
Xu and Xu Advances in Difference Equations         (2019) 2019:75 
https://doi.org/10.1186/s13662-019-2022-7

R E S E A R C H Open Access

A high-order numerical scheme using
orthogonal spline collocation for solving the
two-dimensional fractional
reaction–subdiffusion equation
Xiaoyong Xu1,2 and Da Xu1*

*Correspondence:
daxu@hunnu.edu.cn
1College of Mathematics and
Statistics, Hunan Normal University,
Changsha, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, a high-order numerical scheme is proposed for solving the
two-dimensional fractional reaction–subdiffusion equation. The method is based on
adopting a third-order weighted and shifted Grünwald difference (WSGD) operator to
approximate the time Caputo fractional derivative and applying the orthogonal
spline collocation (OSC) method to approximate the spatial derivative. Stability and
convergence analysis of the proposed method are rigorously proved. Several
numerical examples in one variable and in two space variables are presented to
validate our theoretical analysis.
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1 Introduction
Fractional equations can be used to describe some physical phenomenon more accurately
than the classical integer-order differential equation, one of which fractional reaction–
diffusion equations have been researched in recent years in many areas of science and en-
gineering. A fractional reaction–subdiffusion equation can be derived from a continuous
time random walk model when the transport is dispersive [1] or a continuous time random
walk model with temporal memory and sources [2]. The analytical solutions of such equa-
tions are usually difficult to obtain, so seeking numerical solutions becomes more impor-
tant and emergent. These numerical methods mainly covers compact difference methods
[3–5], finite element methods [6, 7], spectral methods [8, 9], meshless methods [10, 11],
the homotopy analysis method [12], the Legendre operational matrix method [13], and
spline collocation methods [14–16].

Although there are many studies on numerical methods for one-dimensional frac-
tional partial differential equations, there are few studies on numerical methods for two-
dimensional time fractional differential equations, when compared with one-dimensional
problems. Huang [17] proposed a numerical algorithm for a two-dimensional fractional
reaction subdiffusion equation with τ 1+γ order in time and second order in space. Yu [18]
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considered a numerical method for the two-dimensional non-linear fractional reaction–
subdiffusion equation, which is of second-order temporal accuracy and fourth-order
spatial accuracy. In [19], Yang developed novel numerical techniques for the solution
of the two-dimensional fractional sub-diffusion equation, which is based on the or-
thogonal spline collocation method in space and a finite difference method (FDM) in
time. Ömer et al. [20] established a wavelet method, based on Haar wavelets and a fi-
nite difference scheme for the two-dimensional time fractional reaction–subdiffusion
equation. Li [21] proposed a numerical treatment for two-dimensional fractional sub-
diffusion equations using the parametric quintic spline. In [22], Dehghan used the dual
reciprocity boundary elements method for the numerical solution of two-dimensional
linear and nonlinear time-fractional modified anomalous subdiffusion equations and
time-fractional convection-diffusion equation. Bhrawy and Zaky applied spectral tau and
collocation methods for different kinds of fractional partial differential equations in the
multi-dimensional case [23–27].

In this study, we consider the following two-dimensional time fractional reaction–
subdiffusion equation:

C
0 Dα

t u(x, y, t) = Kα�u(x, y, t) – Cαu(x, y, t) + f (x, y, t), (x, y, t) ∈ Ω × (0, T] (1.1)

subject to the initial condition

u(x, y, 0) = φ(x, y), (x, y) ∈ Ω , (1.2)

and the boundary condition

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × (0, T], (1.3)

where � is Laplace operator, Ω = [0, 1] × [0, 1] with boundary ∂Ω , Kα > 0 is diffusion
coefficient, Cα > 0 is the constant reaction rate, and C

0 Dα
t denotes the Caputo derivative of

order α (0 < α < 1), which reads as follows:

C
0 Dα

t u(x, y, t) =
1

Γ (1 – α)

∫ t

0

∂u(x, y, s)
∂s

(t – s)–α ds,

in which Γ (·) is the Gamma function.
Recently, Tian et al. [28] proposed second- and third-order approximations for the

Riemann–Liouville fractional derivative with order α (0 < α < 1) by using the weighted
and shifted Grünwald difference (WSGD) operators. Thereafter, some related discussion
problems covering the WSGD idea were addressed by many scholars. Following the idea of
the WSGD operator, Wang and Vong [29] used compact finite difference schemes for the
modified time sub-diffusion equation with Riemann–Liouville fractional derivative and
the temporal Caputo fractional diffusion-wave equation. Ji and Sun [30] applied a third-
order approximation for the Caputo fractional derivative and used compact difference
scheme to solve fractional sub-diffusion equation. In [31], Liu et al. developed a high-
order local discontinuous Galerkin method combined with WSGD approximation for a
Caputo time-fractional sub-diffusion equation. In [32], a temporal second-order fully dis-
crete two-grid finite element (FE) scheme is presented to solve nonlinear fractional Ca-
ble equation, in which the spatial direction is approximated by two-grid FE method and
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the integer and fractional derivatives in time are discretized by second-order two-step
backward difference method and second-order WSGD operator. In [33], Yang discussed a
new numerical approximation for the two-dimensional distributed-order time fractional
reaction–diffusion equation, which combines the idea of a WSGD operator with the sec-
ond order in time direction and the orthogonal spline collocation method in the space
direction.

The orthogonal spline collocation (OSC) method has developed into a robust and valu-
able technique for solving many kinds of partial differential equations [34–38]. The pop-
ularity of OSC is due to its simple concept, wide applicability and easy implementation.
Comparing with the finite difference method [39] and the Galerkin finite method [40],
the OSC method has the following advantages: the calculation of the coefficients in the
equation determining the approximate solution is fast since there is no need to calculate
the integrals; and it provides approximations to the solution and spatial derivatives. More-
over, the OSC method always leads to the almost block diagonal linear system, which can
be solved by the software packages efficiently [41]. Another feature of the OSC method
lies in its super-convergence [42].

Inspired and motivated by the work mentioned above, the main purpose of this paper is
to propose a high-order OSC approximation method combined with a third-order WSGD
operator to solve a two-dimensional fractional reaction–subdiffusion equation, abbrevi-
ated WSGD-OSC in forthcoming sections.

The rest of the paper is organized as follows. In Sect. 2, we introduce some notations and
preliminaries. In Sect. 3, the fully discrete scheme combined with a WSGD operator with
third order and an orthogonal spline collocation scheme is constructed. Stability and con-
vergence analyses of the WSGD-OSC scheme are presented in Sect. 4. Section 5 presents
detailed description of the WSGD-OSC scheme. In Sect. 6, numerical experiments are
carried out to confirm the convergence analysis. Finally, the conclusion is drawn in Sect. 7.

2 Preliminaries
In this section, we will introduce some notations and basic lemmas. For some positive
integers Nx and Ny, πx and πy are two uniform partitions of I = [0, 1] which are defined as
follows:

πx : 0 = x0 < x1 < · · · < xNx = 1, πy : 0 = y0 < y1 < · · · < yNy = 1,

and hx
i = xi – xi–1, Ix

i = (xi–1, xi), 1 ≤ i ≤ Nx, and hy
j = yj – yj–1, Iy

j = (yj–1, yj), 1 ≤ j ≤ Ny,
h = max(max1≤i≤Nx hx

i , max1≤j≤Ny hy
j ). Let Mr(πx) and Mr(πy) be the space of piecewise

polynomials of degree at most r ≥ 3, defined by

Mr(πx) =
{

v ∈ C1[0, 1] : v|Ix
i
∈ Pr , 1 ≤ i ≤ Nx, v(0) = v(1) = 0

}
,

Mr(πy) =
{

v ∈ C1[0, 1] : v|Iy
j
∈ Pr , 1 ≤ j ≤ Ny, v(0) = v(1) = 0

}
,

where Pr denotes the set of polynomial of degree at most r. It is easy to know that the
dimension of the spaces Mx(πx) and My(πy) are (r – 1)Nx := Mx and (r – 1)Ny := My, re-
spectively.

Let π = πx ⊗ πy be a quasi-uniform partition of Ω , and Mr(π ) = Mr(πx) ⊗ Mr(πy) with
the dimension of Mx × My. Let {λj}r–1

j=1 denote the nodes for the {r – 1}-point Gaussian
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quadrature rule on the interval I with corresponding weights {ωj}r–1
j=1 . Denote by

Gx =
{
ξ x

i,l
}Nx ,r–1

i,l=1 and Gy =
{
ξ

y
j,m
}Ny ,r–1

j,m=1

the sets of Gauss points in x and y direction, respectively, where

ξ x
i,l = xi–1 + hx

i λl, ξ
y
j,m = yj–1 + hy

j λm, 1 ≤ l, m ≤ r – 1.

Let G = {ξ = (ξ x, ξ y) : ξ x ∈ Gx, ξy ∈ Gy}. For the functions u and v defined on G , the inner
product 〈u, v〉 and norm ‖v‖Mr are, respectively, defined by

〈u, v〉 =
Nx∑
i=1

Ny∑
j=1

hx
i hy

j

r–1∑
l=1

r–1∑
m=1

ωlωm(uv)(ξi,l, ξj,m), ‖v‖Mr = 〈v, v〉 1
2 .

For m a nonnegative integer, let Hm(Ω) denote the usual Sobolev space with norm

‖v‖Hm =

( m∑
l=0

∑
i+j=l

∥∥∥∥ ∂ i+jv
∂xi∂yj

∥∥∥∥
2
) 1

2

,

where the norm ‖v‖ denotes the usual L2 norm, sometimes it is written as ‖v‖H0 for con-
venience. The following important lemmas are required in our forthcoming analysis. First,
we introduce the differentiable (resp. twice differentiable) map W : [0, T] → Mr(π ) by

�(u – W ) = 0 on G × [0, T], (2.1)

where u is the solution of Eqs. (1.1)–(1.3). Then we have the following estimates for u – W
and its time derivatives.

Lemma 2.1 ([34]) If ∂ lu/∂tl ∈ Hr+3–j, for all t ∈ [0, T], l = 0, 1, 2, j = 0, 1, 2, and W is defined
by (2.1), then there exists a constant C such that

∥∥∥∥∂ l(u – W )
∂tl

∥∥∥∥
Hj

≤ Chr+1–j
∥∥∥∥∂ lu

∂tl

∥∥∥∥
Hr+3–j

. (2.2)

Lemma 2.2 ([34]) If ∂ iu/∂ti ∈ Hr+3, for t ∈ [0, T], i = 0, 1, then

∥∥∥∥∂ l+i(u – W )
∂xl1∂yl2∂ti

∥∥∥∥
Mr

≤ Chr+1–l
∥∥∥∥∂ iu

∂ti

∥∥∥∥
Hr+3

, (2.3)

where 0 ≤ l = l1 + l2 ≤ 4.

Lemma 2.3 ([43]) If u, v ∈ M(r, s, δ), then

〈–�u, v〉 = 〈u, –�v〉, (2.4)

and there exists a positive constant C such that

〈–�u, u〉 ≥ C‖∇u‖2 ≥ 0. (2.5)
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Lemma 2.4 ([44]) The norms ‖ · ‖Mr and ‖ · ‖ are equivalent on Mr(π ).

Throughout the paper, we denote C > 0 a constant which is independent of space–time
mesh sizes h and τ . It is not necessarily the same on each occurrence. Besides, the following
Young inequality will be used repeatedly:

de ≤ εd2 +
1

4ε
e2, d, e ∈R, ε > 0. (2.6)

3 Construction of the fully discrete orthogonal spline collocation scheme
For the analysis, we need to introduce the Riemann–Liouville fractional derivative and
Liouville fractional derivative of order α(0 < α < 1) for a function u(t), which are defined
by

RL
0 Dα

t u(t) =
1

Γ (1 – α)
d
dt

∫ t

0

u(τ )
(t – τ )α

dτ (3.1)

and

–∞Dα
t u(t) =

1
Γ (1 – α)

d
dt

∫ t

–∞
u(τ )

(t – τ )α
dτ . (3.2)

Lemma 3.1 ([30]) If f ∈ C(2+m)(R), then f ∈ Lα+m(R), for any α ∈ (0, 1), where the space is
defined as Lα+m(R) = {f | ∫∞

–∞(1 +‖ω‖)α+m‖f̂ (ω)‖dω < +∞, f̂ is the Fourier transform of f }.

Lemma 3.2 ([45]) For any f ∈ L1(R) ∩ Lα+1(R), we define the shifted Grünwald difference
operator

A(α)
τ ,pf (t) =

1
τα

∞∑
k=0

g(α)
k f
(
t – (k – p)τ

)
, (3.3)

where p is a non-positive and g(α)
k = (–1)k(α

k
)
zk = Γ (k–α)

Γ (–α)Γ (k+1) . Then

A(α)
τ ,pf (t) = –∞Dα

t f (t) + O(τ ). (3.4)

Lemma 3.3 ([28]) Let f (t), –∞Dα+3
t f (t) and its Fourier transform f̂ belong to L1(R). Define

the weighted and shifted Grünwald difference operator by

Dα
τ f (t) = ρ1A(α)

τ ,pf (t) + ρ2A(α)
τ ,qf (t) + ρ3A(α)

τ ,r f (t), (3.5)

where

ρ1 =
12qr – (6q + 6r + 1)α + 3α2

12(qr – pq – pr + p2)
, ρ2 =

12qr – (6q + 6r + 1)α + 3α2

12(pr – pq – qr + q2)
,

ρ3 =
12qq – (6p + 6q + 1)α + 3α2

12(pq – pr – pqr + r2)
,

and p, q and r are all integers. Then we have

Dα
τ f (t) = –∞Dα

t f (t) + O
(
τ 3)
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uniformly for t ∈R as τ → 0. We consider the case p > q > r and choose (p, q, r) = (0, –1 – 2),
and we obtain

ρ1 =
24 + 17α + 3α2

24
, ρ2 = –

11α + 3α2

12
, ρ3 = –

5α + 3α2

24
.

Fixing x, y and defining u(x, y, t) = f (t), f (t) = 0(t < 0) and noticing that if f (0) = 0, according
to the relationship between the Caputo derivative and the Riemann–Liouville fractional
derivative, we have

C
0 Dα

t u(x, y, tn) = RL
0 Dα

t u(x, y, tn) –
u(x, y, 0)
Γ (1 – α)

t–α
n

= τ–α

[
ρ1

n∑
k=0

g(α)
k u(x, y, tn–k) + ρ2

n–1∑
k=0

g(α)
k u(x, y, tn–k–1)

+ ρ3

n–2∑
k=0

g(α)
k u(x, y, tn–k–2)

]
+ O

(
τ 3)

= τ–α

n∑
k=0

q(α)
k u(x, y, tn–k) + O

(
τ 3), (3.6)

where

⎧⎪⎪⎨
⎪⎪⎩

q(α)
0 = ρ1gα

0 ,

q(α)
1 = ρ1gα

1 + ρ2gα
0 ,

q(α)
k = ρ1gα

k + ρ2gα
k–1 + ρ3gα

k–2, k ≥ 2.

(3.7)

Let tk = kτ , k = 0, 1, . . . , K , where τ = T/K is the time step size. We consider discrete-
time OSC schemes for solving Eqs. (1.1)–(1.3). The continuous-time OSC scheme to the
solution u of (1.1) is a differentiable map uh : (0, T] → Mr(π ) such that

C
0 Dα

τ uh
(
ξ x

i,k , ξ y
j,l, t
)

= Kα�uh
(
ξ x

i,k , ξ y
j,l, t
)

– Cαuh
(
ξ x

i,k , ξ y
j,l, t
)

+ fh
(
ξ x

i,k , ξ y
j,l, t
)
,
(
ξ x

i,k , ξ y
j,l, t
) ∈ Ω × (0, T], (3.8)

where fh(·, ·, t) ∈ Mr(π ) satisfies 〈fh, v〉 = 〈f , v〉, ∀v ∈ Mr(π ). To apply the weighted and
shifted Grünwald difference operator to approximate C

0 Dα
t u(x, y, t), without loss of gener-

ality we assume u(x, y, 0) = 0, otherwise, we may consider a transform u(x, y, 0) = u(x, y, 0)–
ϕ(x, y), then C

0 Dα
t u(x, y, t) = RL

0 Dα
t u(x, y, t). According to Theorem 1 in [28], we can obtain

the following estimate of the truncation error.

Lemma 3.4 Suppose ∀α > 0, and RL
0 Dα+3

t u ∈ L(R). We have

∣∣∣∣∣RL
0 Dα

t u(tn) – τ–α

n∑
k=0

q(α)
k u(tn–k)

∣∣∣∣∣≤ Cτ 3∥∥F [RL
0 Dα+3

t u
]
(ω)
∥∥

L1 , (3.9)

where F denotes the Fourier transform symbol.
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For the sake of convenience, we use the symbol Dα
τ u(tn) = τ–α

∑n
k=0 q(α)

k u(x, y, tn–k) and
omit the dependence of un(ξ x

i,k , ξ y
j,l) on (ξ x

i,k , ξ y
j,l) in the next equations. By virtue of (3.5) and

(3.6), the full-discrete WSGD-OSC scheme for (1.1) consists in finding {un
h}K

n=0 ⊂ Mr(π )
such that

Dα
τ un

h – Kα�un
h + Cαun

h = f n
h , n = 0, 1, . . . , K . (3.10)

4 Stability and convergence analysis of the WSGD-OSC scheme
In this section, we will give the stability and convergence analysis for fully discrete WSGD-
OSC scheme (3.10). To this end, we further need the following lemma.

Lemma 4.1 ([30]) Let {q(α)
k }∞k=0 de defined in (3.7). If α ∈ (0,α∗], then, for any positive in-

teger N and real vector (v0, v1, . . . , vN ) ∈ RN+1, we have

N∑
n=0

( n∑
k=0

q(α)
k vn–k

)
vn ≥ 0,

where α∗ = 0.9569347.

Theorem 4.1 The fully discrete WSGD-OSC scheme (3.10) is unconditionally stable for
sufficiently small τ > 0; we have

Cατ

m∑
n=0

∥∥un
h
∥∥2

Mr
≤ τ

Cα

N∑
n=0

∥∥f n
h
∥∥2

Mr
, 1 ≤ m ≤ K . (4.1)

Proof By using the WSGD operator and making an inner product of (3.10) with un
h , we

obtain

τ–α

〈 n∑
k=0

q(α)
k un–k

h , un
h

〉
– Kα

〈
�un

h, un
h
〉
+ Cα

〈
un

h, un
h
〉

=
〈
f n
h , un

h
〉
, n = 1, 2, . . . , K . (4.2)

Note that, from Lemma 2.3, for v ∈ Mr(π ), there exists a positive constant c such that

〈–�v, v〉 ≥ c‖�v‖2 ≥ 0. (4.3)

Taking (3.10) with v = un
h to the second term on the left hand side (LHS) of (4.2), we have

–Kα

〈
�un

h, un
h
〉≥ 0. (4.4)

Summing Eq. (4.2) from n = 0 to n = m (0 ≤ m ≤ K ), and then multiplying the resulting
equation by 2τ , we obtain

2τ 1–α

N∑
n=0

〈 n∑
k=0

qk
αun–k

h , un
h

〉
– 2Kατ

N∑
n=0

〈
�un

h, un
h
〉
+ 2Cατ

N∑
n=0

〈
un

h, un
h
〉

= 2τ

N∑
n=0

〈
f n
h , un

h
〉
. (4.5)
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Taking advantage of the Cauchy–Schwarz inequality to the right hand side (RHS) of (4.5),
also using (4.4) and Lemma 4.1, then dropping the first two terms on the LHS of (4.5), we
obtain

2Cατ

m∑
n=0

∥∥un
h
∥∥2

Mr
≤ τ

Cα

m∑
n=0

∥∥f n
h
∥∥2

Mr
+ Cατ

m∑
n=0

∥∥un
h
∥∥2

Mr
, 1 ≤ m ≤ K , (4.6)

by moving Cατ
∑m

n=0 ‖un
h‖2

Mr to the LHS and combining them, we obtain

Cατ

m∑
n=0

∥∥un
h
∥∥2

Mr
≤ τ

Cα

N∑
n=0

∥∥f n
h
∥∥2

Mr
, 1 ≤ m ≤ K . �

We get as a result Theorem 4.1.

Theorem 4.2 Suppose u is the exact solution of (1.1)–(1.3), and un
h(0 ≤ n ≤ K) is the solu-

tion of the problem (3.10) with u0
h = W 0. If the hypotheses of Lemma 3.4 are satisfied and if

u, RL
0 Dα

t u ∈ L∞(Hr+3), then there exists a positive constant C, independent of h and τ such
that

Cα

4
τ

N∑
n=1

∥∥u(tn) – un
h
∥∥2 ≤ CTh2r+2[‖u‖2

Hr+3 +
∥∥RL

0 Dα
t u
∥∥2

Hr+3
]

+ CuTτ 6∥∥F [RL
0 Dα+3

t u
]
(ω)
∥∥2

L1(H0), 0 ≤ N ≤ K . (4.7)

Proof With W defined in (2.1), we set

ηn = un – W n, ζ n = un
h – W n, 0 ≤ n ≤ K , (4.8)

thus we have

un – un
h = ηn – ζ n. (4.9)

Because the estimate of ηn are provided by Lemma 2.1 and 2.2, it is sufficient to bound
ζ n, then we use the triangle inequality to bound un – un

h . Firstly, from (1.1), (2.1), (3.8) and
(4.9), then v ∈ Mr(π ), we obtain

〈C
0 Dα

τ ζ n, v
〉
– Kα

〈
�ζ n, v

〉
+ Cα

〈
ζ n, v

〉
=
〈C
0 Dα

τ ηn, v
〉
+ Cα

〈
ηn, v

〉

+
〈
Rn, v

〉
, 0 ≤ n ≤ K , (4.10)

by using Lemma 3.4

∣∣Rn∣∣≤ cu‖F
[RL

0 Dα+3
t u

]
(ω)‖L1τ 3. (4.11)

Taking v = ζ n in (4.10), we have

τ–α

〈 n∑
k=0

qk
αζ n–k , ζ n

〉
– Kα

〈
�ζ n, ζ n〉 + Cα

∥∥ζ n∥∥2
Mr

=
〈C
0 Dα

t ηn, ζ n〉 + Cα

〈
ηn, ζ n〉 + 〈Rn, ζ n〉, 0 ≤ n ≤ K , (4.12)
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using Lemma 2.2 and the Young inequality, the second term in the RHS of (4.12) can be
bounded as

Cα

〈
ηn, ζ n〉≤ Cα

∥∥ηn∥∥
Mr

· ∥∥ζ n∥∥
Mr

≤ CαCh2r+2‖u‖2
Hr+3 +

Cα

4
∥∥ζ n∥∥2

Mr
. (4.13)

Applying the Young inequality and (4.11), the last term in (4.12) can be estimated as

〈
Rn, ζ n〉≤ 1

Cα

∥∥Rn∥∥2 +
Cα

4
∥∥ζ n∥∥2

Mr

≤ 1
Cα

Cuτ
6‖F [RL

0 Dα+3
t u

]
(ω)‖2

L1(H0) +
Cα

4
‖ζ n‖2

Mr . (4.14)

Finally, in order to estimate the first term on the RHS of (4.12), we first define a new elliptic
projection W̃ of the exact solution u by W̃ : [0, T] → Mr(π ) by

�RL
0 Dα

t u – �W̃ = 0 on G × [0, T], (4.15)

then, from Theorem 3.4 in [46], it follows that

∥∥RL
0 Dα

t u – W̃
∥∥≤ Chr+1∥∥RL

0 Dα
t u
∥∥

Hr+3 , (4.16)

by introducing ρ defined by

–�ρ = RL
0 Dα

t W – W̃ , in Ω × [0, T],

ρ = 0, on ∂Ω × [0, T].

According to the proof of Lemma 3.5 in [34], and a straightforward modification of the
argument given in the proof of Theorem 2.1 of [47], we can obtain

∥∥RL
0 Dα

t W – W̃
∥∥≤ Chr+1(∥∥RL

0 Dα
t u
∥∥

Hr+2 + ‖u‖Hr+2
)
, (4.17)

using the triangle inequality and combining (4.16) and (4.17), we can obtain

∥∥RL
0 Dα

t u – RL
0 Dα

t W
∥∥≤ Chr+1(∥∥RL

0 Dα
t u
∥∥

Hr+3 + ‖u‖Hr+2
)
. (4.18)

Since Dα
τ ηn = RL

0 Dα
t ηn + O(τ 3), using (4.18), it gives

〈
Dα

τ ηn, ζ n〉
≤ ∥∥Dα

τ ηn∥∥
Mr

· ∥∥ζ n∥∥
Mr

≤ 1
Cα

∥∥Dα
τ ηn∥∥2

Mr
+

Cα

4
∥∥ζ n∥∥2

Mr

≤ 1
Cα

∥∥RL
0 Dα

t ηn + O
(
τ 3)∥∥2

Mr
+

Cα

4
∥∥ζ n∥∥2

Mr

≤ 1
Cα

∥∥RL
0 Dα

t un – RL
0 Dα

t W n∥∥2
Mr

+ Cuτ
6 +

Cα

4
∥∥ζ n∥∥2

Mr

≤ 1
Cα

Ch2r+2(∥∥RL
0 Dα

t u
∥∥2

Hr+3 + ‖u‖2
Hr+2

)
+ Cuτ

6 +
Cα

4
∥∥ζ n∥∥2

Mr
. (4.19)
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Substituting (4.13)–(4.14) and (4.19) in (4.12), then summing (4.12) from n = 0 to n =
m(1 ≤ m ≤ K), and using Lemma 2.3 and Lemma 4.1, we obtain

Cα

4
τ

m∑
n=1

∥∥ζ n∥∥2
Mr

≤
(

Cα +
1

Cα

)
Ch2r+2τ

m∑
n=1

(‖u‖2
Hr+3 +

∥∥RL
0 Dα

t u
∥∥2

Hr+3
)

+
1

Cα

Cuτ

m∑
n=1

τ 6‖F [RL
0 Dα+3

t u
]
(ω)‖2

L1(H0). (4.20)

Therefore, using the triangle inequality and Lemmas 2.1–2.2 and 2.4, (4.20) then yields
the desired result. �

5 Description of the WSGD-OSC scheme
It can be seen from the fully discrete scheme (3.10) that we need to solve a partial differ-
ential equation with two variables at each time level, that is,

τ–α

n∑
k=0

q(α)
k un–k

h – Kα�un
h + Cαun

h = f n
h , n = 1, . . . , K . (5.1)

We denote α0 = τα

q(α)
0

, β0 = –1
q(α)

0
, then the above equation can be rewritten as

(1 + Cαα0)un
h – Kαα0�un

h = β0

n∑
k=1

q(α)
k un–k

h + α0f n
h , n = 1, . . . , K . (5.2)

For implementing the numerical schemes, we usually first represent un
h by the base func-

tions of Mr(π ), then solve the coefficients of the representation formula. More concretely,
letting

Mr(πx) = span{Φ1,Φ2, . . . ,ΦMx–1,ΦMx}, Mr(πy) = span{Ψ1,Ψ2, . . . ,ΨMy–1,ΨMy},

then

un
h(x, y) =

My∑
j=1

Mx∑
i=1

ûn
i,jΦi(x)Ψj(y),

where {ûn
i,j}Mx ,My

i,j=1 are unknown coefficients to be determined. Setting

û =
[
ûn

1,1, ûn
1,2, . . . , ûn

1,My , ûn
2,1, ûn

2,2, . . . , ûn
Mx ,My

]T

then Eq. (5.1) can be represented in the form of matrix tensor product (Kronecker prod-
uct)

{
(1 + Cαα0)

(
Bx ⊗ By) + Kαα0

(
Ax ⊗ By + Bx ⊗ Ay)}ûn

=
(
Bx ⊗ By) n∑

k=1

q(α)
k ûn–k + α0Fn, (5.3)
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where

Ax =
(
ax

i,j
)Mx

i,j=1, ax
i,j = –Φ ′′

j
(
ξ x

i
)
, Bx =

(
bx

i,j
)Mx

i,j=1, bx
i,j = Φj

(
ξ x

i
)
,

Ay =
(
ay

i,j
)My

i,j=1, ay
i,j = –Ψ ′′

j
(
ξ

y
i
)
, By =

(
by

i,j
)My

i,j=1, by
i,j = Ψj

(
ξ

y
i
)
,

(5.4)

and

Fn =
[
f n(ξ x

1 , ξ y
1
)
, f n(ξ x

1 , ξ y
2
)
, . . . , f n(ξ x

1 , ξ y
My

)
, f n(ξ x

2 , ξ y
1
)
, . . . , f n(ξ x

Mx , ξ y
My

)]T . (5.5)

The matrix Ax, Bx, Ay and By are Mx × My matrices with the sparse structure,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × ×
× × ×

× × × ×
× × × ×

. . . . . . . . . . . .
× × ×
× × ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.6)

We implement the WSGD-OSC scheme in the piecewise Hermite cubic spline space
M3(π ).

It is very natural that we choose cubic Hermite polynomials for satisfying the zero
boundary condition. In detail, we choose the basis of cubic Hermite polynomial, namely,
for 1 ≤ i ≤ N – 1, it follows that

φi(x) =

⎧⎪⎪⎨
⎪⎪⎩

–2(x–xi–1)3

h3 + 3(x–xi–1)3

h2 , xi–1 ≤ x ≤ xi,
–2(x–xi+1)3

h3 + 3(x–xi+1)3

h2 , xi ≤ x ≤ xi+1,

0, x < xi–1 or x > xi+1,

(5.7)

and

ψi(x) =

⎧⎪⎪⎨
⎪⎪⎩

(x–xi–1)2(x–xi)
h2 , xi–1 ≤ x ≤ xi,

(x–xi)(x–xi+1)2

h2 , xi ≤ x ≤ xi+1,

0, x < xi–1 or x > xi+1.

(5.8)

Note that functions φi(x), ψi(x) satisfy the zero boundary conditions φi(0) = φi(1) = ψi(0) =
ψi(1) = 0. Renumber the basis functions; let

{ψ0,φ1,ψ1,φ2, . . . ,φN–1,ψN–1,ψN } = {Φ1,Φ2,Φ3, . . . ,Φ2N },

then

Mr(πx) = span{Φ1,Φ2,Φ3, . . . ,Φ2N }, Mr(πy) = span{Φ1,Φ2,Φ3, . . . ,Φ2N }.

In order to construct the coefficient matrix of Eqs. (5.3), we need to calculate the values of
the basis function at the Gauss point and their second derivatives. Through a calculation,
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we find the formula for the values of the basis function at the Gauss point and the second
derivatives. They are defined as follows:

H1(uj) = (1 + 2uj)(1 – uj)2, H2(uj) = uj(1 – uj)2hk ,

H3(uj) = u2
j (3 – 2uj), H4(uj) = u2

j (uj – 1)hk ,

I1(uj) = (12uj – 6)/h2
k , I2(uj) = (6uj – 4)/hk ,

I3(uj) = (6 – 12uj)/h2
k , I4(uj) = (6uj – 2)/hk ,

(5.9)

where u1 = (3 –
√

3)/6, u2 = (3 +
√

3)/6. With the above descriptions on the basis function,
we give an example of the matrix Bx and Ax in the case of Nm = 5 and hk = 1/Nm. We
have

Bx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H2(u1) H3(u1) H4(u1) 0 0 0 0 0 0 0
H2(u2) H3(u2) H4(u2) 0 0 0 0 0 0 0

0 H1(u1) H2(u1) H3(u1) H4(u1) 0 0 0 0 0
0 H1(u2) H2(u2) H3(u2) H4(u2) 0 0 0 0 0
0 0 0 H1(u1) H2(u1) H3(u1) H4(u1) 0 0 0
0 0 0 H1(u2) H2(u2) H3(u2) H4(u2) 0 0 0
0 0 0 0 0 H1(u1) H2(u1) H3(u1) H4(u1) 0
0 0 0 0 0 H1(u2) H2(u2) H3(u2) H4(u2) 0
0 0 0 0 0 0 0 H1(u1) H2(u1) H4(u1)
0 0 0 0 0 0 0 H1(u2) H2(u2) H4(u2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5.10)

Ax =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2(u1) I3(u1) I4(u1) 0 0 0 0 0 0 0
I2(u2) I3(u2) I4(u2) 0 0 0 0 0 0 0

0 I1(u1) I2(u1) I3(u1) I4(u1) 0 0 0 0 0
0 I1(u2) I2(u2) I3(u2) I4(u2) 0 0 0 0 0
0 0 0 I1(u1) I2(u1) I3(u1) I4(u1) 0 0 0
0 0 0 I1(u2) I2(u2) I3(u2) I4(u2) 0 0 0
0 0 0 0 0 I1(u1) I2(u1) I3(u1) I4(u1) 0
0 0 0 0 0 I1(u2) I2(u2) I3(u2) I4(u2) 0
0 0 0 0 0 0 0 I1(u1) I2(u1) I4(u1)
0 0 0 0 0 0 0 I1(u2) I2(u2) I4(u2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.11)

It is well known from the tensor product calculation results that the WSGD-OSC
scheme requires the solution of an almost block diagonal linear system at each time step.
This system can be solved efficiently using the software package COLROW [41].

6 Numerical experiments
In this section, several numerical examples are given to illustrate our theoretical analysis.
In our implementations, we adopt the space of piecewise Hermite cubic with the standard
value and scaled slope basis functions [48] on uniform partitions of I in both the x and
y directions with Nx = Ny = N . The forcing term f (x, y, t) is approximated by the piece-
wise Hermite interpolant projection in the Gauss collocation point. In order to check the
accuracy of the proposed method, we present the L∞ and L2 errors at T = 1 and the cor-
responding rates of convergence defined by

Convergence rate ≈ log(em/em+1)
log(hm/hm+1)

,
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Table 1 The L∞ , L2 errors and temporal convergence orders with h = 1/1000 for Example 1

α τ L∞ error Convergence order L2 error Convergence order

0.1 1
10 6.1855e–007 4.2944e–007
1
20 7.6955e–008 3.0068 5.3427e–008 3.0068
1
40 9.5964e–009 3.0034 6.6625e–009 3.0034
1
80 1.2013e–009 2.9979 8.3402e–010 2.9979

0.3 1
10 1.8656e–006 1.2958e–006
1
20 2.2978e–007 3.0213 1.5960e–007 3.0213
1
40 2.8517e–008 3.0104 1.9807e–008 3.0104
1
80 3.5512e–009 3.0054 2.4666e–009 3.0054

0.5 1
10 2.8278e–006 1.9657e–006
1
20 3.4372e–007 3.0404 2.3893e–007 3.0404
1
40 4.2395e–008 3.0193 2.9470e–008 3.0193
1
80 5.2617e–009 3.0103 3.6576e–009 3.0103

0.7 1
10 2.9898e–006 2.0810e–006
1
20 3.5699e–007 3.0661 2.4846e–007 3.0662
1
40 4.3664e–008 3.0314 3.0389e–008 3.0314
1
80 5.4024e–009 3.0148 3.7599e–009 3.0148

0.9 1
10 1.6262e–006 1.1342e–006
1
20 1.8607e–007 3.1276 1.2972e–007 3.1282
1
40 1.8607e–007 3.1276 1.2972e–007 3.1282
1
80 2.7640e–009 3.0228 1.9267e–009 3.0229

0.98 1
10 5.1376e–007 3.5984e–007
1
20 4.4162e–008 3.5402 3.0819e–008 3.5455
1
40 5.2578e–009 3.0703 3.6683e–009 3.0706
1
80 6.4300e–010 3.0316 4.4857e–010 3.0317

where h = 1/Nm is the time step size with N = Nm, and em is the norm of the corresponding
error.

Example 1 As the first example, we consider the following one-dimensional fractional
reaction–subdiffusion equation:

c
0Dα

t u(x, t) =
∂2u(x, t)

∂x2 – u(x, t) + f (x, t), 0 < x < 1, 0 < t ≤ 1,

u(x, 0) = 0, 0 ≤ x ≤ 1, (6.1)

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 1,

where f (x, t) = ( Γ (4)
Γ (4–α) t3–α + t3)x2(1 – x)2ex – t3ex(2 – 8x + x2 + 6x3 + x4). The analytical

solution of this equation is u(x, t) = t3x2(1 – x)2ex.

Firstly, we take the fixed space h = 1/1000, which is sufficiently small for the error to be
dominated by the time discretization of the method. Table 1 presents the L∞ and L2 errors
and the corresponding convergence orders of the WSGD-OSC scheme for α ∈ (0, 1). We
observe that our scheme generates the temporal accuracy with the order 3. Table 2 shows
that our scheme has the accuracy of 4 in spatial direction, where the temporal step size
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Table 2 The L∞ , L2 errors and spatial convergence orders with τ = 1/1000 for Example 1

α h L∞ error Convergence order L2 error Convergence order

0.1 1
10 3.4339e–006 2.5064e–006
1
20 2.1541e–007 3.9947 1.5705e–007 3.9963
1
40 1.3497e–008 3.9964 9.8209e–009 3.9992
1
80 8.4315e–010 4.0007 6.1352e–010 4.0007

0.3 1
10 3.1758e–006 2.3248e–006
1
20 1.9975e–007 3.9909 1.4568e–007 3.9962
1
40 1.2499e–008 3.9983 9.1095e–009 3.9993
1
80 7.7988e–010 4.0024 5.6827e–010 4.0027

0.5 1
10 2.8749e–006 2.1134e–006
1
20 1.8151e–007 3.9854 1.3245e–007 3.9960
1
40 1.1350e–008 3.9993 8.2822e–009 3.9993
1
80 7.0704e–010 4.0048 5.1598e–010 4.0046

0.7 1
10 2.5405e–006 1.8696e–006
1
20 1.6044e–007 3.9850 1.172e–007 3.9957
1
40 1.0032e–008 3.9994 7.3288e–009 3.9993
1
80 6.2455e–010 4.0056 4.5634e–010 4.0054

0.9 1
10 2.1719e–006 1.5897e–006
1
20 1.3618e–007 3.9954 9.9689e–008 3.9952
1
40 8.5366e–009 3.9957 6.2348e–009 3.9990
1
80 5.3234e–010 4.0032 3.8885e–010 4.0031

0.98 1
10 2.0086e–006 1.4663e–006
1
20 1.2597e–007 3.9950 9.1972e–008 3.9948
1
40 7.8801e–009 3.9987 5.7531e–009 3.9988
1
80 4.9259e–010 3.9998 3.5943e–010 4.0006

Figure 1 Numerical solution (a) and global error (b) for Example 1 with α = 0.5, h = 1/32, τ = 1/32

τ = 1/1000 is fixed. The numerical solution and the global error for α = 0.5, h = 1/32,
τ = 1/32 are shown in Fig. 1.

We take Problem 1 as an example to test the effectiveness of the proposed the proposed
method for larger final time; the exact solution and the numerical solution are plotted
using h = 1/100, τ = 1/100 in Fig. 2 when α = 0.5, T = 10, 50, 100. The corresponding ab-
solute errors are also plotted in Fig. 2. It is clear from Fig. 2 that the numerical solution
is highly consistent with the exact solution, which indicates that the proposed method is
very effective.
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Figure 2 The exact solution and numerical solution at different time (T = 10, 50, 100) with α = 0.5, h = 1/100,
τ = 1/100 and corresponding error for Example 1. Dotted line: numerical solution, solid line: exact solution

Example 2 Consider the following two-dimensional fractional reaction–subdiffusion
equation:

c
0Dα

t u(x, y, t) – �u(x, y, t) + u(x, y, t) = f (x, y, t),

u(x, y, 0) = 0, (x, y) ∈ Ω , (6.2)

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × (0, T],

where Ω = [0, 1]× [0, 1], T = 1, f (x, y, t) = [ Γ (4)
Γ (4–α) t–α(1–x)(1–y)–(3x+3y+xy–7)]t3xyex+y.

The exact solution of the equation is u(x, y, t) = t3xy(1 – x)(1 – y)ex+y.

In order to test the temporal accuracy of the proposed method, we choose τ = h to avoid
contamination of the spatial error. The maximum L∞, L2 errors and temporal convergence
orders are shown in Table 3. To check the convergence order in space, the time step τ and
space step h are chosen such that τ 3 ≈ h4 as in [49], and α = 0.1, 0.3, 0.5, 0.7, 0.9. Table 4
lists the maximum L∞, L2 errors and spatial convergence orders. The results in Tables 3
and 4 demonstrate the expected convergence rates of order 3 in time and order 4 in space
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Table 3 The L∞ , L2 errors and temporal convergence orders for Example 2

α N L∞ error Convergence order L2 error Convergence order

0.1 10 2.1115e–006 1.2466e–006
15 4.3256e–007 3.9102 2.7478e–007 3.7296
20 1.5178e–007 3.6404 9.6187e–008 3.6487
25 6.9421e–008 3.5056 4.3264e–008 3.5805
30 3.7137e–008 3.4312 2.2759e–008 3.5232

0.3 10 3.0749e–006 1.8339e–006
15 7.8116e–007 3.3794 4.5271e–007 3.4502
20 3.0400e–007 3.2805 1.7241e–007 3.3557
25 1.4903e–007 3.1947 8.2694e–008 3.2926
30 8.3632e–008 3.1687 4.5743e–008 3.2476

0.5 10 3.9579e–006 2.2779e–006
15 1.0377e–006 3.3017 5.8315e–007 3.3605
20 4.1531e–007 3.1832 2.2726e–007 3.2757
25 2.0547e–007 3.1537 1.1073e–007 3.2221
30 1.1603e–007 3.1343 6.1945e–008 3.1858

0.7 10 3.9742e–006 2.2877e–006
15 1.0361e–006 3.3156 5.8263e–007 3.3733
20 4.1367e–007 3.1915 2.2639e–007 3.2859
25 2.0419e–007 3.1640 1.1009e–007 3.2309
30 1.1513e–007 3.1427 6.1505e–008 3.1931

0.9 10 2.5073e–006 1.5564e–006
15 6.1239e–007 3.4765 3.6906e–007 3.5494
20 2.3164e–007 3.3794 1.3617e–007 3.4658
25 1.1082e–007 3.3040 6.3868e–008 3.3928
30 6.1459e–008 3.2335 3.4746e–008 3.3389

Table 4 The L∞ , L2 errors and spatial convergence orders for Example 2

α N L∞ error Convergence order L2 error Convergence order

0.1 10 2.1200e–006 1.0669e–006
15 4.0685e–007 4.0712 1.9871e–007 4.1450
20 1.2876e–007 3.9992 6.1910e–008 4.0537
25 5.3905e–008 3.9021 2.5661e–008 3.9468
30 2.6096e–008 3.9789 1.2343e–008 4.0142

0.3 10 2.1275e–006 1.1076e–006
15 4.0785e–007 4.0738 2.0682e–007 4.1387
20 1.2899e–007 4.0015 6.4476e–008 4.0515
25 5.3983e–008 3.9036 2.6705e–008 3.9501
30 2.6127e–008 3.9803 1.2846e–008 4.0139

0.5 10 2.1313e–006 1.1321e–006
15 4.0836e–007 4.0752 2.1173e–007 4.1348
20 1.2912e–007 4.0024 6.6027e–008 4.0505
25 5.4022e–008 3.9049 2.7330e–008 3.9530
30 2.6143e–008 3.9809 1.3146e–008 4.0142

0.7 10 2.1275e–006 1.1196e–006
15 4.0786e–007 4.0738 2.0930e–007 4.1359
20 1.2900e–007 4.0013 6.5256e–008 4.0512
25 5.3981e–008 3.9041 2.7007e–008 3.9536
30 2.6126e–008 3.9803 1.2990e–008 4.0144

0.9 10 2.1120e–006 1.0507e–006
15 4.0582e–007 4.0681 1.9577e–007 4.1441
20 1.2851e–007 3.9971 6.0987e–008 4.0541
25 5.3822e–008 3.9003 2.5265e–008 3.9492
30 2.6062e–008 3.9776 1.2151e–008 4.0149
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Figure 3 Numerical solution (a) and global error (b) for Example 2 with α = 0.7 at T = 1 (h = 1/32, τ = 1/32)

simultaneously. The numerical solution and the global error at T = 1 with α = 0.7, h = 1/32,
τ = 1/32 are shown in Fig. 3.

Example 3 Consider the following two-dimensional fractional reaction–subdiffusion
equation:

c
0Dα

t u(x, y, t) – �u(x, y, t) + u(x, y, t) = f (x, y, t),

u(x, y, 0) = 0, (x, y) ∈ Ω , (6.3)

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × (0, T],

where Ω = [0, 1] × [0, 1], T = 1, f (x, y, t) = ( Γ (3+α)
2 + tα)t2xy(1 – x)(1 – y) + t2+α2x(1 – x) +

t2+α2y(1 – y). The exact solution of the equation is u(x, y, t) = t2+αxy(1 – x)(1 – y).

Similar to the selection of parameters in Example 2, Tables 5 and 6 list the maximum
L∞, L2 errors and convergence orders, respectively. The similar convergence rates in time
and space are also obtained. Just as we hope, the convergence order of all numerical results
match that of the theoretical analysis. Numerical solution and global error at T = 1 with
α = 0.9, h = 1/32, τ = 1/32 are shown in Fig. 4.

Example 4 Finally, we consider the following one-dimensional fractional reaction–
subdiffusion equation with Neumann boundary value condition [4]:

c
0Dα

t u(x, t) =
∂2u(x, t)

∂x2 – u(x, t) + f (x, t), 0 < x < 1, 0 < t ≤ 1,

u(x, 0) = 0, 0 ≤ x ≤ 1, (6.4)

∂u(0, t)
∂x

= 0,
∂u(1, t)

∂x
= 0, 0 ≤ x ≤ 1,

where f (x, t) = Γ (3+α)
2 t2x2(1 – x)2 + t2+α(x4 – 2x3 – 11x2 + 12x – 2). The analytical solution

of this equation is u(x, t) = t2+αx2(1 – x)2.

To further verify our proposed method, we consider the one-dimensional fractional
reaction–subdiffusion equation with Neumann boundary value condition. We take the
fixed space step h = 1/1000 as in [4] to test the convergence rate in time. Table 7 dis-
plays the L∞ and L2 errors and the corresponding convergence orders in time for some
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Table 5 The L∞ , L2 errors and temporal convergence orders for Example 3

α N L∞ error Convergence order L2 error Convergence order

0.1 10 1.2104e–009 6.1520e–010
15 3.2755e–010 3.2236 1.6621e–010 3.2276
20 1.3151e–010 3.1721 6.6547e–011 3.1818
25 6.5042e–011 3.1551 3.2911e–011 3.1554
30 3.6739e–011 3.1329 1.8572e–011 3.1381

0.3 10 7.4096e–009 3.7525e–009
15 2.0211e–009 3.2041 1.0218e–009 3.2083
20 8.1469e–010 3.1583 4.1068e–010 3.1685
25 4.0374e–010 3.1461 2.0351e–010 3.1464
30 2.2832e–010 3.1265 1.1497e–010 3.1321

0.5 10 1.8082e–008 9.1348e–009
15 4.9358e–009 3.2023 2.4893e–009 3.2064
20 1.9989e–009 3.1421 1.0052e–009 3.1521
25 9.9552e–010 3.1239 5.0063e–010 3.1239
30 5.6561e–010 3.1009 2.8416e–010 3.1062

0.7 10 3.0948e–008 1.5614e–008
15 8.3625e–009 3.2273 4.2128e–009 3.2310
20 3.3879e–009 3.1408 1.7019e–009 3.1506
25 1.6904e–009 3.1157 8.4920e–010 3.1155
30 9.6241e–010 3.0895 4.8305e–010 3.0944

0.9 10 1.6422e–008 8.2968e–009
15 7.0022e–009 2.1023 3.5255e–009 2.1108
20 2.8117e–009 3.1717 1.4117e–009 3.1814
25 1.3969e–009 3.1349 7.0140e–010 3.1346
30 7.9379e–010 3.1000 3.9823e–010 3.1047

Table 6 The L∞ , L2 errors and spatial convergence orders for Example 3

α N L∞ error Convergence order L2 error Convergence order

0.1 10 1.0108e–010 5.1355e–011
15 1.9032e–011 4.1182 9.6538e–012 4.1222
20 5.8315e–012 4.1116 2.9495e–012 4.1216
25 2.3158e–012 4.1387 1.1712e–012 4.1391
30 1.0943e–012 4.1116 5.5294e–013 4.1165

0.3 10 6.2460e–010 3.1615e–010
15 1.1838e–010 4.1020 5.9811e–011 4.1065
20 3.6337e–011 4.1054 1.8305e–011 4.1157
25 1.4413e–011 4.1440 7.2600e–012 4.1444
30 6.8278e–012 4.0979 3.4357e–012 4.1035

0.5 10 1.5276e–009 7.7139e–010
15 2.9494e–010 4.0563 1.4869e–010 4.0604
20 9.1714e–011 4.0604 4.6102e–011 4.0705
25 3.6693e–011 4.1054 1.8444e–011 4.1055
30 1.7524e–011 4.0534 8.8006e–012 4.0583

0.7 10 2.5752e–009 1.2990e–009
15 5.0324e–010 4.0265 2.5347e–010 4.0302
20 1.5761e–010 4.0355 7.9159e–011 4.0454
25 6.3275e–011 4.0899 3.1783e–011 4.0894
30 3.0340e–011 4.0315 1.5226e–011 4.0364

0.9 10 2.1167e–009 1.0673e–009
15 4.1447e–010 4.0216 2.0867e–010 4.0253
20 1.2990e–010 4.0330 6.5219e–011 4.0427
25 5.2071e–011 4.0967 2.6146e–011 4.0963
30 2.4980e–011 4.0288 1.2532e–011 4.0336
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Figure 4 Numerical solution (a) and global error (b) for Example 3 with α = 0.9 at T = 1 (h = 1/32, τ = 1/32)

Table 7 The L∞ , L2 errors and temporal convergence order with h = 1/1000 for Example 4

α τ WSGD-OSC Method in [4]

L∞ error Rate L2 error Rate L∞ error Rate L2 error Rate

0.2 1
10 3.7493e–008 2.7741e–008 1.6551e–005 1.1499e–005
1
20 4.3399e–009 3.1109 3.2026e–009 3.1147 5.1209e–006 1.6925 3.5580e–006 1.6925
1
40 5.2034e–010 3.0601 3.8317e–010 3.0632 1.5620e–006 1.1730 1.0853e–006 1.1730
1
80 6.2570e–011 3.0559 4.5904e–011 3.0613 4.1734e–007 1.7286 3.2749e–007 1.7285

0.4 1
10 1.8809e–007 1.3672e–007 6.6853e–005 4.6449e–005
1
20 2.1674e–008 3.1174 1.5732e–008 3.1195 2.3089e–005 1.5338 1.6043e–005 1.5337
1
40 2.6010e–009 3.0588 1.8861e–009 3.0602 7.8699e–006 1.5528 5.4682e–006 1.5528
1
80 3.1627e–010 3.0398 2.2894e–010 3.0424 2.6586e–006 1.5657 1.8472e–006 1.5657

0.6 1
10 5.6461e–007 4.0656e–007 2.0417e–004 1.4185e–004
1
20 6.4049e–008 3.1400 4.6091e–008 3.1409 7.9753e–005 1.3562 5.5412e–005 1.3561
1
40 7.6381e–009 3.0679 5.4945e–009 3.0684 3.0792e–005 1.3730 2.1394e–005 1.3730
1
80 9.3351e–010 3.0325 6.7150e–010 3.0325 1.1806e–005 1.3830 8.2031e–006 1.3830

0.8 1
10 1.3917e–006 9.9376e–007 5.5067e–004 3.8256e–004
1
20 1.5093e–007 3.2049 1.0777e–007 3.2049 2.4518e–004 1.1674 1.7033e–004 1.1673
1
40 1.7696e–008 3.0924 1.2636e–008 3.0923 1.0803e–004 1.1824 7.5052e–005 1.1824
1
80 2.1461e–009 3.0436 1.5328e–009 3.0433 4.7334e–005 1.1904 3.2887e–005 1.1904

0.98 1
10 2.9227e–006 2.0612e–006 – – – –
1
20 3.0132e–007 3.2779 2.1338e–007 3.2720 – – – –
1
40 3.4061e–008 3.1451 2.4121e–008 3.1451 – – – –
1
80 4.0493e–009 3.0724 2.8676e–009 3.0724 – – – –

α ∈ (0, 1) and the last four columns present the numerical results obtained in [4]. From
Table 7, we find that the proposed method shows better performance than that in [4] for
this example, since we adopt a higher-order approximation for the time derivative. In or-
der to investigate the spatial convergence rate, we choose τ = 1/1000 and list the L∞ and
L2 errors and corresponding convergence orders in Table 8. Once again, the expected con-
vergence rates with third-order accuracy in the time direction and fourth-order accuracy
in the spatial direction can be seen from two tables. Besides, Fig. 5 shows a comparison of
the numerical solution and the exact solution for α = 0.8 at t = 1. The numerical solution
surface is shown in Fig. 6, and the errors are also displayed in Fig. 7, where α = 0.8 and
h = τ = 1

32 .
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Table 8 The L∞ , L2 errors and spatial convergence orders with τ = 1/1000 for Example 4

α h L∞ error Rate L2 error Rate

0.2 1
10 1.5852e–006 1.2379e–006
1
20 9.9075e–008 4 7.5769e–008 4.0301
1
40 6.1922e–009 4 4.6847e–009 4.0156
1
80 3.8703e–010 3.9999 2.9120e–010 4.0079

0.4 1
10 1.6877e–006 1.3212e–006
1
20 1.0548e–007 4 8.0871e–008 4.0301
1
40 6.5926e–009 4 5.0005e–009 4.0155
1
80 4.1219e–010 3.9995 3.1094e–010 3.9995

0.6 1
10 1.8132e–006 1.4238e–006
1
20 1.1333e–007 3.9999 8.7164e–008 4.0299
1
40 7.0834e–009 3.9999 5.3902e–009 4.0153
1
80 4.4314e–010 3.9986 3.3537e–010 4.0065

0.8 1
10 1.9644e–006 1.5484e–006
1
20 1.2278e–007 3.9999 9.4810e–008 4.0296
1
40 7.6745e–009 3.9999 5.8639e–009 4.0151
1
80 4.8065e–010 3.9970 3.6525e–010 4.0049

0.98 1
10 2.1217e–006 1.6799e–006
1
20 1.3261e–007 4 1.0288e–007 4.0293
1
40 8.2897e–009 3.9997 6.3642e–009 4.0148
1
80 5.1997e–010 3.9948 3.9697e–010 4.0029

Figure 5 The comparison (a) and absolute error (b) between the numerical solution and the exact solution
with α = 0.8 at t = 1 (h = 1/32, τ = 1/32)

7 Conclusion
In this paper, a discrete orthogonal spline collocation method combining with a third-
order approximation for the fractional derivative in time is proposed for solving the
two-dimensional fractional reaction–subdiffusion equation. The stability and conver-
gence of the method have been strictly proved. Several numerical examples are given
to demonstrate the effectiveness and convergence orders of the proposed method. In
future work, we wish to extend the present OSC methods with a third-order con-
vergent alternating direct implicit scheme in the time direction to solve this kind of
problems.
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Figure 6 The global error for Example 4 with α = 0.8, h = 1/32, τ = 1/32

Figure 7 Exact solution (a) and numerical solution (b) for Example 4 with α = 0.8, h = 1/32, τ = 1/32
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