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Abstract
This paper is devoted to investigating the dynamics of a diffusive Leslie–Gower
predator–prey system with ratio-dependent Holling III functional response. We first
establish the stability of positive constant equilibrium, and show the condition under
which system undergoes a Hopf bifurcation with the explicit computational formulas
for determining the bifurcating properties. Especially, when the positive constant
equilibrium loses its stability, a supercritical Hopf bifurcation with spatial
homogeneous and stable bifurcating periodic solution occurs. Finally, we discuss the
existence and nonexistence of nonconstant positive solutions with the help of
Leray–Schauder degree theory and the implicit function theorem.
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1 Introduction
As one of the most common mutual relationships between two populations in nature,
predator–prey relationship plays a significant role in ecology and mathematical biology.
In mathematics, one way to model this relationship is by using differential equations with
various types of predator’s functional responses, which is a key component of a predator–
prey relationship. Leslie and Gower in [16, 17] introduced a functional response, called
Leslie–Gower functional response, to describe that reduction in predator population has
a reciprocal relationship with per capita availability of its preferred food. A Leslie–Gower
predator–prey system generally has the following form:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = rx(1 – x

K ) – yf (x),
dy
dt = y(1 – y

px ),

x(0) > 0, y(0) > 0, r, s, K , p > 0,

(1.1)

where p is the conversion factor of the prey into the predator, and the term y/(px) is called
the Leslie–Gower term representing the loss of the density of the predator due to rarity of
the prey.
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In recent years, there have been many theoretical results obtained for system (1.1) with
different functional responses f (x), such as Holling type I (f (x) = ax) [3, 8, 12, 14], Holling
type II (the so-called Holling–Tanner model, f (x) = mx/(b + x)) [2, 8, 9], Holling type III
(f (x) = mx2/[(a + x)(b + x)]) [8, 11], and Holling type IV (f (x) = mx/(b + x2)) [19]. There
is a recognition that spatial distribution patterns and dispersal mechanisms can cause
the complexity and rich dynamical behavior of ecological modeling. The Leslie–Gower
predator–prey system with diffusion has been investigated in a certain range [4–6, 13,
22].

In characterizing predator’s functional response, ratio-dependent functional response is
an important form. It is a predator-dependent functional response and has a better mod-
eling for a predator–prey system [1, 10, 15, 18, 24, 25, 28, 32]. Motivated by the existing
studies and the above considerations, we replace f (x) by f (x/y) and consider spatial dis-
tribution patterns and dispersal mechanisms in (1.1). Making a suitable nondimensional
scaling, system (1.1) reduces to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t = d1�u + u(1 – u) – αu2v

u2+mv2 , x ∈ Ω , t > 0,
∂v
∂t = d2�v + βv(1 – v

u ), x ∈ Ω , t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω , t ≥ 0,

u(0, x) = u0(x) ≥�≡ 0, v(0, x) = v0(x) ≥�≡ 0, x ∈ Ω ,

(1.2)

where u(x, t) and v(x, t) represent the densities of prey and predator at location x ∈ Ω̄ and
time t ≥ 0, respectively. Ω ∈ R

n (n ∈N) is a bounded domain with smooth boundary ∂Ω .
d1 and d2 are diffusion coefficients, and α, m, β are positive constants. In [26], Shi and Li
introduced system (1.2) and established the stability of the positive equilibrium and uni-
form persistence of the solution semiflows. Shi et al. in [27] considered the existence of
the Turing–Hopf bifurcation where the Turing instability curve and the Hopf bifurcation
curve intersect. Yang and Li in [30] obtained a sufficient condition for global asymptotic
stability of the positive equilibrium by constructing recurrent sequences and using an it-
erative method. Zhou in [33] established the existence and the bifurcating properties of
Hopf bifurcation of system (1.2) by using β as a bifurcating value.

The purpose of the present paper is to investigate dynamics of system (1.2), including the
stability of the unique positive equilibrium, the existence and the bifurcating properties of
Hopf bifurcation, the existence and nonexistence of nonconstant positive solutions. The
main contributions have three aspects:

1. A larger parameter range of local stability of the unique positive constant
equilibrium is established;

2. Using the predation rate α as the bifurcating value, we show that system (1.2)
undergoes a Hopf bifurcation and derive the explicit computational formulas for
determining the bifurcating properties. In particular, a supercritical Hopf
bifurcation with spatial homogeneous and stable bifurcating periodic solutions
occurs;

3. If the diffusion coefficients d1, d2 are sufficiently large, then system (1.2) has no
nonconstant positive solutions. With the help of Leray–Schauder degree theory, the
existence of nonconstant positive solutions can be obtained when d1/d2 is small
enough.
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Our paper is organized as follows. In Sect. 2, we establish the stability of the unique pos-
itive constant equilibrium. In Sect. 3, we discuss the condition under which system (1.2)
undergoes a Hopf bifurcation and derive the explicit computational formulas for deter-
mining the bifurcating properties. Especially, a supercritical Hopf bifurcation with spatial
homogeneous and stable bifurcating periodic solutions occurs. Finally, we investigate the
existence and nonexistence of nonconstant positive solutions by using a priori estimates,
Leray–Schauder degree theory, and the implicit function theorem.

2 Stability of constant equilibria
In this section, we investigate the stability of constant equilibria of (1.2). From [26], we
know that system (1.2) has a unique positive solution, denoted as E∗ = (θ , θ ) with θ = 1 –
α/(1 + m), if α < 1 + m. It is not difficult to see that system (1.2) has a semi-trivial constant
solution E1 = (1, 0).

To discuss the stability of constant equilibria of system (1.2), we first make some no-
tations. It is well known that the operator –� in Ω with the homogeneous Neumann
boundary condition has eigenvalues

μi ∈ Λ := {μi : 0 = μ0 < μ1 < · · · < μi < · · · , i ∈ N0} (2.1)

and the corresponding eigenfunctions are φij, where N0 := N ∪ {0}. Let S(μi) be the sub-
space generated by the eigenfunctions φij corresponding to μi, m(μi) be the multiplic-
ity of μi, and {φij}m(μi)

j=1 be an orthonormal basis of S(μi). Define Xij = {cφij : c ∈ R
2},

Xi =
⊕m(μi)

j=1 Xij, and

X =
{

(u, v)T ∈ [C1(Ω̄)
]2 : ∂νu = ∂νv = 0 on ∂Ω

}

satisfying X =
⊕∞

i=0 Xi.
The stability of the equilibria can be obtained by analyzing the distribution of the eigen-

values of the characteristic equation corresponding to the linearized system of system
(1.2). Then we have the following results.

Theorem 2.1 E1 = (1, 0) is unstable.

Proof The linearized system of system (1.2) at E1 can be written as

(
ϕt

ψt

)

= D�

(
ϕ

ψ

)

+

(
–1 –α

0 β

)(
ϕ

ψ

)

, (2.2)

with D = diag(d1, d2). By using the fact above, the corresponding kth characteristic equa-
tion of (2.2) is

λ2 –
(
–(d1 + d2)μk + β – 1

)
λ +
(
d1d2μ

2
k – (βd1 – d2)μk – β

)
= 0. (2.3)

When k = 0, two roots of (2.3) are –1 and β , which implies that E1 is unstable. �

Theorem 2.2 E∗ is locally asymptotically stable if one of the following statements holds:
(A) m ≥ 1 and α < 1 + m;



Chang and Zhang Advances in Difference Equations         (2019) 2019:76 Page 4 of 23

(B) m < 1 and α ≤ (1+m)2

2 ;
(C) m < 1, β < 1–m

1+m , (1+m)2

2 < α < (1 + β) (1+m)2

2 , and d1
d2

> d̃ := 1–m
β(1+m) ;

(D) m < 1, β ≥ 1–m
1+m , (1+m)2

2 < α < 1 + m, and d1
d2

> d̃.

Proof We now prove the local asymptotic stability of E∗ by analyzing the distribution of
eigenvalues at E∗. The linearized system of system (1.2) at E∗ is

(
ϕt

ψt

)

= D�

(
ϕ

ψ

)

+

(
K1 K2

β –β

)(
ϕ

ψ

)

, (2.4)

and the kth characteristic equation of (2.4) is

λ2 – TRk(α)λ + DETk(α) = 0, (2.5)

where

K1 =
2α

(1 + m)2 – 1, K2 =
α(m – 1)
(1 + m)2 (2.6)

and

TRk(α) = –(d1 + d2)μk + K1 – β ,

DETk(α) = d1d2μ
2
k – (K1d2 – βd1)μk + βθ . (2.7)

Note that if TRi(α) < 0 and DETj(α) > 0 for all i, j ∈ N0, then E∗ is locally asymptotically
stable. It is clear that if K1 < β , then TR0(α) < 0 and TRk(α) < 0 for all k ∈N. If K1 ≤ 0, that
is, α ≤ (1 + m)2/2, then, obviously, TRk(α) < 0 and DETk(α) > 0 for all k ∈ N0. If 0 < K1 < β ,
that is, (1 + m)2/2 < α < (1 + β)(1 + m)2/2, then TR0(α) < 0 and TRj(α0) < 0 for all j ∈ N.
Note that

DETk(α) = d1d2μ
2
k –
((

2α

(1 + m)2 – 1
)

d2 – βd1

)

μk + βθ

> d1d2μ
2
k –
((

2(1 + m)
(1 + m)2 – 1

)

d2 – βd1

)

μk

= μk

(

d1d2μk –
((

1 – m
(1 + m)

)

d2 – βd1

))

.

Then DETk(α) > 0 for all α < 1 + m, if m < 1 and d1/d2 > (1 – m)/(β(1 + m)) or m ≥ 1. To
sum up above, we obtain the local stability of E∗ and complete the proof. �

Figure 1 shows the region of stability of equilibrium E∗ in the m – α plane. E∗ is globally
stable with the m – α plane belonging to the yellow region, which is given as (ε0 + θ )(1 +
m)2ε2

0 –α(1 – mε0)(1 + θ ) > 0 with ε0 = 1 –α/(2
√

m) > 0 in [26]. E∗ is locally asymptotically
stable with the m – α plane belonging to the red region (corresponding to case (A) and
case (B) in Theorem 2.2), which is also given in [26]. Here we give a new local stability
region of E∗ (see the blue region) corresponding to case (C) or case (D) of Theorem 2.2.
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Figure 1 The parameter ranges in them – α plane for the stability region of E∗ . Here d1 = 3, d2 = 0.5

3 Hopf bifurcation and its properites
In this section, we focus on the case that system (1.2) undergoes a Hopf bifurcation near
E∗ for the spatial domain Ω = (0, lπ ) with l ∈ R

+ = (0, +∞). Then the eigenvalue μn is
n2/l2 and the corresponding eigenfunction φn(x) is cos(nx/l) for all n ∈N0 and x ∈ Ω . Our
results in this section can also be adapted to higher spatial domains. By cases (A) and (B)
of Theorem 2.2, the potential bifurcating value should satisfy α ∈ ((1 + m)2/2, 1 + m) with
m < 1. To study Hopf bifurcation near E∗, we need to verify the condition under which
the corresponding characteristic equations of the linearized operator of system (1.2) have
a pair of simply pure imaginary roots, all other eigenvalues have non-zero real parts, and
the transversality condition holds.

From [31], if α∗ is a Hopf bifurcation value, then there exists k ∈N0 such that

TRk
(
α∗) = 0, DETk

(
α∗) > 0, and

TRj
(
α∗) �= 0, DETj

(
α∗) �= 0, for j ∈N0/{k},

(3.1)

and for the unique pair of complex eigenvalues δ(α) ± iω(α) near the imaginary axis,

δ′(α∗) �= 0, (3.2)

where TRk(α) and DETk(α) are defined in (2.7).
If k = 0, then TR0(α) = K1 – β , DET0(α) = βθ > 0. Let TR0(α) = 0, then α = α0 := (1 +

β)(1+m)2/2 with β < (1–m)/(1+m), and TRj(α0) < 0, DETj(α0) > 0 if d1/d2 > d̃ for all j ∈N,
which implies that there exists a pair of simple pure imaginary roots of the characteristic
equations of system (2.5) at E∗, and other eigenvalues has negative real parts.

We now consider α0 < α < 1 + m. It follows from TRk(α) = 0 that α = αk := α0 +
(1 + m)2(d1 + d2)k2/(2l2). In this case, for each j ∈ N0/{k}, TRj(αk) �= 0, DETj(αk) > 0 if
d1/d2 > d̃. It is noted that there are only finite positive integers k satisfying (3.1) since
αk ∈ (α0, 1 + m). Then the maximum positive integer, denoted as N1, is the integer part of
l
√

(1 – m – β(1 + m))/((d1 + d2)(1 + m)).
We next verify the transversality condition (3.2). If δ(α) ± iω(α) are the roots of (2.5),

then

δ(α) =
TRk(α)

2
= –

(d1 + d2)
2

k2

l2 +
α

(1 + m)2 –
1 + β

2
, ω(α) =

√
DETk(α) – δ2(α),
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and

δ′(α∗) =
1

(1 + m)2 > 0,

where α∗ represents one of the bifurcating values αk with k ∈ [0, N1].
Summarizing our analysis above, we obtain the following conclusion.

Theorem 3.1 Assume that m < 1 and β < (1 – m)/(1 + m). If d1/d2 > d̃, then system (1.2)
undergoes a Hopf bifurcation near E∗ at α = αk , where

αk =
(1 + m)2

2

(

1 + β + (d1 + d2)
k2

l2

)

, k ∈ [0, N1],

and N1 is the integer part of l
√

(1 – m – β(1 + m))/((d1 + d2)(1 + m)). Moreover, the spatial
homogeneous bifurcating periodic solutions bifurcate from α = α0, and the spatial non-
homogeneous bifurcating periodic solutions bifurcate from α = αk with k ∈ [1, N1].

We now establish the computational formulas for determining the properties of Hopf bi-
furcation, including the bifurcating direction and stability of periodic solutions bifurcating
from E∗ at α = αk with k ∈ [0, N1], by using the normal form theory and the center mani-
fold argument presented in [7, 31]. Fix k ∈ [0, N1], let α̃ = αk , ω̃ = ω(αk), θ̃ = 1 – α̃/(1 + m),
and λ = ±iω(αk) = ±iω̃ be the purely imaginary roots. By making the change of variables
u(x, t) – θ̃ −→ u(x, t) and v(x, t) – θ̃ −→ v(x, t), system (1.2) can be rewritten as an abstract
form at α = α̃ by

U̇ = L(α̃)U + F(α̃, U), (3.3)

where U = (u, v)T ,

L(α̃) =

(
d1 0
0 d2

)

� +

(
K̃1 K̃2

β –β

)

=

(
d1 0
0 d2

)

� +

(
2α̃

(1+m)2 – 1 α̃(m–1)
(1+m)2

β –β

)

,

F(α̃, U) =

(
F1(α̃, U)
F2(α̃, U)

)

,

(3.4)

and

F1(α̃, U) =
A1

(1 + m)2((1 + m)θ̃2 + u2 + mv2 + 2θ̃ (u + mv))
,

F2(α̃, U) = β(v + θ̃ )
(

1 –
v + θ̃

u + θ̃

)

– βu + βv –
β(u – v)2

u + θ̃
,

A1 = –(1 + m)3θ̃4 +
(
2(1 + m)2 – 2α̃

)
u3 – (1 + m)2u4 + 2m

(
(1 + m)2 – α̃

)
uv2

– α̃(m – 1)mv3 – mu2v
(
α̃(3 + m) + (1 + m)2v

)
– (1 + m)2θ̃3(α̃ – 1 + 4u

+ m(2u + 2v – 1)
)

– θ̃
(
4(1 + m)2u3 + 2mu

(
α̃(5 + m) + (1 + m)2(v – 2)

)
v
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– m
(
2α̃(1 – m) + (1 + m)2)v2 + u2(α̃

(
5 + 2m + m2) + (1 + m)2(2mv – 5)

))

– (1 + m)θ̃2((6 + 7m + m2)u2 + m
(
2α̃ + (1 + m)(–2 + v)

)
v

+ 2u
(
α̃(2 + m) + (1 + m)(2mv – 2 – m)

))
.

Define 〈·, ·〉 to be the complex-valued L2 inner product on a Hilbert space XC as

〈U1, U2〉 =
∫ lπ

0
(ū1u2 + v̄1v2) dx, Ui = (ui, vi)T ∈XC := X + iX with i = 1, 2.

Let

L∗(α̃) =

(
d1� + K̃1 β

K̃2 d2� – β

)

.

Then the corresponding eigenfunctions of L(α̃) and L∗(α̃) for eigenvalues λ = ±iω̃ are

q = q(x) = (1, bk)T cos(kx/l), q∗ = q∗(x) =
(
a∗

k , b∗
k
)T

cos(kx/l),

respectively, where

bk =
d1μk – K̃1

K̃2
+

ω̃

K̃2
i, a∗

k =
1

2Γk
+

K̃1 – d1μk

2ω̃Γk
i,

b∗
k =

K̃2

2ω̃Γk
i, Γk =

∫ lπ

0
cos2

(
k
l

x
)

dx,

and q and q∗ satisfy 〈q∗, q〉 = 1 and 〈q∗, q̄〉 = 0.
Let X = XC ⊕XS with

XC = {zq + z̄q̄ : z ∈C}, XS =
{

U ∈X :
〈
q∗, U

〉
= 0
}

.

Thus, for any U = (u, v)T ∈ X, there exist z ∈ C and w = (w1, w2)T ∈ XS such that U =
zq + z̄q̄ + w. Substituting it into system (3.3), we get

⎧
⎨

⎩

ż = iω̃z + 〈q∗, F0〉,
ẇ = L(α̃)w + H(z, z̄, w),

(3.5)

where

H(z, z̄, w) = F0 –
〈
q∗, F0

〉
q –
〈
q̄∗, F0

〉
q̄, (3.6)

and

F0 = F(α̃, zq + z̄q̄ + w) =
1
2

QUU +
1
6

CUUU + O
(|U|4),

here,

Qqq = (ck , dk)T cos2(kx/l), Qqq̄ = (ek , fk)T cos2(kx/l), Cqqq̄ = (gk , hk)T cos3(kx/l)
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and

ck = –2 +
2α̃(m – 3)m(ω̃2 – (θ̃ + d1μk)2)

K̃2
2 (1 + m)3θ̃

+ i
4α̃m(3 – m)(θ̃ + d1μk)ω̃

K̃2
2 (1 + m)3θ̃

,

dk =
2β(ω̃2 – (θ̃ + d1μk)2)

K̃2
2 θ̃

– i
4β(θ̃ + d1μk)ω̃

K̃2
2 θ̃

,

ek =
2α̃(3 – m)m((θ̃ + d1μk)2 + ω̃2)

K̃2
2 (1 + m)3θ̃

– 2,

fk = –
2β((θ̃ + d1μk)2 + ω̃2)

K̃2
2 θ̃

,

gk =
–2α̃m

K̃3
2 (1 + m)4θ̃2

(
3(θ̃ + d1μk)2(4K̃2(1 – m) + K̃1

(
1 + (m – 6)m

)

– d1
(
1 + (m – 6)m

)
μk
)

+
(
2K̃2
(
3 + (m – 8)m

)
+ 3K̃1

(
1 + (m – 6)m

)

– 3d1
(
1 + (m – 6)m

)
μk
)
ω̃2) +

i2α̃mω̃

K̃3
2 (1 + m)4θ̃2

(
K̃2

2
(
9 + m2 – 14m

)

+ 4K̃1K̃2
(
3 + (m – 8)m

)
+ 3K̃2

1
(
1 + (m – 6)m

)
– 4d1K̃2

(
3 + (m – 8)m

)
μk

– 6d1K̃1
(
1 + (m – 6)m

)
μk + 3

(
1 + (m – 6)m

)(
d2

1μ
2
k + ω̃2)),

hk =
2β(3(θ̃ + d1μk)2 + ω̃2)

K̃2
2 θ̃2

+
4β(θ̃ + d1μk)ω̃

K̃2
2 θ̃2

i.

Denote

H(z, z̄, w) =
H20

2
z2 + H11zz̄ +

H02

2
z̄2 + O

(|z| · |w|). (3.7)

Then comparing the coefficients of the same order of z and z̄ in (3.6) and (3.7), we have

H20 =

⎧
⎨

⎩

0, k = 0,

(ck dk)T cos2( k
l x), k ∈ N,

H11 =

⎧
⎨

⎩

0, k = 0,

(ek fk)T cos2( k
l x), k ∈ N.

Let

w =
w20

2
z2 + w11zz̄ +

w02

2
z̄2 + O

(|z|3).

Then, by [7, 31], we have

w20 =

⎧
⎨

⎩

–1
3ω̃2

( (β+d2μk +2ω̃i)ck +K̃2dk
βck+(d1μk –K̃1+2ω̃i)dk

)
cos2( k

l x), k ∈N,

0, k = 0,

w11 =

⎧
⎨

⎩

1
ω̃2

( (β+d2μk )ek +K̃2fk
βek +(d1μk –K̃1)fk

)
cos2( k

l x), k ∈N,

0, k = 0.
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Denote

ż = iω̃z +
∑

2≤i+j≤3

gij

i!j!
ziz̄j + O

(|z|4). (3.8)

Then, comparing (3.5) and (3.8), when k = 0, we have Qw11q = Qw20q̄ = 0,

g20 =
1

K̃2
2 (1 + m)3θ̃

(
α̃(m – 3)m

(
K̃2

1 – K̃2
2 + ω̃2) – 2βK̃2θ̃ (1 + m)3 – K̃2

2 (1 + m)3θ̃
)

+
i

K̃2
2 (1 + m)3ω̃θ̃

(
βK̃2(1 + m)3(θ̃2 – ω̃2)) + α̃m(m – 3)

(
K̃1θ̃

2 + (K̃1 + 2K̃2)ω̃2)

+ K̃1K̃2
2 (1 + m)3θ̃ ),

g11 = –1 –
α̃(m – 3)m(θ̃2 + ω̃2)

K̃2
2 (1 + m)3θ̃

+
i

K̃2
2 (1 + m)3ω̃θ̃

((
θ̃2 + ω̃2)(α̃mK̃1(m – 3)

+ βK̃2(1 + m)3) + K̃1K̃2
2 (1 + m)3θ̃

)
,

g21 =
8(3(1 – m)m + β(1 + 5m – 2m2))

(1 + β)(1 + m)2(β(1 – m2) – (m – 1)2)
+ i

2β(β(1 + m + 4m2) + (4m2 – 3m – 3))
(1 + β)(β(1 + m) + m – 1)(1 – m2)ω̃)

,

and when k ∈N, we get g20 = g11 = g02 = 0 and

g21 = 2
〈
q∗, Qw11q

〉
+
〈
q∗, Qw20q̄

〉
+
〈
q∗, Cqqq̄

〉
= g21R + ig21I ,

where

g21R =
–1

2K̃3
2 (1 + m)6ω̃2θ̃2

(–3β2K̃2(1 + m)6(θ̃ + d1μk)
(
(θ̃ + d1μk)2 + ω̃2)

+ α̃2(m – 3)2m2((θ̃ + d1μk)2 + ω̃2)(2d2
1μ

2
k + 2ω̃2 – 2K̃1θ̃

–
(
5d2K̃2 + 2d1(2K̃1 + K̃2)

)
μk
)

+ K̃3
2 (2K̃1 – 2d1μk – 5d2μk)θ̃2(1 + m)6

+ αK̃2m(1 + m)2(3K̃1
(
K̃2
(
9 + m2 – 14m

)
– 2d1

(
3 + m2 – 8m

)
μk
)
ω̃2

+ 3ω̃2(–6K̃2
2 (m – 1) – d1K̃2

(
9 + m2 – 14m

)
μk +

(
3 + (m – 8)m

)(
d2

1μ
2
k + ω̃2))

+ 2K̃1(m – 3)(1 + m)
(
K̃2

1 + 2K̃2
2 – (6d1 + 5d2)K̃2μk + d1μ

2
k(3d1 + 7d2) + ω̃2)θ̃

– (m – 3)(1 + m)
(
μk
(
2(2d1 + 5d2)K̃2

2 – 2d1(3d1 + 5d2)K̃2μk

+ d2
1(2d1 + 7d2)μ2

k
)

+ (2d1μk – 2K̃2 + 7d2μk)ω̃2)θ̃

+ K̃2
1
(
3
(
3 + (m – 8)m

)
ω̃2 + (m – 3)(1 + m)θ̃ (6K̃2 – 6d1μk – 7d2μk)

)
)

– β(1 + m)3(α̃(m – 3)m
((

(θ̃ + d1μk)2 + ω̃2)(2K̃2
1 + 3K̃2

2 – 5(d1 + d2)K̃2μk

+ 2d2
1μ

2
k + K̃1(5K̃2 – 4d1μk) + 2ω̃2) + K̃2

(
7ω̃2 – 7K̃1 – 5K̃2

+ 7d1μk
)
(θ̃ + d1μk)

)
θ̃
)

+ K̃2
2 (1 + m)3(–3(–θ̃ – d1μk)ω̃2 +

(
7K̃2

1 + 10K̃1K̃2

+ 3K̃2
2 –
(
7d2K̃2 + 2d1(7K̃1 + 5K̃2)

)
μk + 7d2

1μ
2
k + 7ω̃2)θ̃ + 5K̃2θ̃

2))),

g21I =
–1

4K̃3
2 (1 + m)6ω̃3θ̃2

(2β2K̃2(1 + m)6(5(θ̃ + d1μk)4 + 7(θ̃ + d1μk)2ω̃2 + 2ω̃4)

+ 2α̃2m2(m – 3)2((θ̃ + d1μk)2 + ω̃2)(2K̃2ω̃
2 + 5d2μk

(
(d1μk – K̃1)(θ̃ + d1μk)
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+ ω̃2)) + 2K̃3
2
(
2ω̃2 + 5d2μk(K̃1 – d1μk)

)
(1 + m)6θ̃2 – α̃m(1 + m)2(9K̃4

1
(
1

+ (m – 6)m
)
ω̃2 + 9d4

1
(
1 + m(m – 6)

)
μ4

kω̃
2 + 3K̃2

2
(
9 + (m – 14)m

)
ω̃4

+ 9
(
1 + m2 – 6m

)
ω̃6 – 2K̃2(m – 3)(1 + m)ω̃2(5d2K̃2μk + 4K̃2

2 – 2ω̃2)θ̃

+ 2d3
1K̃2μ

3
k
(
–9
(
3 + m2 – 8m

)
ω̃2 + 5d2(m – 3)(1 + m)μk θ̃

)
+ 2K̃3

1
(
9
(
K̃2
(
3 + m2

– 8m
)

– 2d1
(
1 + (m – 6)m

)
μk
)
ω̃2 – 5d2K̃2θ̃ (m – 3)(1 + m)μk

)
+ d2

1μ
2
kω̃

2(9K̃2
2
(
9

+ m2 – 14m
)

+ 18
(
1 + m2 – 6m

)
ω̃4 – 2K̃2(m – 3)(1 + m)θ̃

(
15d2K̃2μk – 2ω̃2))

+ K̃2
1
(
9ω̃2(K̃2

2
(
9 + m2 – 14m

)
– 6d1K̃2

(
3 + m2 – 8m

)
μk + 2

(
1 + m2

– 6m
)(

3d2
1μ

2
k + ω̃2)) – 2K̃2

(
m2 – 2m – 3

)(
15d2μk(K̃2 – d1μk) – 2ω̃2)θ̃

)

+ 2d1K̃2μk
(
18ω̃2K̃2

2 (m – 1) – 9
(
3 + m2 – 8m

)
ω̃4 + (m – 3)(1 + m)

(
4K̃2ω̃

2

+ 5d2μk
(
2K̃2

2 + ω̃2))θ̃
)

– 2K̃1
(
18d1

(
1 + m2 – 6m

)
μkω̃

2(d2
1μ

2
k + ω̃2)

– 9K̃2
(
3 + m2 – 8m

)
ω̃2(3d2

1μ
2
k + ω̃2) + K̃2μk(m – 3)(1 + m)

(
15d2

1d2μ
2
k

+ (4d1 + 5d2)ω̃2)θ̃ + 2K̃3
2
(
9(m – 1)ω̃2 + 5d2

(
m2 – 2m – 3

)
μk θ̃

)

+ K̃2
2
(
9d1
(
9 + m2 – 14m

)
μkω̃

2 + 2(m – 3)(1 + m)θ̃
(
2ω̃2 – 15d1d2μ

2
k
)))

)

+ β(1 + m)3(K̃2
2 (1 + m)3(9(θ̃ + d1μk)2ω̃2 + 3ω̃4 + 10

(
–(θ̃ + d1μk)

(
K̃2

1

+ K̃1(K̃2 – 2d1μk) + μk
(
(d2 – d1)K̃2 + μkd2

1
))

+ (K̃1 – d1μk)ω̃2)θ̃

+ 10K̃2(K̃1 – d1μk)θ̃2) + 2α̃(m – 3)m(5K̃5
1 + 5K̃4

1 (4K̃2 – 5d1μk) – 5μk(d1μk

– K̃2)3(–d1K̃2 + d2K̃2 + d2
1μk
)

+ (K̃2 – d1μk)
(
K̃2

2 + (5d2 – 11d1)K̃2μk

+ 10d2
1μ

2
k
)
ω̃2 + (K̃2 – 5d1μk)ω̃4 – K̃2

(
(2K̃2 + 5d1μk)ω̃2 + 5d1μk(K̃2 – d1μk)2)θ̃

+ 5K̃3
1
(
6K̃2

2 + 2
(
ω̃2 + 5d2

1μ
2
k
)

+ K̃2
(
(d2 – 16d1)μk + θ̃

))
+ K̃2

1
(
20K̃3

2

– 10d1μk
(
5d2

1μ
2
k + 3ω̃2) + 3K̃2

(
7ω̃2 + 5d1μk(8d1μk – d2μk – θ̃ )

)

+ 5K̃2
2
(
3(d2 – 6d1)μk + 2θ̃

))
+ K̃1

(
5K̃4

2 + 5
(
5d4

1μ
4
k + 6d2

1μ
2
kω̃

2 + ω̃4)

+ 2K̃2
2
(
6ω̃2 – 5d1μk

(
2θ̃ + 3(3d1 – d2)μk

))
+ 5K̃3

2
(
(3d2 – 8d1)μk + θ̃

)

+ K̃2
(
15d2

1μ
2
k(d2μk + θ̃ ) – 80d3

1μ
3
k – 42d1μkω̃

2 + 5ω̃2(d2μk + θ̃ )
))

))).

Let

c1(0) =
i

2ω̃

(

g20g11 – 2|g11|2 –
|g02|2

3

)

+
g21

2
, μ∗

2 = –
Re(c1(0))
Re(λ′(α̃))

,

T2 = –
1
ω̃

(
Im
(
c1(0)

)
+ μ2

(
Im
(
λ′(α̃)

)))
, β∗

2 = 2 Re
(
c1(0)

)
.

(3.9)

Then the coefficients in (3.9) determine the properties of the Hopf bifurcation as follows:
(i) μ∗

2 determines the direction of the Hopf bifurcation: if μ∗
2 > (<)0, then the direction

of the Hopf bifurcation is forward (backward), that is, the bifurcating periodic
solutions exist with α > (<)α̃;

(ii) β∗
2 determines the stability of the bifurcating periodic solutions on the center

manifold: if β∗
2 < (>)0, then the bifurcating periodic solutions are orbital

asymptotically stable (unstable);
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(iii) T2 determines the period of the bifurcating periodic solutions: if T2 > (<)0, then the
period increases (decreases).

In particular, when k = 0, it follows from (3.9) that

c1(0) =
12m

(1 + m)2(β(1 + m) – (1 – m))
+ i

β

6(1 + β)(m – 1)(1 + m)2ω̃3

(
2(1 – 3m)2

+ β2(7 + m(6 + m)(3 + 8m)
)

+ β
(
m
(
–26 + m(53 + 8m)

)
– 7
))

, (3.10)

and

μ∗
2 =

12m
(1 – m) – β(1 + m)

> 0,

β∗
2 =

24m
(1 + m)2(β(1 + m) – (1 – m))

< 0,

T2 =
2(β2(m(–36 + m(–51 + 10m)) – 7) + β(7 + m(8 + m(–53 + 10m))) + 2(1 – 3m)2)

3β(1 + β)(m – 1)(1 + m)2(β(1 + m) – 1 + m)2 .

This means that when α = α0, system (1.2) undergoes a supercritical Hopf bifurcation and
the bifurcating periodic solution is spatial homogeneous and orbital asymptotically stable.

Remark 3.1 Compared with [33], here the reason for using α as a bifurcating parameter
is that we can give a more detailed analysis of Hopf bifurcation when the spatial homoge-
neous bifurcating periodic solution comes out, including the accurate bifurcation direc-
tion, the certain stability of bifurcating periodic solution, and the computational formula
of the tendency of the period.

In order to illustrate our results, we do some numerical simulations for different α. Let

d1 = 3, d2 = 0.5, l = 2, β = 0.1, m = 0.4 < 1,

u0 = 0.2 + 0.1 cos x, v0 = 0.2 + 0.1 sin x.

A straightforward calculation leads to the first bifurcating value α0 = 1.078. When α =
0.578 < α0, Fig. 2 shows that the solution of system (1.2) converges to E∗ = (0.587, 0.587).
When α = α0, Fig. 3 shows that system (1.2) undergoes a Hopf bifurcation and the peri-
odic solution bifurcates from E∗ = (0.23, 0.23). In this case, using the formula of (3.10),

Figure 2 E∗ = (0.587, 0.587) is locally asymptotically stable with α = 0.578
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Figure 3 System (1.2) undergoes a Hopf bifurcation near E∗ = (0.23, 0.23) with α = 1.078

c1(0) = –5.324 – 1.965i and T2 = 3.244 > 0 imply that the period of the bifurcating periodic
solution increases.

4 Nonconstant positive solutions
In this section, we establish the nonexistence and existence of nonconstant positive solu-
tion (u(x), v(x)) ∈ [C2(Ω) ∩ C1(Ω̄)]2 of system (1.2), where (u(x), v(x)) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

d1�u + u(1 – u) – αu2v
u2+mv2 = 0, x ∈ Ω ,

d2�v + βv(1 – v
u ) = 0, x ∈ Ω ,

∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω .

(4.1)

4.1 A priori estimates of nonnegative solutions
In this subsection, we derive a priori estimates of nonnegative solutions of system (4.1).
We first introduce some known results.

Lemma 4.1 (Maximum principle [21, 22]) Assume that f ∈ C(Ω) and cj ∈ C(Ω) with j =
1, 2, . . . , n.

(i) If ω ∈ C1(Ω̄) ∩ C2(Ω) satisfies

⎧
⎨

⎩

�ω +
∑n

j=1 cj(x)ωxj + f (x) ≥ 0, x ∈ Ω ,

∂νω ≤ 0, x ∈ ∂Ω

and ω(x0) = maxx∈Ω̄ ω(x), then f (x0) ≥ 0.
(ii) If ω ∈ C1(Ω̄) ∩ C2(Ω) satisfies

⎧
⎨

⎩

�ω +
∑n

j=1 cj(x)ωxj + f (x) ≤ 0, x ∈ Ω ,

∂νω ≥ 0, x ∈ ∂Ω

and ω(x0) = minx∈Ω̄ ω(x), then f (x0) ≤ 0.

Lemma 4.2 (Harnack inequality [20, 22]) If u ∈ C2(Ω) ∩ C1(Ω̄) is a positive solution of

⎧
⎨

⎩

�u(x) + b(x)u(x) = 0, x ∈ Ω ,

∂νu = 0, x ∈ ∂Ω ,
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where b ∈ C(Ω) ∩ L∞(Ω), then there exists a positive constant L which depends only on M,
satisfying ‖b‖∞ ≤ M, such that

max
x∈Ω̄

u(x) ≤ L min
x∈Ω̄

u(x).

We now establish a priori estimates of nonnegative solutions of system (4.1).

Theorem 4.1 If (u(x), v(x)) is a positive solution of system (4.1), then

0 < min
x∈Ω̄

u(x) ≤ min
x∈Ω̄

v(x) ≤ max
x∈Ω̄

v(x) ≤ max
x∈Ω̄

u(x) ≤ 1.

Proof Assume that (u(x), v(x)) is a positive solution of system (4.1). From the first equation
of system (4.1), we have

d1�u + u(1 – u) =
αu2v

u2 + mv2 ≥ 0.

Let u(x0) = maxx∈Ω̄ u(x). From Lemma 4.1, we have u(x0)(1 – u(x0)) ≥ 0, that is,
maxx∈Ω̄ u(x) ≤ 1.

Let v(x1) = maxx∈Ω̄ v(x). Then we have

0 ≤ βv(x1)
(

1 –
v(x1)
u(x1)

)

≤ βv(x1)
(

1 –
v(x1)
u(x0)

)

,

that is, maxx∈Ω̄ v(x) ≤ maxx∈Ω̄ u(x).
Let v(x2) = minx∈Ω̄ v(x). It follows from Lemma 4.1 that

βv(x2)
(

1 –
v(x2)
u(x2)

)

≤ 0,

that is, minx∈Ω̄ v(x) ≥ u(x2) ≥ minx∈Ω̄ u(x). �

Theorem 4.2 Assume that d̄ is a positive constant. If d1 > d̄, then there is a positive con-
stant L such that each positive solution (u(x), v(x)) of system (4.1) satisfies

0 < max
x∈Ω̄

u(x) ≤ L min
x∈Ω̄

u(x).

Proof Let

b(x) =
u(x)
d1

(

1 – u(x) –
αu(x)v(x)

u2(x) + mv2(x)

)

.

Then the first equation of system (4.1) can be written as

�u(x) + b(x)u(x) = 0. (4.2)

From Theorem 4.1, we have b(x) ∈ C(Ω) ∩ L∞(Ω). It follows from Lemma 4.2 that the
conclusion of Theorem 4.2 holds. �
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From Theorems 4.1 and 4.2, we conclude that there exists a positive constant κ such
that

min
x∈Ω̄

u(x) ≥ κ , min
x∈Ω̄

v(x) ≥ κ (4.3)

for any d1 ≥ d̄ and any positive solution (u(x), v(x)) of system (4.1). By using the standard
Schauder theory for elliptic equations, we also conclude that there exists a positive con-
stant κ̄ such that

‖u‖2+γ ≤ κ̄ , ‖v‖2+γ ≤ κ̄ (4.4)

for all d1, d2 ≥ d̂ and each positive solution (u, v) ∈ C2+γ (Ω̄) × C2+γ (Ω̄) of system (4.1),
where d̂ is a positive constant and γ ∈ (0, 1).

4.2 Nonexistence of nonconstant positive solutions
In this subsection, we explore the nonexistence of nonconstant positive solutions of sys-
tem (4.1) for different diffusion coefficients d1, d2.

We first show that if diffusion coefficients of predator and prey are both sufficiently large,
then system (4.1) has no nonconstant positive solutions. Let ū = |Ω|–1 ∫

Ω
u(x) dx and v̄ =

|Ω|–1 ∫
Ω

v(x) dx for any positive solution (u, v) of system (4.1). It is clear that
∫

Ω
(u – ū) dx =

∫

Ω
(v – v̄) dx = 0. Multiplying the first equation of system (4.1) by u – ū and the second

equation of system (4.1) by v – v̄, then integrating on Ω , respectively, we have

d1

∫

Ω

∣
∣∇(u – ū)

∣
∣2 dx =

∫

Ω

(u – ū)u(1 – u) dx –
∫

Ω

(u – ū)
αu2v

u2 + mv2 dx

= L1(u, ū) + L2(u, ū, v), (4.5)

d2

∫

Ω

∣
∣∇(v – v̄)

∣
∣2 dx = β

∫

Ω

(v – v̄)
[

v
(

1 –
v
u

)

– v̄
(

1 –
v̄
ū

)]

dx

= β

∫

Ω

(v – v̄)2 dx + L3(u, v, v̄), (4.6)

and the following.

Theorem 4.3 Let d0 be a positive constant. Then system (4.1) has no nonconstant positive
solutions for any d1, d2 > d0.

Proof Assume that (u, v) is a positive solution of system (4.1). From Theorem 4.1 and (4.3),
we have κ ≤ u, v ≤ 1 and κ ≤ ū, v̄ ≤ 1 for any x ∈ Ω̄ . Then

L1(u, ū) =
∫

Ω

(u – ū)
[
u(1 – u) – ū(1 – ū)

]
dx

=
∫

Ω

(u – ū)2(1 – u – ū) dx

≤
∫

Ω

(u – ū)2 dx,
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L2(u, ū, v) = –α

∫

Ω

(u – ū)
(

u2v
u2 + mv2 –

ū2v̄
ū2 + mv̄2

)

dx

= –α

∫

Ω

(u – ū)2mvv̄2(u + ū)
(u2 + mv2)(ū2 + mv̄2)

dx

– α

∫

Ω

(u – ū)(v – v̄)ū2

(u2 + mv2)(ū2 + mv̄2)
(
u2 – mvv̄

)
dx

≤ α

∫

Ω

(u – ū)(v – v̄)ū2

(u2 + mv2)(ū2 + mv̄2)
(
mvv̄ – u2)dx

≤ α

(1 + m)κ4

∫

Ω

(u – ū)(v – v̄) dx

≤ B1

(∫

Ω

(u – ū)2 dx +
∫

Ω

(v – v̄)2 dx
)

,

L3(u, v, v̄) = –β

∫

Ω

(v – v̄)
(

v2

u2 –
v̄2

ū2

)

dx

= –β

∫

Ω

(v – v̄)2 v + v̄
u

dx + β

∫

Ω

v̄2

uū
(u – ū)(v – v̄) dx

≤ B2

(∫

Ω

(u – ū)2 dx +
∫

Ω

(v – v̄)2 dx
)

,

where B1 = α/(2(1 + m)κ4) and B2 = β/(2κ2). It follows from (4.5) and (4.6) that

d1

∫

Ω

∣
∣∇(u – ū)

∣
∣2 dx ≤ (1 + B1)

∫

Ω

(u – ū)2 dx + B1

∫

Ω

(v – v̄)2 dx (4.7)

and

d2

∫

Ω

∣
∣∇(v – v̄)

∣
∣2 dx ≤ (β + B2)

∫

Ω

(v – v̄)2 dx + B2

∫

Ω

(u – ū)2 dx. (4.8)

Combining (4.7) and (4.8) and applying the Poincaré inequality, we have

d1

∫

Ω

∣
∣∇(u – ū)

∣
∣2 dx + d2

∫

Ω

∣
∣∇(v – v̄)

∣
∣2 dx

≤ (1 + B1 + B2)
∫

Ω

(u – ū)2 dx + (β + B1 + B2)
∫

Ω

(v – v̄)2 dx

≤ B
μ1

(∫

Ω

∣
∣∇(u – ū)

∣
∣2 dx +

∫

Ω

∣
∣∇(v – v̄)

∣
∣2 dx

)

,

where B = max{1 + B1 + B2,β + B1 + B2}. If min{d1, d2} > d0 := B/μ1, then ∇(u – ū) = ∇(v –
v̄) = 0 for any x ∈ Ω , which implies that u and v are both constants when d1, d2 > d0. This
completes the proof. �

We now prove that if the ability of the predators to hunt is strong and the predators move
slow or the preys move fast, then system (4.1) has no nonconstant positive solutions.

Lemma 4.3 If (u, v) is a nonconstant positive solution of system (4.1), then

0 < η̄ := min
x∈Ω̄

v(x)
u(x)

< 1.
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Proof If the conclusion is not true, then v(x) ≥�≡ u(x) for any x ∈ Ω̄ . Integrating the second
equation of system (4.1) on Ω , we have

0 = β

∫

Ω

v(x)
(

1 –
v(x)
u(x)

)

dx < 0,

which is a contradiction. �

Theorem 4.4 If α ≥ 1 + m and d2/d1 ≤ β , then system (4.1) has no nonconstant positive
solutions.

Proof Denote yη(x) = v(x) – ηu(x) for any η ∈ (0, 1] and

δ(u, yη,η) =
1
d2

β(yη + ηu)
(

1 –
yη + ηu

u

)

–
η

d1

(

u(1 – u) –
αu2(yη + ηu)

u2 + m(yη + ηu)2

)

.

Then

δ(u, 0,η) = ηu
[

β

d2
(1 – η) –

1
d1

(

1 – u –
αη

1 + mη2

)]

= ηuρ(u,η),

where

ρ(u,η) =
β

d2
(1 – η) –

1
d1

(

1 – u –
αη

1 + mη2

)

.

Note that if d2/d1 ≤ β and α ≥ 1 + m, then

ρ(u, 0) =
u
d1

+
β

d2
–

1
d1

> 0, ρ(u, 1) =
u
d1

+
1
d1

(
α

1 + m
– 1
)

> 0

and

ρ ′
η(u,η) =

u
d1

+
1

d1d2(1 + mη2)2

(
–d1βm2η4 + (2d1β – d2α)mη2 + d2α – d1β

)
> 0,

ρ ′
u(u,η) =

1
d1

> 0

for any u > 0 and η ∈ (0, 1], which means δ(u, 0,η) > 0 for any u > 0 and η ∈ (0, 1].
It follows from Lemma 4.3 that there exists x̄ ∈ Ω̄ such that 0 < η̄ = u(x̄)/v(x̄) < 1. Let

yη̄(x) = v(x) – η̄u(x). Then

⎧
⎨

⎩

–�yη̄ = δ(u, yη̄, η̄) > 0, x ∈ Ω ,

∂νyη̄ ≥ 0, x ∈ ∂Ω .
(4.9)

From the strong maximum principle and Hopf lemma, we get yη̄(x) > 0 on Ω̄ , which is
contrary to yη̄(x̄) = 0. Therefore, system (4.1) has no nonconstant positive solutions. �
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We next show that if the ability of the predators to hunt is weak and the preys move fast,
then system (4.1) has no nonconstant positive solution. For 0 < γ < 1, we let

Y1 =
{

u ∈ Cγ (Ω̄) :
∫

Ω

u dx = 0
}

,

Y2 =
{

u ∈ C2+γ (Ω̄) : ∂νu = 0 on ∂Ω
}

, Y3 = Y1 ∩Y2,

u = τ + ω with τ ∈ R and ω ∈Y3. Let ξ = d–1
1 and

h1(ξ , τ ,ω, v) =
1

|Ω|
∫

Ω

[

(τ + ω)(1 – τ – ω) –
α(τ + ω)2v

(τ + ω)2 + mv2

]

dx,

h2(ξ , τ ,ω, v) = �ω + ξ (τ + ω)(1 – τ – ω) –
ξα(τ + ω)2v

(τ + ω)2 + mv2 – ξ f1(ξ , τ ,ω, v),

h3(ξ , τ ,ω, v) = d2�v + βv
(

1 –
v

τ + ω

)

,

H(ξ , τ ,ω, v) = (h1, h2, h3)T (ξ , τ ,ω, v).

It is clear that H : R2 ×Y3 ×Y2 →R×Y1 × Cγ (Ω̄) and (u, v) is a solution of system (4.1)
if and only if H(ξ , τ ,ω, v) = 0. It follows that

Φ(τ ,ω, v) := H(τ ,ω,v)(0, θ , 0, θ ) =

⎛

⎜
⎝

|Ω|–1 ∫
Ω

(K1τ + K1ω + K2v) dx
�ω

d2�v – βv + βτ + βω

⎞

⎟
⎠ ,

where θ = 1–α/(1+m), K1 and K2 are defined in (2.6). A straightforward calculation yields
the following.

Lemma 4.4 Φ is an isomorphism.

Proof To obtain the conclusion, we only need to prove that

|Ω|–1
∫

Ω

(K1τ + K1ω + K2v) dx = τ̄ , (4.10)

�ω = ω̄, x ∈ Ω , ∂νω|∂Ω = 0,
∫

Ω

ω dx = 0, (4.11)
⎧
⎨

⎩

d2�v – βv = v̄ – β(τ + ω), x ∈ Ω ,

∂νv = 0, x ∈ ∂Ω
(4.12)

has a unique solution for any given (τ̄ , ω̄, v̄) ∈R×Y1 × Cγ (Ω̄).
It is easy to see that system (4.11) has a unique solution ω ∈Y3 since ω̄ ∈Y1. From (4.10)

and (4.11), we have

∫

Ω

v dx = (τ̄ – τK1)K2
–1|Ω|.
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Integrating the first equation of system (4.12) over Ω , we obtain

τ =
(∫

Ω

v̄ dx + τ̄ β|Ω|
)
(|Ω|β(K1 + K2)

)–1. (4.13)

Then system (4.12) has a unique solution v, and v satisfies

β

∫

Ω

v dx = βτ |Ω| –
∫

Ω

v̄ dx. (4.14)

This means that Φ is an isomorphism. �

Let di
1 ∈ (0, +∞) and (ui, vi) be positive solutions of system (4.1) with d1 = di

1. By using a
method similar to that mentioned in [23], we have the following lemma.

Lemma 4.5 Assume that α < 1 + m and (ui, vi) → (ũ, ṽ) uniformly on Ω̄ as di
1 → d̃1 ∈

[0, +∞]. If ũ and ṽ are positive constants, then (ũ, ṽ) = (θ , θ ).

Theorem 4.5 Assume that α < 1 + m and d̃1 � 1 is a fixed constant. Then system (4.1) has
no nonconstant positive solution for any d1 > d̃1.

Proof We claim that system (4.1) has only a positive solution (θ , θ ) in a small neighborhood
of (θ , θ ). In fact, it follows from Lemma 4.4 that Φ–1 exists and is a bounded linear operator.
By using the implicit function theorem, we conclude that there exists a constant ε > 0 such
that, for all 0 < ξ < ε, H(ξ , τ ,ω, v) = 0 has a unique positive solution (θ , 0, θ ) in the small
neighborhood Bε(θ , 0, θ ). This implies that when d1 > 1/ε, system (4.1) has only a positive
solution (θ , θ ) in Bε(θ , θ ).

Assume that (ui, vi) is the nonconstant positive solution of system (4.1) with d1 = di
1 ∈

(0, +∞) and di
1 → +∞. It follows from (4.4) that (ui, vi) → (û, v̂) in [C2(Ω̄)]2 as di

1 → +∞.
From Theorem 4.1 and (4.3), we conclude that (û, v̂) is bounded and û > 0 satisfies

–�û = 0, x ∈ Ω , ∂ν û = 0, x ∈ ∂Ω .

This means that û is a positive constant. Substituting it into the second equation of system
(4.1), we get

�v + βv(1 – v/û) = 0, x ∈ Ω , ∂νv = 0, x ∈ ∂Ω ,

which implies that v = û. It follows from Lemma 4.5 and (ui, vi) → (û, v̂) that (û, v̂) ≡ (θ , θ )
and there exists i0 such that (ui, vi) = (θ , θ ) for any i ≥ i0 and each di

1 > 1/ε. This is a con-
tradiction to that (ui, vi) is a nonconstant positive solution of system (4.1). �

4.3 Existence of nonconstant positive solutions
This subsection is devoted to investigating the existence of nonconstant positive solutions
of system (4.1) for α ∈ ((1 + m)2/2, 1 + m) by using Leray–Schauder degree theory. There
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exists a unique positive constant solution E∗ = (θ , θ ) if α < 1 + m. Let

W (U) :=

(
u(1 – u) – αu2v

u2+mv2

βv(1 – v
u )

)

(4.15)

with U = (u, v)T ∈X and (I – �)–1 be the inverse of I – �. Then system (4.1) can reduce to

G(d1, d2, U) := U – (I – �)–1{D–1W (U) + U
}

= 0, (4.16)

where I – � satisfies the homogeneous Neumann boundary condition. Frechét derivative
of system (4.16) with respect to U at (θ , θ ) is

GU (d1, d2, θ , θ ) = I – (I – �)–1{D–1WU (θ , θ ) + I
}

= 0.

Obviously, ζ is an eigenvalue of GU (d1, d2, θ , θ ) on Xi with i ∈ N0 if and only if ζ (1 + μi) is
an eigenvalue of the matrix

Li := μiI – D–1WU (θ , θ ) =

(
μi – K1/d1 –K2/d1

–β/d2 μi + β/d2

)

, (4.17)

where K1 and K2 are defined in (2.6). Then

det Li =
1

d1d2

(
d1d2μ

2
i – (d2K1 – βd1)μi + βθ

)
=

1
d1d2

S(d1, d2,μi),

where

S(d1, d2,μ) := d1d2μ
2 – (d2K1 – βd1)μ + βθ . (4.18)

In order to obtain the existence of nonconstant positive solutions of system (4.1), we
need the following two lemmas.

Lemma 4.6 If m < 1, α ∈ ((1 + m)2/2, 1 + m) and d1/d2 < d–, then S(d1, d2,μ) = 0 has two
positive roots

μ±(d1, d2) =
d2K1 – βd1 ± √

�S

2d1d2
, (4.19)

where

�S = (d2K1 – βd1)2 – 4d1d2βθ , and d– =
(
2θ + K1 – 2

√
θ (θ + K1)

)
/β .

Proof It is not difficult to show that S(d1, d2,μ) = 0 has two positive roots if and only if
�S ≥ 0 and

l(d1, d2) =
K1d2 – βd1

2d1d2
=

1
2d1d2

(

d2

(
2α

(1 + m)2 – 1
)

– d1β

)

> 0.



Chang and Zhang Advances in Difference Equations         (2019) 2019:76 Page 20 of 23

A direct calculation gives

�S = β2d2
1 + 2β

(
2αm

(1 + m)2 – 1
)

d1d2 + K2
1 d2

2

= d2
2

(

β2
(

d1

d2

)2

+ 2β

(
2αm

(1 + m)2 – 1
)(

d1

d2

)

+ K2
1

)

.

Note that if α > (1 + m)2/2 and d1/d2 < K1/β , then l(d1, d2) > 0. Combining with α < 1 + m
implies that m < 1. This means that 2αm/(1 + m)2 – 1 < 0. Let

r(d) = β2d2 + 2β

(
2αm

(1 + m)2 – 1
)

d + K2
1 .

The discriminant of the roots of r(d) = 0 is �r = 16β2θ (θ + K1) > 0. Hence, r(d) = 0 has
two positive roots

d± =
1
β

(
2θ + K1 ± 2

√
θ (θ + K1)

)
. (4.20)

When d < d– or d > d+, we get r(d) > 0. On the other hand, r(K1/β) = –4K1θ < 0. That is,
if d1/d2 < d–, then �S > 0 and l(d1, d2) > 0. This shows that (4.19) holds. �

For a fixed d1 > 0, if d2 is sufficiently large, then d1/d2 < d– holds. Let

R(d1, d2) =
{
μ ≥ 0 : μ–(d1, d2) < μ < μ+(d1, d2)

}
.

From (4.19), we have

lim
d2→+∞

μ–(d1, d2) = 0, lim
d2→+∞

μ+(d1, d2) = K1/d1 > 0. (4.21)

Lemma 4.7 ([23, 29]) If S(d1, d2,μi) �= 0 for all μi ∈ Λ, then index(G(d1, d2, ·), (θ , θ )) =
(–1)σ , where σ =

∑
μi∈R(d1,d2)∩Λ m(μi) when R(d1, d2) ∩Λ �= φ and σ = 0 when R(d1, d2) ∩

Λ = φ. In particular, if S(d1, d2,μ) > 0 for all μ ≥ 0, then σ = 0.

Theorem 4.6 Assume that d1 and β are fixed positive constants and m < 1, α ∈ ((1 +
m)2/2, 1 + m), K1/d1 ∈ (μk ,μk+1) for some k ∈ N. If

∑k
i=1 m(μi) is odd, then there exists a

positive constant d̂2 such that, for any d2 ≥ d̂2, (4.1) has at least one nonconstant positive
solution.

Proof From (4.21) and K1/d1 ∈ (μk ,μk+1), there exists d̄2 � 1 such that, for any d2 > d̄2,

0 < μ–(d1, d2) < μ1 < · · · < μk < μ+(d1, d2) < μk+1. (4.22)

It follows from Theorem 4.3 that system (4.1) has no nonconstant positive solutions for
any d1, d2 > d0. We choose d̂1 > d0 and d̂2 > max{d̄2, d0} such that K1/d̂1 < μ1 and

0 < μ–(d̂1, d̂2) < μ+(d̂1, d̂2) < μ1. (4.23)

If the conclusion of Theorem 4.6 is not true, then there is some d2 such that system (4.1)
has no nonconstant positive solutions for d2 ≥ d̂2. For t ∈ [0, 1], we let Dt = diag(td1 + (1 –
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t)d̂1, td2 + (1 – t)d̂2) and consider the following system:

⎧
⎨

⎩

–Dt�U = W (U), x ∈ Ω ,

∂νU = 0, x ∈ ∂Ω ,
(4.24)

where W (U) is defined in (4.15). It is clear that (4.24) is equivalent to

Ψ (U , t) = U – (I – �)–1{D–1
t W (U) + U

}
= 0, U ∈X.

Note that Ψ (U , 1) = G(d1, d2, U), Ψ (U , 0) = G(d̂1, d̂2, U) and

GU (d1, d2, θ , θ ) = I – (I – �)–1{diag(d1, d2)–1WU (θ , θ ) + I
}

= 0,

GU (d̂1, d̂2, θ , θ ) = I – (I – �)–1{diag(d̂1, d̂2)–1WU (θ , θ ) + I
}

= 0.

It follows from Theorems 4.5 and 4.3 that Ψ (U , 1) = 0 and Ψ (U , 0) = 0 have no noncon-
stant positive solutions.

By using (4.22) and (4.23), we have

R(d1, d2) ∩ Λ = {μ1,μ2, . . . ,μk}, R(d̂1, d̂2) ∩ Λ = φ,

which implies that

index
(
Ψ (·, 1), (θ , θ )

)
= (–1)

∑k
i=1 m(μi) = –1, index

(
Ψ (·, 0), (θ , θ )

)
= (–1)0 = 1.

From Theorem 4.1 and (4.3), we have κ/2 < u, v < 2 for any solution (u, v) of system (4.1)
on Ω̄ . Let

Θ =
{

(u, v)T ∈X : κ/2 < u, v < 2, x ∈ Ω̄
}

.

Then Ψ (U , t) �= 0 on ∂Θ for all t ∈ [0, 1]. It follows from the homotopy invariance of Leray–
Schauder degree that

deg
(
Ψ (·, 0),Θ , 0

)
= deg

(
Ψ (·, 1),Θ , 0

)
. (4.25)

Note that Ψ (U , 0) = 0 and Ψ (U , 1) = 0 have only the constant solution (θ , θ ) in Θ and
hence,

deg
(
Ψ (·, 0),Θ , 0

)
= index

(
Ψ (·, 0), (θ , θ )

)
= 1,

deg
(
Ψ (·, 1),Θ , 0

)
= index

(
Ψ (·, 1), (θ , θ )

)
= –1,

which is a contradiction to (4.25). The proof is complete. �

From Theorem 4.6, if d2/d1 is large enough and m < 1, then Fig. 4 shows that system
(4.1) has a nonconstant positive solution.
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Figure 4 The nonconstant positive solution of system (1.2). Here d1 = 0.005, d2 = 20, α = 1,m = 0.4, β = 0.1
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