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Abstract
This paper is concerned with the symmetry reductions of the (3 + 1)-dimensional
modified Zakharov–Kuznetsov equation of ion-acoustic waves in a magnetized
plasma. The direct symmetry method is applied to determine the symmetry and the
corresponding vector field. Then, the considered equation is reduced to
lower-dimensional equations with the aid of the obtained symmetry. At last, some
exact solutions of the modified Zakharov–Kuznetsov equation are found in terms of
the lower-dimensional equations.
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1 Introduction
The Zakharov–Kuznetsov (ZK) equation [1]

ut + uux + �2ux = 0 (1)

was first proposed by Zakharov and Kuznetsov to describe the evolution of weakly non-
linear ion-acoustic waves in a plasma consisting of hot isothermal electrons and cold ions
in the presence of a uniform magnetic field in the x direction. Equation (1) also appears in
many other scientific fields including geochemistry, optical fiber, and solid state physics
[2–5]. In [6], Shivamoggi provided a detailed discussion of the analytical properties of
Eq. (1). Nawaz et al. [7] found appropriate solutions for the ZK equations with fully non-
linear dispersion by the homotopy analysis method.

In 1999, Munro and Parkes considered a more realistic situation where the electrons are
non-isothermal [8]. With an appropriately modified form of the electron number density
given in [9], they showed that the reductive perturbation can lead to the following modified
Zakharov–Kuznetsov (mZK) equation:

16(ut – kux) + 30u
1
2 ux + uxxx + uxyy + uxzz = 0, (2)

where k is a positive constant. Later, in [10] and [11], Munro and Parkes addressed the
stability of solitary wave solutions and that of obliquely propagating solitary wave solu-
tions to the mZK equation, respectively. In 2016, by using an extended direct algebraic
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method, Seadaway presented traveling wave solutions to the mZK equation and analyzed
the stability for the electric fields and the electric field potentials [12].

It is noted that the mZK equation is a high dimensional nonlinear evolution equation
and, thus, the study of its reduction problem is of theoretical interest. The Lie-group
method, originally proposed by Sophus Lie, is a classical method to determine the sym-
metry reduction of partial differential equations (PDEs) [13–16]. During the past several
decades, there have been many extensions of the Lie-group method such as the nonclassi-
cal Lie group method [17], the CK direct method [18], the direct symmetry method [19],
and so on [20–24]. Among them, the direct symmetry method is an effective approach
for seeking symmetry reductions. In [25] and [26], the method was used to investigate the
Gardner–KP equation and the (2+1)-dimensional Jaulent–Miodek equation, respectively.
To our knowledge, there is no result concerning the application of the direct symmetry
method to the mZK equation partly due to its high dimension and nonlinear term u 1

2 ux,
which motivates the present work.

Based on the above discussion, this paper considers the problem of seeking symmetry
reductions of the mZK equation. In Sect. 2, with the help of the direct symmetry method,
the symmetry and the corresponding vector field of the mZK equation are determined.
In Sect. 3, by solving the symmetry equation, similarity transformations are constructed,
which are applied to reduce the mZK equation to (2 + 1)-dimensional or even (1 + 1)-
dimensional equations. In Sect. 4, some exact solutions including trigonometric function
solutions, hyperbolic function solutions, and Weierstrass function solutions of the mZK
equation are presented in terms of the lower-dimensional equations. Finally, the conclu-
sion is provided in Sect. 5.

2 Symmetry analysis
For an arbitrary nonlinear evolution equation

Φ(x, t, u, ux, ut , . . .) = 0, (3)

where ux = ∂u
∂x . The function σ (x, t, u, ux, ut , . . .) is called a symmetry [27] of Eq. (3) if it

satisfies the following equation for an arbitrary solution u(x, t):

ϕ′(u)σ = 0, (4)

where

ϕ′(u)σ =
∂ϕ

∂u
σ +

∂ϕ

∂ux
σx +

∂ϕ

∂ut
σt +

∂ϕ

∂uxx
σxx + · · · .

Note that Eq. (4) is a linear PDE of the symmetry σ . Therefore the linear combination of
symmetry σ is also a symmetry of Eq. (3).

According to Eq. (4), the symmetry of mZK equation must satisfy

16(σt – kσx) + 15u– 1
2 σux + 30u

1
2 σx + σxxx + σxyy + σxzz = 0. (5)
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Here, we set

σ (x, y, z, t, u) = a(x, y, z, t)ut + b(x, y, z, t)ux

+ c(x, y, z, t)uy + d(x, y, z, t)uz

+ e(x, y, z, t)u + g(x, y, z, t), (6)

where a, b, c, d, e, and g are functions to be determined later. With the help of Maple,
one can expand Eq. (5) by means of Eqs. (2) and (6). Then, taking the coefficients of u and
those of the derivatives of u to zero yields the following twenty-one determining equation
concerning a, b, c, d, e, and g :

uxxxxx : –
3

16
ax = 0,

uxxxxy : –
1
8

ay = 0,

uxxxxz : –
1
8

az = 0,

uxxx : 3bx – at = 0,

uxxy : 2by = 0,

uxxz : 2bz = 0,

uxyy : bx – at + 2cy = 0,

uxyz : 2cz + 2dy = 0,

uxzz : bx – at + 2dz = 0,

uxx : 3bxx = 0,

uxy : czz + cyy + 2ey = 0,

uxz : dzz + dyy + 2ez = 0,

u
1
2 ux : 15e + 30bx – 30at = 0,

u
1
2 uy : 30cx = 0,

u
1
2 uz : 30dx = 0,

u– 1
2 ux : 15g = 0,

ux : 16bt – 16kbx + 16kat + eyy + ezz = 0,

uy : 16ct = 0,

uz : 16dt = 0,

u
3
2 : 30ex = 0,

u : 16et = 0.
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Solving the above equations yields

a = δ0t + δ1,

b =
1
3
δ0x –

2
3

kδ0t + δ2,

c =
1
3
δ0y + δ3z + δ4,

d =
1
3
δ0z – δ3y + δ5,

e =
4
3
δ0,

g = 0,

where δ0, δ1, δ2, δ3, δ4, and δ5 are arbitrary constants. Hence we obtain a general symmetry
of the (3 + 1)-dimensional nonlinear mZK equation

σ = (δ0t + δ1)ut +
(

1
3
δ0x –

2
3

kδ0t + δ2

)
ux +

(
1
3
δ0y + δ3z + δ4

)
uy

+
(

1
3
δ0z – δ3y + δ5

)
uz +

4
3
δ0u. (7)

The corresponding vector field of the above symmetry can be expressed as

V = (δ0t + δ1)
∂

∂t
+

(
1
3
δ0x –

2
3

kδ0t + δ2

)
∂

∂x
+

(
1
3
δ0y + δ3z + δ4

)
∂

∂y

+
(

1
3
δ0z – δ3y + δ5

)
∂

∂z
–

4
3
δ0u

∂

∂u
, (8)

which has the following infinitesimal generators:

V1 = t
∂

∂t
+

1
3

x
∂

∂x
–

2
3

kt
∂

∂x
+

1
3

y
∂

∂y
+

1
3

z
∂

∂z
–

4
3

u
∂

∂u
,

V2 =
∂

∂t
,

V3 =
∂

∂x
,

V4 = z
∂

∂y
– y

∂

∂z
,

V5 =
∂

∂y
,

V6 =
∂

∂z
.

The commutation relation of these infinitesimal generators is given in Table 1.
The adjoint representation can be defined by Lie series

Ad
(
exp(εVi)Vj

)
= Vj – ε[Vi,Vj] +

ε2

2!
[
Vi, [Vi,Vj]

]
– · · · , (9)
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Table 1 Commutation relation of the Lie algebra of Eq. (2)

V1 V2 V3 V4 V5 V6

V1 0 2
3 kV3 –V2 – 1

3V3 0 – 1
3V5 – 1

3V6

V2 V2 – 2
3 kV3 0 0 0 0 0

V3
1
3V3 0 0 0 0 0

V4 0 0 0 0 V6 –V5

V5
1
3V5 0 0 –V6 0 0

V6
1
3V6 0 0 V5 0 0

Table 2 Adjoint representation of the Lie algebra of Eq. (2)

V1 V2 V3 V4 V5 V6

V1 V1 �1 e
ε
3 V3 V4 e

ε
3 V5 e

ε
3 V6

V2 V1 – εV2 + 2k
3 εV3 V2 V3 V4 V5 V6

V3 V1 – ε
3V3 V2 V3 V4 V5 V6

V4 V1 V2 V3 V4 �2 �3

V5 V1 – 1
3 εV5 V2 V3 V4 + εV6 V5 V6

V6 V1 – 1
3 εV6 V2 V3 V4 – εV5 V5 V6

where ε is the parameter. The adjoint representation of the Lie algebra is given in Table 2,
where �1 = eεV2 – ke ε

3 (e 2ε
3 – 1)V3, �2 = cos(ε)V5 – sin(ε)V6, and �3 = cos(ε)V6 + sin(ε)V5.

3 Symmetry reductions
In this section we apply the obtained symmetry to deduce symmetry reductions of Eq. (2).
We first solve the symmetry equation σ = 0 to obtain similarity variables and then substi-
tute them into the original mZK equation (2) to determine the corresponding reduction
equations. To obtain the similarity variables ζ , η, ω, and f (ζ ,η,ω) of Eq. (2), we have to
solve the characteristic equations of σ = 0

dt
δ0t + δ1

=
dx

1
3δ0x – 2

3 kδ0t + δ2
=

dy
1
3δ0y + δ3z + δ4

=
dz

1
3δ0z – δ3y + δ5

=
du

– 4
3δ0u

. (10)

In terms of different choices of parameters δ0, δ1, δ2, δ3, δ4, and δ5, we can get various
reduced equations of (2). In the following, let us discuss six concrete cases.

Case I. δ0 = δ1 = δ3 = 0, δ2 �= 0, δ4 �= 0, δ5 �= 0
By solving system (10), one can get similarity variables as follows:

ζ = δ4x – δ2y,

η = δ5x – δ2z,

ω = t,

u = f (ζ ,η,ω).

Using the above similarity variables, mZK equation (2) can be reduced to

16(fω – kδ4fζ – kδ5fη) + 30f
1
2 (δ4fζ + δ5fη) +

(
δ3

4 + δ2
2δ4

)
fζζζ

+
(
3δ2

4δ5 + δ2
2δ5

)
fζζη +

(
3δ4δ

2
5 + δ2

2δ4
)
fζηη +

(
δ3

5 + δ2
2δ5

)
fηηη = 0, (11)

which is a (2 + 1)-dimensional PDE.
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Case II. δ0 = δ3 = 0, δ1 �= 0, δ2 �= 0, δ4 �= 0, δ5 �= 0
In such a case, the similarity variables of Eq. (2) are given as

ζ = δ1x – δ2t,

η = δ1y – δ4t,

ω = δ1z – δ5t,

u = f (ζ ,η,ω).

Substituting the above similarity variables into Eq. (2), one can obtain

–16(δ2 + kδ1)fζ – 16δ4fη – 16δ5fω + 30δ1f
1
2 fζ + δ3

1(fζζζ + fζηη + fζωω) = 0. (12)

Case III. δ0 = δ1 = δ2 = δ4 = δ5 = 0, δ3 �= 0
In such a case, the similarity variables of Eq. (2) are

ζ = y2 + z2,

η = x,

ω = t,

u = f (ζ ,η,ω).

Substituting the above similarity variables into Eq. (2), the mZK equation can be reduced
to

16fω – 16kfη + 30f
1
2 fη + fηηη + 4ζ fζζη + 4fζη = 0. (13)

Case IV. δ0 = δ4 = δ5 = 0, δ1 �= 0, δ2 �= 0, δ3 �= 0
Solving Eq. (10), we obtain

ζ = y2 + z2,

η = δ3x – δ2 arctan

(
y
z

)
,

ω = δ3t – δ1 arctan

(
y
z

)
,

u = f (ζ ,η,ω).

Hence Eq. (2) is reduced to a (2 + 1)-dimensional variable-coefficient PDE

4ζ 2fζζη +
(
δ2

3ζ + δ2
2
)
fηηη + 30ζ f

1
2 fη – 16kζ fη + 16ζ fω + 4ζ fζη

+ 2δ1δ2fηηω + δ2
1 fηωω = 0. (14)

Case V. δ2 = δ3 = δ4 = δ5 = 0, δ1 �= 0, δ0 �= 0
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In such a case, the similarity variables of Eq. (2) are

ζ =
δ0x + δ0kt + 3kδ1

(δ0t + δ1) 1
3

,

η =
y

(δ0t + δ1) 1
3

,

ω =
z

(δ0t + δ1) 1
3

,

u = (δ0t + δ1)– 4
3 f (ζ ,η,ω).

Substituting the above similarity variables into Eq. (2) yields

90f
1
2 fζ – 16ζ fζ – 16ηfη – 16ωfω + 3δ2

0 fζζζ + 3fζωω + 3fζηη – 64f = 0. (15)

Case VI. δ1 = δ2 = δ3 = δ4 = δ5 = 0, δ0 �= 0
The similarity variables of Eq. (2) are given by

ζ =
z
y

,

η =
t

y3 ,

ω =
kt + x

y
,

u = f (ζ ,η,ω)y–4.

Thus, Eq. (2) is reduced to

16fη + 30fω + 30f
1
2 fω + (1 + ω)2fωωω + 2ζωfζωω +

(
1 + ζ 2)fζζω

+ 12ωfωω + 12ζ fζω + 6ηωfηωω + 42ηfηω + 9η2fηηω = 0. (16)

Remark 1 In addition to PDEs with constant coefficients, the direct symmetry method can
also be applied to investigate variable-coefficient PDEs. For instance, one can apply the
direct symmetry method to variable-coefficient reduced equation (13) to further reduce
the mZK equation.

In fact, it is not difficult to see that the symmetry of Eq. (13) satisfies

16(σω – kση) + 15f – 1
2 σ fη + 30f

1
2 ση + σηηη + 4ζσζζη + 4σζη = 0, (17)

where we set

σ (ζ ,η,ω, f ) = a(ζ ,η,ω)fζ + b(ζ ,η,ω)fη + c(ζ ,η,ω)fω + e(ζ ,η,ω)f + g(ζ ,η,ω), (18)

where a, b, c, e, and g are functions to be found later. To ensure that the expansion of
Eq. (17) is true for an arbitrary solution f , we must take the coefficients of f and its deriva-
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tives to be zero. Hence we have

cζ = cη = 0.

According to the same procedure, it leads to

aη = aω = 0, bζ = 0, eη = eω = 0, bηη = 0, g = 0. (19)

Hence, Eq. (17) is reduced to

(128ζ eζζ + 512bω + 512kcω + 128eζ – 512kbη)f
3
2 fη

+ (96bη – 32cω)f
3
2 fηηη + (960bη – 960cω + 480e)f 2fη

+ (–128a – 128ζ cω + 256ζaζ + 128ζbη)f
3
2 fζζη

+ (128aζ + 128bη + 256ζ eζ – 128cω + 128ζaζζ )f
3
2 fζη = 0. (20)

From Eqs. (19)–(20), we obtain

a =
2
3
λ1ζ , b =

1
3
λ1η –

2
3

kλ1ω + λ2,

c = λ1ω + λ3, e =
4
3
λ1, g = 0,

(21)

where λ1, λ2, and λ3 are arbitrary constants. Thus we get a symmetry of Eq. (13) as follows:

σ =
2
3
λ1ζ fζ +

(
1
3
λ1η –

2
3

kλ1ω + λ2

)
fη + (λ1ω + λ3)fω +

4
3
λ1f . (22)

The corresponding characteristic equation of σ = 0 is

dζ
2
3λ1ζ

=
dη

1
3λ1η – 2

3 kλ1ω + λ2
=

dω

λ1ω + λ3
=

df
– 4

3λ1f
. (23)

From Eq. (23) we can obtain the following similarity variables φ, ϕ, and F :

φ = (λ1ω + λ3)/ζ
3
2 λ1, ϕ =

[
(kω + η)λ1 + 3kλ3 + 3λ2

]
/ζ

1
2 λ1,

F(φ,ϕ) = f ζ 2.
(24)

By using the obtained similarity variables, we obtain the further reduced equation of
Eq. (13)

11ϕFϕϕ +
(
ϕ2 + 1

)
Fϕϕϕ + 6φϕFφϕϕ + 16Fφ + 25Fϕ + 30Fϕ

√
F

+ 9φ2Fφφϕ + 39φFφϕ = 0, (25)
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which is a (1+1)-dimensional nonlinear PDE. It is easy to find that the symmetry of Eq. (25)
satisfies the following equation:

11ϕσϕϕ +
(
ϕ2 + 1

)
σϕϕϕ + 6φϕσφϕϕ + 16σφ + 25σϕ + 30σϕ

√
F

+ 15FϕF– 1
2 σ + 9φ2σφφϕ + 39φσφϕ = 0. (26)

Using the same direct symmetry method, we can reduce Eq. (25) to an ordinary differential
equation (ODE). Here we omit them.

Remark 2 It is shown that (2 + 1)-dimensional Eq. (13) can be reduced to (1 + 1)-
dimensional partial differential equation Eq. (25). Similarly, Eqs. (14)–(16) can be dis-
cussed by the same method. In theory, Eq. (25) can be further reduced to an ODE. This
problem will be discussed in our future work.

4 Discussion of the solutions of mZK equation
One of the main functions for finding symmetry reductions is to use them to seek exact
solutions. There are many effective direct methods that can be used to solve the obtained
reduced equations such as the tanh method [28], the homogeneous balance method [29],
the Horota bilinear method [30], the Darboux transformation method [31], and so on
(see [32–39] for reference). Here, we use the traveling wave transformation to transform
reduced equations (11) and (12) to ODEs for obtaining exact solutions. Let

θ = lζ + mη + nω, (27)

where l, m, and n are nonzero constants. Then Eq. (12) can be transformed into an ODE
as follows:

A1f ′ + A2f
1
2 f ′ + A3f ′′′ = 0, (28)

where f ′ = df /dθ , θ = l(δ1x – δ2t) + m(δ1y – δ4t) + n(δ1z – δ5t), A1 = –16l(δ2 + kδ1) – 16mδ4 –
16nδ5, A2 = 30δ1l, and A3 = δ3

1(l3 + lm2 + ln2). The same procedure can be followed, then
reduced equation (11) is also transformed into Eq. (28), where

θ = l(δ4x – δ2y) + m(δ5x – δ2z) + nt, (29)

A1 = 16(n – kδ4l – kδ5m), (30)

A2 = 30δ4l + 30δ5m, (31)

A3 =
(
δ3

4 + δ2
2δ4

)
l3 +

(
3δ2

4δ5 + δ2
2δ5

)
l2m +

(
3δ4δ

2
5 + δ2

2δ4
)
lm2

+
(
δ3

5 + δ2
2δ5

)
m3. (32)

Integrating Eq. (28) with respect to the independent variable θ yields that

A1f +
2
3

A2f
3
2 + A3f ′′ + A4 = 0, (33)



Liu et al. Advances in Difference Equations         (2019) 2019:77 Page 10 of 14

where A4 is the integral scalar. Multiplying Eq. (33) by f ′ and then integrating both sides,
we have

A1f 2 +
8

15
A2f

5
2 + A3f ′2 + 2A4f + A5 = 0,

where A5 is the integral scalar. Using the transformation f 1
2 = g , we obtain

A1g2 +
8

15
A2g3 + 4A3g ′2 + 2A4 + A5/g2 = 0.

By solving the above equation, one can obtain the following solutions which are expressed
in the form of trigonometric functions, hyperbolic functions, and Weierstrass function:

g1(θ ) = –
15
8

A1

A2
sec2

(√
A1A3

4A3
θ

)
, A4 = A5 = 0, A1A3 > 0,

g2(θ ) = –
15
8

A1

A2
csc2

(√
A1A3θ

4A3
θ

)
, A4 = A5 = 0, A1A3 > 0,

g3(θ ) = –
15
8

A1

A2
sech2

(√
–A1A3

4A3
θ

)
, A4 = A5 = 0, A1A3 < 0,

g4(θ ) =
15
8

A1

A2
csch2

(√
–A1A3

4A3
θ

)
, A4 = A5 = 0, A1A3 < 0,

g5(θ ) =
1

3√–A2
ρ

(√
30

30

√
A3(–A2) 2

3

A3
θ , 0, 15A4

)
, A1 = A5 = 0,

where θ is given by Eq. (29), and ρ is the Weierstrass P function. Reverting back to the
original variables, one can obtain the corresponding exact solutions of mZK equation (2)

u1(x, y, z, t) =
225
64

A2
1

A2
2

sec4
(√

A1A3

4A3
θ

)
, A1A3 > 0,

u2(x, y, z, t) =
225
64

A2
1

A2
2

csc4
(√

A1A3

4A3
θ

)
, A1A3 > 0,

u3(x, y, z, t) =
225
64

A2
1

A2
2

sech4
(√

–A1A3

4A3
θ

)
, A1A3 < 0,

u4(x, y, z, t) =
225
64

A2
1

A2
2

csch4
(√

–A1A3

4A3
θ

)
, A1A3 < 0,

u5(x, y, z, t) =
1

3
√

A2
2
ρ2

(√
30

30

√
A3(–A2) 2

3

A3
θ , 0, 15A4

)
, A1 = 0,

where θ , A1, A2, and A3 are given by Eqs. (29)–(32).
Choosing l = m = n = δ2 = δ4 = δ5 = 1 in u3(x, y, z, t), we have the following solitary wave

solution:

u(x, y, z, t) =
1
4

sech4(
√

3
6

(2x – y – z + t) (34)
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Figure 1 The solution of the mZK with k = 1, z = 2x

Figure 2 The solution of the mZK with k = 1, t = –2x

of the mZK equation with k = 1. The evolutions of solution (34) are given in Fig. 1, Fig. 2,
and Fig. 3, respectively.
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Figure 3 The solution of the mZK with k = 1, t = z

At the end of this section, let us consider the obtained reduced equation (15). By using
(27), it can be transformed into the following ODE:

90lf
1
2 f ′ – 16θ f ′ + 3

(
δ2

0 l3 + lm2 + n2l
)
f ′′′ – 64f = 0, (35)

where

f ′ = df /dθ ,

θ =
(
l(δ0x + δ0kt + 3kδ1) + my + nz

)
/(δ0t + δ1)1/3.

(36)

It is not difficult to find that Eq. (35) has the following exact solution:

f = Aθ–4,

where A, l, m, and n satisfy the relationship A1/2l + δ2
0 l3 + lm2 + n2l = 0. Therefore the mZK

equation (2) possesses an exact solution as follows:

u6(x, y, z, t) = (δ0t + δ1)– 4
3 Aθ–4,

where θ is given in Eq. (36).

5 Conclusions
By implementing the direct symmetry method, we have determined the symmetry σ and
the corresponding vector field V of the (3 + 1)-dimensional mZK equation. In view of the
compatibility of σ = 0 and the mZK equation, we have got six (2 + 1)-dimensional symme-
try reduction equations. Then, in terms of the obtained lower dimensional reduced equa-
tions, we have found exact solutions of the mZK equation including trigonometric func-
tion solutions, hyperbolic function solutions, and Weierstrass function solutions. Time
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delays and stochastic disturbances are often unavoidable in practical systems [40, 41]. Fu-
ture study will focus on stochastic Zakharov-Kuznetsov equations with time delays.
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