1 – α)

(
A + Be–sτ ))–1

· (A2 + (AB + BA)e–sτ + B2e–2sτ ))) 
= 0, Re(s) ≥ 0, (10)
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which is equivalent to

s 
= λj
(
α
(
A + Be–sτ ) + α(1 – α)

(
I – (1 – α)

(
A + Be–sτ ))–1

· (A2 + (AB + BA)e–sτ + B2e–2sτ )),

Re(s) ≥ 0, j ∈ 1, 2, . . . , n.

Since 0 < α < 1, if we have that

Re
(
λj

((
A + Be–sτ ) + (1 – α)

(
I – (1 – α)

(
A + Be–sτ ))–1

· (A2 + (AB + BA)e–sτ + B2e–2sτ ))) < 0,

then we can prove that det(�(s)) 
= 0 for Re(s) ≥ 0.
In fact, by Lemmas 3.1 and 3.3 and inequality (b) in this theorem we get

Re
(
λj

((
A + Be–sτ ) + (1 – α)

(
I – (1 – α)

(
A + Be–sτ ))–1(A2 + (AB + BA)e–sτ + B2e–2sτ )))

≤ μ
((

A + Be–sτ ) + (1 – α)
(
I – (1 – α)

(
A + Be–sτ ))–1(A2 + (AB + BA)e–sτ + B2e–2sτ ))

≤ μ(A) + μ
(
Be–sτ )

+ (1 – α)
∥∥(

I – (1 – α)
(
A + Be–sτ ))–1(A2 + (AB + BA)e–sτ + B2e–2sτ )∥∥

≤ μ(A) +
√

ρ2(Bu) + ρ2(Bl)

+ (1 – α)
∥∥(

I – (1 – α)
(
A + Be–sτ ))–1∥∥ · ∥∥(

A2 + (AB + BA)e–sτ + B2e–2sτ )∥∥

≤ μ(A) +
√

ρ2(Bu) + ρ2(Bl) + (1 – α)
‖A2‖ + ‖AB + BA‖ + ‖B2‖

1 – (1 – α)(‖A‖ + ‖B‖)
< 0. (11)

Thus the proof is completed. �

Using simple matrix theory, the following corollaries can be easily proved.

Corollary 3.1 System (1) is asymptotically stable if the following inequalities hold:

(a) (1 – α)
(‖A‖ + ‖B‖) < 1;

(b) μ(A) +
√

ρ2(Bu) + ρ2(Bl) + (1 – α)
‖A2‖ + ‖AB‖ + ‖BA‖ + ‖B2‖

1 – (1 – α)(‖A‖ + ‖B‖)
< 0.

(12)

Corollary 3.2 System (1) is asymptotically stable if there exists an invertible matrix P ∈
C

n×n such that the following inequalities hold:

(a) (1 – α)
(‖A‖ + ‖B‖) < 1;

(b) μ
(
P–1AP

)
+

√
ρ2

(
P–1BuP

)
+ ρ2

(
P–1BlP

)

+ (1 – α)
‖P–1‖(‖A2‖ + ‖AB + BA‖ + ‖B2‖)‖P‖

1 – (1 – α)(‖A‖ + ‖B‖)
< 0.

(13)

Corollary 3.2 is better when matrices A, Bu, Bl are similar to diagonal matrices.
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Remark 3.2 Theorem 3.1 means that all eigenvalues of the matrix

(
I – (1 – α)

(
A + Be–sτ ))–1(A + Be–sτ )

are negative. By this way, the LMI

((
I – (1 –α)

(
A + Be–sτ ))–1(A + Be–sτ ))T P + P

((
I – (1 –α)

(
A + Be–sτ ))–1(A + Be–sτ )) < 0,

where P = PT > 0, can be used for analysis of the stability of system (1). It is not easy since
there exists esτ in this LMI, but some work can be done to get some stability conditions.
LMI may also be used by Lyapunov theory, but unfortunately, there do not exist the corre-
sponding theorems for fractional systems described by the Caputo–Fabrizio derivatives.
Next, we discuss this problem for system (1) with input u(t):

CFDαx(t) =
dαx(t)

dtα
= Ax(t) + Bx(t – τ ) + Cu(t), (14)

where u(t) ∈R
m and C ∈R

n×m.

Using the Laplace transform, we have

{
s
(
I – (1 – α)

(
A + Be–sτ )) – α

(
A + Be–sτ )}X(s) = x(0) + s(1 – α)CU(s) + αCU(s), (15)

where U(s) = L(u(t)). If u(t) = Kx(t), then U(s) = L(u(t)) = L(Kx(t)) = KX(s), so that equa-
tion (15) becomes

{
s
(
I – (1 – α)

(
A + Be–sτ + CK

))
– α

(
A + Be–sτ + CK

)}
X(s) = x(0). (16)

The characteristic equation of system (14) is

det
(
�(s)

)
= det

(
s
(
I – (1 – α)

(
A + Be–sτ + CK

))
– α

(
A + Be–sτ + CK

))
= 0.

Using the same method, we can easily obtain following theorems.

Theorem 3.3 System (5) is asymptotically stable if and only if the real parts of roots to the
characteristic equation of system (5) are negative.

Theorem 3.4 System (5) is asymptotically stable if the following inequalities hold:

(a) (1 – α)
(‖A + CK‖ + ‖B‖) < 1;

(b) μ(A + CK) +
√

ρ2(Bu) + ρ2(Bl)

+ (1 – α)
‖(A + CK)2‖ + ‖(A + CK)B + B(A + CK)‖ + ‖B2‖

1 – (1 – α)(‖A + CK‖ + ‖B‖)
< 0.

(17)
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4 Numerical examples
Example 4.1 Consider the stability of the following fractional-order system with time de-
lay:

CFDαx(t) =
dαx(t)

dtα
= Ax(t) + Bx(t – τ ), (18)

where α = 0.960, and

A =

(
–9.1473 2.4510
–2.4510 –9.1473

)
, B =

(
1.0142 –0.2718
0.2718 1.0142

)
.

A Matlab program was written to help us to validate the conditions in Theorem 3.2. By
computing we have

(1 – α)
(‖A‖ + ‖B‖) = 0.4208 < 1,

μ(A) +
√

ρ2(Bu) + ρ2(Bl) + (1 – α)
‖A2‖ + ‖AB + BA‖ + ‖B2‖

1 – (1 – α)(‖A‖ + ‖B‖)
= –0.4544 < 0.

Therefore from Theorem 3.2 we have that the fractional system (18) is asymptotically sta-
ble. In fact, we further get that this system is stable for all α ∈ [0.960, 1).

5 Conclusions
In summary, this paper mainly presents a necessary and sufficient stability condition and
some brief sufficient stability conditions for fractional-order described by the Caputo–
Fabrizio derivative linear system with time delay. The proposed method is quite different
from the other in the literature. Numerical experiments demonstrate that this method is
feasible.
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