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Abstract
In this paper, we study the following nonlinear Klein–Gordon–Maxwell system:

{
–�u + V(x)u – (2ω + φ)φu = f (x,u) + λh(x)|u|q–2u, x ∈R

3,

�φ = (ω + φ)u2, x ∈R
3,

(Pλ)

where ω and λ are positive constants, V is a continuous function with negative

infimum, q ∈ (1, 2), h ∈ L
2

2–q (R3) is a positive potential function. Under the classic
Ambrosetti–Rabinowitz condition, nontrivial solutions are obtained via the symmetric
mountain pass theorem and the mountain pass theorem. In our paper, the
nonlinearity F can also change sign and does not need to satisfy any 4-superlinear
condition. We extend and improve some existing results to some extent.
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1 Introduction and main results
A Klein–Gordon–Maxwell system arises in a very interesting physical context: a model
describing the nonlinear Klein–Gordon field interacting with the electromagnetic field
(for more details, see [1, 2]). It has been widely studied on different aspects. Variational
methods were firstly used by Benci and Fortunato to consider the following system:

⎧⎨
⎩–�u + [m2

0 – (ω + φ)2u = |u|p–2u, x ∈R
3,

–�φ + u2φ = –ωu2, x ∈R
3,

(KGM)

where 4 < p < 6, m0 and ω are real constants. Infinitely many solitary waves solutions were
got for the above system when |m0| > |ω|, p ∈ (4, 6) in [2]. For p ≥ 6 and m0 ≥ ω or p ≤ 2,
no-existence result of (KGM) was proved by D’Aprile and Mugnai in [3]. Furthermore, in
[4] infinitely many finite energy radial solutions were got if one of the following conditions
holds:

(i) m0 > ω > 0 and p ∈ (4, 6);
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(ii) m0

√
p–2

2 > ω > 0 and p ∈ (2, 4).
For p ∈ (2, 4), the existence range of (m0,ω) was extended and a limit case m0 = ω was also
dealt with by Azzollini, Pisani, and Pomponio in [5]. Mugnai in [6] studied the existence of
radially symmetric solitary waves for a system of a nonlinear Klein–Gordon equation cou-
pled with Maxwell’s equation in the presence of a positive mass. Ground state solutions,
semiclassical state solutions, nonradial solutions have been studied in [7–10]. The criti-
cal exponent case have also been considered in [11–14]. In[15], via the Ekeland variational
principle and the mountain pass theorem, two nontrivial solutions for a nonhomogeneous
Klein–Gordon–Maxwell system were got by Chen and Tang. In [16], Jeong and Seok es-
tablished an abstract critical point theorem about a functional of the mountain-pass type
with a small perturbation for the nonlocal term and studied a type of Klein–Gordon–
Maxwell system with a very general nonlinear term. A Klein–Gordon–Maxwell system
with non-constant potential was firstly considered by He in[17]. Infinitely many solutions
for a type of Klein–Gordon–Maxwell system with a coercive potential were got via a vari-
ant fountain theorem and the symmetric mountain pass theorem in [17]. The results in
[17] were improved and complemented by Li and Tang in [18]. In [19], Under a variant 4-
superlinear condition, infinitely many solutions for a nonlinear Klein–Gordon–Maxwell
system with sign-changing potential were got by Ding and Li via the symmetric mountain
pass theorem.

Inspired by [4, 17–19], in this paper, we deal with the following Klein–Gordon–Maxwell
system via the variational methods:

⎧⎨
⎩–�u + V (x)u – (2ω + φ)φu = f (x, u) + λh(x)|u|q–2u, x ∈R

3,

�φ = (ω + φ)u2, x ∈R
3,

(Pλ)

where ω > 0, the functions V , f and h satisfy the following assumptions.
(V ) V ∈ C(R3,R) with infx∈R3 V (x) > –∞ and there exists a constant r > 0 such that

lim|y|→∞ meas
{

x ∈R
3 : |x – y| ≤ r, V (x) ≤ M

}
= 0, for every M > 0;

(F1) f ∈ C(R3 ×R,R) and there exist constants c0 ∈ (0,∞) and p ∈ (2, 6) such that

∣∣f (x, t)
∣∣ ≤ c0

(|t| + |t|p–1), for (x, t) ∈R
3 ×R;

(F2) there exist constants μ ∈ (2,∞) and R ∈ (0,∞) such that

f (x, t)t ≥ μF(x, t) > 0, for (x, t) ∈R
3 ×R with |t| ≥ R, and inf

x∈R3,|u|=R
F(x, u) > 0,

where F(x, t) :=
∫ t

0 f (x, s) ds;
(F3) f (x, –t) = –f (x, t), for (x, t) ∈R

3 ×R;
(H) h ∈ L

2
2–q (R3), for some q ∈ (1, 2) and h(x) > 0 for a.e. x ∈R

3.
First of all, we establish the variational framework for (Pλ). As usual, let C∞

0 (R3) denote
the collection of smooth functions with compact support and D1,2(R3) be the completion
of C∞

0 (R3) under the norm

‖u‖D1,2 =
(∫

R3
|∇u|2 dx

) 1
2

.
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Under the condition of (V ), we can set V1(x) = V (x) + V0, where V0 ∈ (1 + | infx∈R3 V |,∞)
is fixed. Define

E :=
{

u ∈ D1,2(
R

3)∣∣∣ ∫
R3

V1(x)u2 dx < ∞
}

,

which is a Hilbert space equipped with the norm

‖u‖ =
(∫

R3

(|∇u|2 + V1(x)u2)dx
) 1

2
.

Lp(
R

3) :=
{

u : R3 	→R

∣∣∣u is Lebesgue measurable,
∫
R3

|u|p dx < ∞
}

is the usual Lebesgue space equipped with the norm

|u|p =
(∫

R3
|u|p dx

) 1
p

.

The main results of our paper read as follows.

Theorem 1.1 Let (V), (F1)–(F3) and (H) hold, then there exists λ∗ > 0 such that the system
(Pλ) has a sequence of weak solutions {(un,φn)} ⊂ E × D1,2(R3) satisfying

1
2

∫
R3

(|∇u|2n + V (x)u2
n
)

dx –
ω

2

∫
R3

φun u2
n dx

–
∫
R3

F(x, un) dx –
λ

q

∫
R3

h(x)|un|q dx → +∞,

as n → ∞, for every λ ∈ (0,λ∗).

If the nonlinearity f also satisfies
(F4)

lim|t|→0

f (x, t)
t

= –V0, uniformly for x ∈R
3,

we get the following result.

Theorem 1.2 Let (V), (F1), (F2), (F4) and (H) hold, then there exists λ∗ > 0 such that the
system (Pλ) has at least one nontrivial weak solution for every λ ∈ (0,λ∗).

Remark 1.1 In our assumptions, the nonlinearity f just needs to satisfy a classic su-
perquadratic condition at infinity. The 4-superlinear assumption is not necessary. The
potential V is sign-changing and F can also change sign. Thus, we extend and improve
some existing results to some extent, for example, some results in [17, 19].

Remark 1.2 Since –∞ < infx∈R3 V (x) < 0, it is a natural idea to add Cu with C >
| infx∈R3 V (x)| at both sides of the first equation in the system (Pλ). However, the non-
linearity f (x, u) + Cu does not satisfy the assumption (F2), which brings some difficulty to
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prove the bounded nature of (PS) sequences. Based on the compact embedding theorem
(Lemma 2.1) and the properties of φu (Lemma 2.2), we prove this important property of
the functional I in Lemma 3.2. Compared with the second result in [20], our assumption
on V is weaker.

Throughout the paper, we denote by C various positive constants, whose value may be
different from line to line and is not essential to the problem.

The paper is organized as follows. In Sect. 2, we give some preliminary results. In Sect. 3,
we prove our main results.

2 Preliminary
In this section, we give some preliminary results which will be used to prove our main
results.

Assumption (V ) is similar to the condition introduced by Bartsch, Wang, and Willem in
[21] to guarantee the compactness of embedding of the work spaces. Since V1 has positive
infimum, it is easy to get the following.

Lemma 2.1 Let (V ) be satisfied, the space E is continuously embedded into Lp(R3) for any
p ∈ [2, 6] and compactly embedded into Lp(R3) for any p ∈ [2, 6).

Since 2 < 12
5 < 3 < 6, for any fixed u ∈ E, the linear operator Tu : D1,2(R3) → R defined by

Tu(v) :=
∫
R3

u2v dx

is continuous in D1,2(R3). By the Lax–Milgram theorem, there exists φu ∈ D1,2(R3) such
that

∫
R3

(∇φu∇v + u2φuv
)

dx =
∫
R3

u2v dx, for v ∈ D1,2(
R

3).

Therefore, problem (Pλ) can be transformed into a nonlinear Schrödinger equation with
a nonlocal term

–�u + V (x)u – (2ω + φu)φuu = f (x, u) + λh(x)|u|q–2u, x ∈R
3.

(
P′

λ

)
The functional associated to (P′

λ) is

I(u) =
1
2

∫
R3

(∇u2 + V (x)u2)dx –
ω

2

∫
R3

φuu2 dx –
∫
R3

F(x, u) dx –
λ

q

∫
R3

h(x)|u|q dx.

From (F1) and Lemma 2.1, it is easy to claim that I ∈ C1(E,R) and

〈
I ′(u), v

〉
=

∫
R3

(∇u∇v + V (x)uv
)

dx –
∫
R3

(2ω + φu)φuuv dx

–
∫
R3

(
f (x, u) + λh(x)|u|q–2u

)
v dx,

for v ∈ E. Moreover, the function φu has the following properties.
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Lemma 2.2 (see [2, 4])
(i) –ω ≤ φu ≤ 0 on the set {x|u(x) 
= 0};

(ii) there exist positive constants C, C′ such that

‖φu‖D1,2 ≤ C‖u‖2 and
∫
R3

|φu|u2 dx ≤ C′‖u‖4.

Definition 2.1 Let X be a Banach space, we say that the functional I ∈ C1(X,R) satisfies
Palais–Smale condition at the level c ∈ R ((PS)c in short) if any sequence {un} ⊂ X satis-
fying I(un) → c, I ′(un) → 0 as n → ∞, has a convergent subsequence. I satisfies the (PS)
condition if I satisfies (PS)c condition at any c ∈R.

Lemma 2.3 (Mountain pass theorem, [22]) Let X be a Banach space, I ∈ C1(X,R), e ∈ X
and r > 0 be such that ‖e‖ > r and

b := inf‖u‖=r
I(u) > I(0) ≥ I(e).

If I satisfies the (PS)c condition with

c := inf
γ∈Γ

max
t∈[0,1]

I
(
γ (t)

)
, where Γ :=

{
γ ∈ C

(
[0, 1], X

)|γ (0) = 0,γ (1) = e
}

,

then c is a critical value of I .

Lemma 2.4 ([23]) Let E be an infinite dimensional Banach space, and let I ∈ C1(E,R)
be even, satisfy the (PS) condition and I(0) = 0. Assume that E = Y ⊕ Z, where Y is finite
dimensional. Suppose that the following hold.

(I1) There are constants ρ,α > 0 such that inf∂Bρ∩Z I ≥ α.
(I2) For each finite dimensional subspace Ẽ ⊂ E, there is an R(̃E) such that I(u) ≤ 0, for

u ∈ Ẽ \ BR(̃E).
Then I possesses an unbounded sequence of critical values.

3 Proof of main results
In this section, we prove our main results. Firstly, it is easy to check that F satisfies the
following properties.

Lemma 3.1 Let (F1) and (F2) be satisfied, then
(i) there exist constants c1, c2 ∈ (0,∞) such that

∣∣F(x, t)
∣∣ ≥ c1|t|μ – c2|t|2, for (x, t) ∈R

3 ×R; (3.1)

(ii) for any fixed r ∈ (0, +∞), there exists a positive constant c(r) such that

∣∣∣∣ 1
μ

f (x, t)t – F(x, t)
∣∣∣∣ ≤ c(r)|t|2, for (x, t) ∈R

3 × [–r, r]. (3.2)

Lemma 3.2 Assume that (V ), (F1), (F2) and (H) hold, then the functional I satisfies the
(PS) condition.
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Proof Let {un} be a (PS) sequence of I , that is, for some M > 0,

∣∣I(un)
∣∣ ≤ M, I ′(un) → 0, as n → ∞ in E.

On the one hand, from (i) of Lemma 2.2, (F2) and (3.2), since μ > 2, for n large enough

M + 1 + ‖un‖

≥ I(un) –
1
μ

〈
I ′(un), un

〉

≥
(

1
2

–
1
μ

)
‖un‖2 –

(
1
2

–
1
μ

)∫
R3

V0u2
n dx +

(
2
μ

–
1
2

)∫
R3

ωφun u2
n dx

+
∫
R3

(
1
μ

f (x, un)un – F(x, un)
)

dx +
q – μ

qμ
λ

∫
R3

h(x)|un|q dx

≥
(

1
2

–
1
μ

)
‖un‖2 –

(
1
2

–
1
μ

)∫
R3

V0u2
n dx +

(
2
μ

–
1
2

)∫
{un 
=0}

ωφun u2
n dx

+
∫

{|un|≤r0}

(
1
μ

f (x, un)un – F(x, un)
)

dx +
q – μ

qμ
λ

∫
R3

h(x)|un|q dx

≥
(

1
2

–
1
μ

)
‖un‖2 –

(
1
2

–
1
μ

)∫
R3

V0u2
n dx –

∣∣∣∣ 2
μ

–
1
2

∣∣∣∣ω2
∫
R3

u2
n dx

–
∫
R3

c(r0)u2
n dx – Cλ|h| 2

2–q
‖un‖q

=:
(

1
2

–
1
μ

)
‖un‖2 – c3

∫
R3

u2
n dx – Cλ|h| 2

2–q
‖un‖q, (3.3)

where c3 = ( 1
2 – 1

μ
)V0 + | 2

μ
– 1

2 |ω2 + c(r0). If {un} is not bounded in E, there exists a sub-
sequence still denoted by {un} such that ‖un‖ → ∞, as n → ∞. Set wn = un

‖un‖ , then there
exists w ∈ E such that

wn ⇀ w in E,

wn → w in Lp(
R

3), p ∈ [2, 6),

wn(x) → w(x), a.e. x ∈R
3.

Divide ‖un‖2 on both sides of (3.3), we have

M + 1
‖un‖2 +

1
‖un‖ ≥

(
1
2

–
1
μ

)
– c3

∫
R3

wn
2 dx – Cλ|h| 2

2–q

1
‖un‖2–q ,

then

∫
R3

w2 dx ≥ 1
c3

(
1
2

–
1
μ

)
> 0. (3.4)

On the other hand, since

∫
R3

F(x, un) dx =
1
2

∫
R3

(∇u2
n +V (x)u2

n
)

dx–
ω

2

∫
R3

φun u2
n dx–

λ

q

∫
R3

h(x)|un|q dx–I(un),
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by (3.1), we can get

0 ≤ c1

∫
R3

|wn|μ dx ≤
∫
R3 F(x, un) dx

‖un‖μ
+

c2
∫
R3 u2

n dx
‖un‖μ

≤ 1
2‖un‖μ–2 +

ω2 ∫
R3 u2

n dx
2‖un‖μ

–
I(un)
‖un‖μ

+
c2

∫
R3 u2

n dx
‖un‖μ

→ 0, n → ∞,

then w = 0, which is a contradiction with (3.4).
The rest of the proof is standard. In fact, since {un} is bounded in E, we can assume that,

up to a subsequence,

un ⇀ u in E,

un → u in Lp(
R

3), p ∈ [2, 6),

un(x) → u(x), a.e. x ∈R
3.

Then

‖un – u‖2

=
〈
I ′(un), un – u

〉
–

〈
I ′(u), un – u

〉
+

∫
R3

V0(un – u)2 dx

+ 2ω

∫
R3

(φun un – φuu)(un – u) dx +
∫
R3

(
φ2

un un – φ2
uu

)
(un – u) dx

+
∫
R3

(
f (x, un) – f (x, u)

)
(un – u) dx

+ λ

∫
R3

h(x)
(|un|q–2un – |u|q–2u

)
(un – u) dx. (3.5)

It follows from I ′(un) → 0 and un ⇀ u in E that the first three parts on the right side of (3.5)
converge to zero as n → ∞. By the Hölder inequality, (ii) of Lemma 2.2 and Lemma 2.1,

∣∣∣∣
∫
R3

(φun un – φuu)(un – u) dx
∣∣∣∣

=
∣∣∣∣
∫
R3

φun (un – u)2 dx +
∫
R3

(φun – φu)u(un – u) dx
∣∣∣∣

≤ |φun |6|un – u|212
5

+ |φun – φu|6|u| 12
5
|un – u| 12

5

≤ C
(|un – u|212

5
+ |u| 12

5
|un – u| 12

5

)
→ 0, n → ∞. (3.6)

Since the sequence {φ2
un un} is bounded in L 3

2 (R3), by the Hölder inequality,

∣∣∣∣
∫
R3

(
φ2

un un – φ2
uu

)
(un – u) dx

∣∣∣∣
≤ ∣∣φ2

un un – φ2
uu

∣∣ 3
2
|un – u|3
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≤ (∣∣φ2
un un

∣∣ 3
2

+
∣∣φ2

uu
∣∣ 3

2

)|un – u|3
→ 0, n → ∞. (3.7)

Then (3.6) and (3.7) imply that the fourth and fifth part on the right side of (3.5) also
converge to zero as n → ∞. By the Hölder inequality, (F1) and Lemma 2.1,

∫
R3

(
f (x, un) – f (x, u)

)
(un – u) dx

≤
∫
R3

(∣∣f (x, un)
∣∣ +

∣∣f (x, u)
∣∣)|un – u|dx

≤
∫
R3

c0
(|un|p–1 + |un| + |u|p–1 + |u|)|un – u|dx

≤ c0
((|un|p–1

p + |u|p–1
p

)|un – u|p +
(|un|2 + |u|2

)|un – u|2
)

→ 0, n → ∞,

thus the sixth part on the right side of (3.5) converges to zero as n → ∞. Similarly, by the
Hölder inequality, the last part also converges to zero as n → ∞. Then ‖un – u‖2 → 0,
n → ∞. Therefore, I satisfies (PS) condition. �

Let {ei}∞i=1 be an orthonormal basis of E, define Xi = Rei, Yk =
⊕k

i=1 Xi and Zk =
⊕∞

i=k+1 Xi,
k ∈N.

Lemma 3.3 Assume that (V ) and (F1) hold, there exist constants k0 ∈ N and λ∗ > 0 such
that I|∂Bρk0,λ

∩Zk0
≥ αk0,λ , for every λ ∈ (0,λ∗) and some ρk0,λ ,αk0,λ ∈ (0, +∞).

Proof First of all, in the same way as Lemma 3.8 in [22], it is easy to see that, for s ∈ [2, 6),

βk := sup
u∈Zk ,‖u‖=1

|u|s → 0, as k → ∞.

Then there exists k0 ∈N such that

|u|22 ≤ 1
2(c0 + V0)

‖u‖2 and |u|pp ≤ p
4c0

‖u‖p, for u ∈ Zk0 .

Therefore,

I(u) =
1
2

∫
R3

(∇u2 + V (x)u2)dx –
ω

2

∫
R3

φuu2 dx –
∫
R3

F(x, u) dx –
λ

q

∫
R3

h(x)|u|q dx

≥ 1
2
‖u‖2 –

V0 + c0

2
|u|22 –

c0

p
|u|pp –

Cλ

q
|h| 2

2–q
‖u‖q

≥ 1
2
‖u‖2 –

1
4
‖u‖2 –

1
4
‖u‖p –

Cλ

q
|h| 2

2–q
‖u‖q

=
1
4
‖u‖2

(
1 – ‖u‖p–2 –

4Cλ

q
|h| 2

2–q
‖u‖q–2

)
.

Set η(t) = 1 – tp–2 – 4Cλ
q |h| 2

2–q
tq–2, t > 0. Since 1 < q < 2 < p, there exists t0,λ = ( 2–q

p–2
4Cλ

q ×
|h| 2

2–q
)

1
p–q such that η(t0,λ) = maxt>0 η(t). Furthermore, we can get η(t0,λ) > 0 for λ ∈ (0,λ∗),
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where

λ∗ =
(

2 – q
p – q

) p–q
p–2 p – 2

2 – q
q

4C|h| 2
2–q

> 0.

Choose ρk0,λ = t0,λ, then

I(u) ≥ ρ2
k0,λ

4

(
1 – ρ

p–2
k0,λ

–
4Cλ

q
|h| 2

2–q
ρ

q–2
k0,λ

)

:= αk0,λ > 0 for u ∈ Zk0 with ‖u‖ = ρk0,λ . �

Lemma 3.4 Assume that (V ), (F1), (F2) and (H) hold, then, for any finite dimensional
subspace Ẽ ⊂ E, there exists R(̃E) > 0 such that I(u) ≤ 0 for u ∈ Ẽ with ‖u‖ ≥ R(̃E).

Proof By (3.1) and the equivalence of norms in the finite dimensional space Ẽ,

I(u) ≤ 1
2

∫
R3

(∇u2 + V (x)u2)dx –
ω

2

∫
R3

φuu2 dx –
∫
R3

F(x, u) dx

≤ 1
2
‖u‖2 +

ω2

2
|u|22 – c1|u|μμ + c2|u|22

≤
(

1
2

+
ω2

2
+ c2

)
‖u‖2 – c1C‖u‖μ

→ –∞, as ‖u‖ → ∞.

Therefore, there exists R(̃E) > 0 such that I(u) ≤ 0 for u ∈ Ẽ with ‖u‖ ≥ R(̃E). �

Lemma 3.5 Assume that (V ), (F1), (F2) and (F4) hold, then there exists λ∗ > 0 such that

inf‖u‖=rλ
I(u) > I(0) ≥ I(eλ),

for every λ ∈ (0,λ∗), and some rλ ∈ (0,∞), eλ ∈ E with ‖eλ‖ > rλ.

Proof By (F4), we can get

lim|t|→0

F(x, t) + V0
2 t2

t2 = 0, uniformly for x ∈ R
3.

Together with (F1), for every ε > 0, there exists c(ε) > 0 such that

∣∣∣∣F(x, t) +
V0

2
t2

∣∣∣∣ ≤ ε

2
|t|2 + c(ε)|t|p, uniformly for x ∈R

3.

By (i) of Lemma 2.2, we can get

I(u) =
1
2

∫
R3

(∇u2 + V (x)u2)dx –
ω

2

∫
R3

φuu2 dx –
∫
R3

F(x, u) dx –
λ

q

∫
R3

h(x)|u|q dx

≥ 1
2
‖u‖2 –

ε

2
|u|22 – c(ε)|u|pp – λ|h| 2

2–q
‖u‖q



Wei and Li Advances in Difference Equations         (2019) 2019:72 Page 10 of 11

≥ 1
2

(1 – C2ε)‖u‖2 – Cpc(ε)‖u‖p – λ|h| 2
2–q

‖u‖q

≥ 1
4
‖u‖2(1 – 4Cpc(ε)‖u‖p–2 – 4λ|h| 2

2–q
‖u‖q–2) (where ε is small enough).

Then, similar to the proof of Lemma 3.3, there exists λ∗ > 0 such that

inf‖u‖=rλ
I(u) ≥ r2

λ

4
(
1 – 4Cpc(ε)rp–2

λ – 4λ|h| 2
2–q

rq–2
λ

)
> 0,

for every λ ∈ (0,λ∗) and some rλ ∈ (0, +∞).
Similar to the proof of Lemma 3.4, for u ∈ E with ‖u‖ = 1,

I(tu) ≤ t2

2

∫
R3

(∇u2 + V (x)u2)dx –
ω

2

∫
R3

φ(tu)(tu)2 dx –
∫
R3

F(x, tu) dx

≤ t2

2
‖u‖2 +

(tω)2

2
|u|22 – c1tμ|u|μμ + c2t2|u|22

→ –∞, as t → ∞.

Thus there exists T > rλ such that I(Tu) ≤ 0. By choosing eλ = Tu, the proof is completed. �

Proof of Theorem 1.1 By (F1) and (F3), it is easy to see that I(0) = 0 and I is even. Together
with Lemma 3.2–3.4, we can see that all the conditions of Lemma 2.4 are satisfied. Thus
problem (Pλ) has a sequence of weak solutions {(un,φn)} ⊂ E × D1,2(R3) satisfying

1
2

∫
R3

(∇u2
n + V (x)u2

n
)

dx –
ω

2

∫
R3

φun u2
n dx –

∫
R3

F(x, un) dx → +∞, as n → ∞,

for every λ ∈ (0,λ∗). �

Next, we will give the proof of Theorem 1.2.

Proof of Theorem 1.2 Lemma 3.5 implies that the functional I enjoys the mountain pass
structure. from Lemma 3.2, I satisfies the (PS) condition. Hence by Lemma 2.3, problem
(Pλ) has at least one nontrivial solution for every λ ∈ (0,λ∗). �
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