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1 Introduction
Fractional differential systems have been of great interest recently. This paper mainly
presents the existence and uniqueness solution of the following general fractional differ-
ential system involving coupled integral boundary conditions and parameters:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDα1 u(t) + λ1f1(t, u(t), v(t)) = 0,
cDα2 v(t) + λ2f2(t, u(t), v(t)) = 0, 0 < t < 1,

u′(0) = u′′(0) = · · · = u(n–1)(0) = 0, u(1) = μ1
∫ 1

0 a(s)v(s) dA1(s),

v′(0) = v′′(0) = · · · = v(m–1)(0) = 0, v(1) = μ2
∫ 1

0 b(s)u(s) dA2(s),

(1)

where λi > 0 is a parameter, n – 1 < α1 ≤ n, m – 1 < α2 ≤ m, n, m ≥ 2, Dαi
0+ is the stan-

dard Caputo derivative; μi > 0 is a constant,
∫ 1

0 a(s)v(s) dA1(s),
∫ 1

0 b(s)u(s) dA2(s) denote
the Riemann–Stieltjes integral with a signed measure, that is, Ai : [0, 1] → [0, +∞) is the
function of bounded variation; a, b : [0, 1] → [0, +∞) are continuous, fi : [0, 1] × [0, +∞) ×
[0, +∞) → [0, +∞) is a continuous function, i = 1, 2.

In the mathematical context, fractional differential equations involving different bound-
ary value conditions have aroused the interest of many scholars, see references [1–21] to
name a few. Bai and Qiu [22] discussed the following nonlinear fractional differential equa-
tion with two-point boundary value conditions by using the Krasnoselskii’s fixed point
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theorem:
⎧
⎨

⎩

Dα
0+ u(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0,

where 2 < α ≤ 3, Dα
0+ is Caputo derivative.

Wang et al. [23] gave the existence and uniqueness results for the coupled fractional
differential system

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + f (t, v(t)) = 0,

Dβ

0+ v(t) + g(t, u(t)) = 0, 0 < t < 1,

u(0) = v(0) = 0, u(1) = au(ξ ), v(1) = bv(ξ ),

where 1 < α,β < 2, 0 ≤ a, b < 1, 0 < ξ < 1, Dα
0+ , Dβ

0+ are two standard Riemann–Liouville
fractional derivatives, f , g : [0, 1] × [0, +∞) → [0, +∞) are continuous. The whole discus-
sion was based on the Banach fixed point theorem and the nonlinear alternative of Leray–
Schauder type.

Recently, Henderson and Luca in [24] considered the system of fractional differential
equations

⎧
⎨

⎩

Dα1
0+ u(t) + λ1f1(t, u(t), v(t)) = 0,

Dα2
0+ v(t) + λ2f2(t, u(t), v(t)) = 0, 0 < t < 1,

(2)

with the multi-point boundary conditions

⎧
⎨

⎩

u(0) = u′(0) = · · · = u(n–2) = 0, u(1) =
∑p

i=1 aiu(ξi),

v(0) = v′(0) = · · · = v(m–2) = 0, v(1) =
∑q

i=1 biv(ηi),

where n–1 < α1 ≤ n, m–1 < α2 ≤ m, n, m ≥ 2, λi > 0 is a parameter, Dαi
0+ , Dβi

0+ are Riemann–
Liouville derivatives; ai > 0, bi > 0 are constants, fi : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞)
is a continuous function. By the use of Krasnoselskii’s fixed point theorem, the authors in
[24] got the existence of positive solutions for the above system. System (2) with coupled
boundary value conditions

⎧
⎨

⎩

u(0) = u′(0) = · · · = u(n–2) = 0, u(1) = μ1
∫ 1

0 v(s) dA1(s),

v(0) = v′(0) = · · · = v(m–2) = 0, v(1) = μ2
∫ 1

0 u(s) dA2(s)

has also been discussed in [25, 26], where μi > 0 is a constant.
Fractional differential systems involving derivatives with coupled boundary conditions

have witnessed significant development, as shown by [27–30], but most of the authors con-
sidered the fractional equations with Riemann–Liouville derivatives. The equation dis-
cussed in this paper is exactly the Caputo fractional equation. The purpose of this paper
is to investigate the existence and uniqueness of positive solutions for Caputo fractional
differential systems with coupled integral boundary conditions. In this paper, the Caputo
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derivatives of orders α1 and α2 can be different, and in case dA1(s) = dA2(s) = ds or g(s) ds,
system (1) reduces to a multi-point boundary value problem as well.

2 Preliminaries and lemmas
Definition 2.1 ([31, 32]) The Caputo fractional order derivative of order α > 0, n – 1 < α <
n, n ∈N is defined as

cDαu(t) =
1

Γ (n – α)

∫ t

0
(t – s)n–α–1u(n)(s) ds,

where u ∈ Cn(J ,R), R = (–∞, +∞), N denotes the natural number set, n = [α] + 1, and [α]
denotes the integer part of α.

Definition 2.2 ([31, 32]) Let α > 0 and let u be piecewise continuous on (0, +∞) and in-
tegrable on any finite subinterval of J . Then for t > 0, we call

Iαu(t) =
1

Γ (α)

∫ t

0
(t – s)α–1u(s) ds,

the Riemann–Liouville fractional integral of u of order α.

Lemma 2.1 ([31, 32]) Let n – 1 < α ≤ n, u ∈ Cn[0, 1]. Then

Iα
(cDαu

)
(t) = u(t) + c0 + c1t + c2t2 + · · · + cn–1tn–1,

where ci ∈R (i = 1, 2, . . . , n – 1), n is the smallest integer greater than or equal to α.

Lemma 2.2 Assume the following condition (H0) holds:
(H0)

k1 =
∫ 1

0
a(t) dA1(t) > 0, k2 =

∫ 1

0
b(t) dA2(t) > 0, 1 – μ1μ2k1k2 > 0.

Let hi ∈ C(0, 1) ∩ L(0, 1) (i = 1, 2). Then the system with the coupled boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

cDα1 u(t) + h1(t) = 0, cDα2 v(t) + h2(t) = 0, 0 < t < 1,

u′(0) = u′′(0) = · · · = u(n–1)(0) = 0, u(1) = μ1
∫ 1

0 a(t)v(s) dA1(s),

v′(0) = v′′(0) = · · · = v(m–1)(0) = 0, v(1) = μ2
∫ 1

0 b(t)u(s) dA2(s)

(3)

has a unique integral representation

⎧
⎨

⎩

u(t) =
∫ 1

0 K1(t, s)h1(s) ds +
∫ 1

0 H1(t, s)h2(s) ds,

v(t) =
∫ 1

0 K2(t, s)h2(s) ds +
∫ 1

0 H2(t, s)h1(s) ds,
(4)
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where

K1(t, s) =
μ1μ2k1

1 – μ1μ2k1k2

∫ 1

0
G1(t, s)b(t) dA2(t) + G1(t, s),

H1(t, s) =
μ1

1 – μ1μ2k1k2

∫ 1

0
G2(t, s)a(t) dA1(t),

K2(t, s) =
μ2μ1k2

1 – μ1μ2k1k2

∫ 1

0
G2(t, s)a(t) dA1(t) + G2(t, s),

H2(t, s) =
μ2

1 – μ1μ2k1k2

∫ 1

0
G1(t, s)b(t) dA2(t),

(5)

and

Gi(t, s) =

⎧
⎨

⎩

(1–s)αi–1–(t–s)αi–1

Γ (αi)
, 0 ≤ s ≤ t ≤ 1,

(1–s)αi–1

Γ (αi)
, 0 ≤ t ≤ s ≤ 1,

i = 1, 2, (6)

Proof By Lemma 2.1, system (3) is equivalent to the following integral equations:

u(t) = –
∫ t

0

(t – s)α1–1

Γ (α1)
h1(s) ds + c1 + c2t + c3t2 + · · · + cntn–1, (7)

v(t) = –
∫ t

0

(t – s)α2–1

Γ (α2)
h2(s) ds + c1 + c2t + c3t2 + · · · + cmtm–1. (8)

Conditions u′(0) = u′′(0) = · · · = u(n–1)(0) = 0, v′(0) = v′′(0) = · · · = v(m–1)(0) = 0 imply that

c2 = c3 = · · · = cn = 0, c2 = c3 = · · · = cm = 0.

That is,

u(t) = –
∫ t

0

(t – s)α1–1

Γ (α1)
h1(s) ds + c1,

v(t) = –
∫ t

0

(t – s)α2–1

Γ (α2)
h2(s) ds + c1.

So, we get

c1 = u(1) +
∫ 1

0

(1 – s)α1–1

Γ (α1)
h1(s) ds,

c1 = v(1) +
∫ 1

0

(1 – s)α2–1

Γ (α2)
h2(s) ds.

Together with (6), we have

u(t) = u(1) +
∫ 1

0

(1 – s)α1–1

Γ (α1)
h1(s) ds –

∫ t

0

(t – s)α1–1

Γ (α1)
h1(s) ds

= u(1) +
∫ 1

0
G1(t, s)h1(s) ds, (9)
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v(t) = v(1) +
∫ 1

0

(1 – s)α2–1

Γ (α2)
h2(s) ds –

∫ t

0

(t – s)α2–1

Γ (α2)
h2(s) ds

= v(1) +
∫ 1

0
G2(t, s)h2(s) ds. (10)

Multiplying (9) and (10) by b(t), a(t), and integrating with respect to dA2(t), dA1(t), re-
spectively, we have

∫ 1

0
b(t)u(t) dA2(t) = u(1)

∫ 1

0
b(t) dA2(t) +

∫ 1

0
b(t)

∫ 1

0
G1(t, s)h1(s) ds dA2(t),

∫ 1

0
a(t)v(t) dA1(t) = v(1)

∫ 1

0
a(t) dA1(t) +

∫ 1

0
a(t)

∫ 1

0
G2(t, s)h2(s) ds dA1(t).

(11)

Therefore, we obtain

1
μ2

v(1) – k2u(1) =
∫ 1

0
b(t)

∫ 1

0
G1(t, s)h1(s) ds dA2(t),

–k1v(1) +
1
μ1

u(1) =
∫ 1

0
a(t)

∫ 1

0
G2(t, s)h2(s) ds dA1(t).

Note that

∣
∣
∣
∣
∣

1
μ1

–k1

–k2
1

μ2

∣
∣
∣
∣
∣

=
1 – μ1μ2k1k2

μ1μ2
	= 0.

Then, system (11) has a unique solution for u(1) and v(1). By Cramer’s rule, we get

u(1) =
μ1

1 – μ1μ2k1k2

(∫ 1

0
a(t)

∫ 1

0
G2(t, s)h2(s) ds dA1(t)

+ μ2k1

∫ 1

0
b(t)

∫ 1

0
G1(t, s)h1(s) ds dA2(t)

)

, (12)

v(1) =
μ2

1 – μ1μ2k1k2

(∫ 1

0
b(t)

∫ 1

0
G1(t, s)h1(s) ds dA2(t)

+ μ1k2

∫ 1

0
a(t)

∫ 1

0
G2(t, s)h2(s) ds dA1(t)

)

. (13)

Substituting (12) and (13) into (9) and (10), respectively, we can obtain (4). The proof is
completed. �

Lemma 2.3 The Green function Gi(t, s) (i = 1, 2) defined by (6) has the following properties:

(1 – s)αi–1(1 – tαi–1)
Γ (αi)

≤ Gi(t, s) ≤ (1 – s)αi–1

Γ (αi)
, t, s ∈ [0, 1], i = 1, 2. (14)

Proof From the definition of Gi(t, s) (i = 1, 2), for 0 ≤ t ≤ s ≤ 1, it is obvious that (14) holds.
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For 0 ≤ s ≤ t ≤ 1, we have t – ts ≥ t – s, and then

(1 – s)αi–1 – (t – s)αi–1 ≥ (1 – s)αi–1 – (t – ts)αi–1

≥ (1 – s)αi–1 – tαi–1(1 – s)αi–1

= (1 – s)αi–1(1 – tαi–1),

so, we know (1–s)αi–1(1–tαi–1)
Γ (αi)

≤ Gi(t, s). From the definition of Gi(t, s), we also obtain
Gi(t, s) ≤ (1–s)αi

Γ (αi)
. Thus, (14) holds. The proof is completed. �

Lemma 2.4 For t, s ∈ [0, 1], the functions Ki(t, s) and Hi(t, s) (i = 1, 2) defined by (5) satisfy

K1(t, s), H2(t, s) ≤ ρ(1 – s)α1–1, K2(t, s), H1(t, s) ≤ ρ(1 – s)α2–1, (15)

K1(t, s), H2(t, s) ≥ 	(1 – s)α1–1, K2(t, s), H1(t, s) ≥ 	(1 – s)α2–1, (16)

where

ρ = max

{
μ1μ2k1

Γ (α1)(1 – μ1μ2k1k2)

∫ 1

0
b(t) dA2(t) +

1
Γ (α1)

,

μ2

Γ (α1)(1 – μ1μ2k1k2)

∫ 1

0
b(t) dA2(t),

μ1μ2k2

Γ (α2)(1 – μ1μ2k1k2)

∫ 1

0
a(t) dA1(t) +

1
Γ (α2)

,

μ1

Γ (α2)(1 – μ1μ2k1k2)

∫ 1

0
a(t) dA1(t)

}

,

	 = max

{
μ1μ2k1

Γ (α1)(1 – μ1μ2k1k2)

∫ 1

0
b(t)

(
1 – tα1–1)dA2(t),

μ2

Γ (α1)(1 – μ1μ2k1k2)

∫ 1

0
b(t)

(
1 – tα1–1)dA2(t),

μ1μ2k2

Γ (α2)(1 – μ1μ2k1k2)

∫ 1

0
a(t)

(
1 – tα2–1)dA1(t),

μ1

Γ (α2)(1 – μ1μ2k1k2)

∫ 1

0
a(t)

(
1 – tα2–1)dA1(t)

}

.

Proof By Lemma 2.3, together with the definitions of Ki(t, s) and Hi(t, s) in (5), for any
t, s ∈ [0, 1], we have

K1(t, s) =
μ1μ2k1

1 – μ1μ2k1k2

∫ 1

0
G1(t, s)b(t) dA2(t) + G1(t, s)

≤ μ1μ2k1

1 – μ1μ2k1k2

∫ 1

0

(1 – s)α1–1b(t)
Γ (α1)

dA2(t) +
(1 – s)α1–1

Γ (α1)

=
(

μ1μ2k1

Γ (α1)(1 – μ1μ2k1k2)

∫ 1

0
b(t) dA2(t) +

1
Γ (α1)

)

(1 – s)α1–1

≤ ρ(1 – s)α1–1, (17)
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H2(t, s) =
μ2

1 – μ1μ2k1k2

∫ 1

0
G1(t, s)b(t) dA2(t)

≤ μ2

1 – μ1μ2k1k2

∫ 1

0

(1 – s)α1–1b(t)
Γ (α1)

dA2(t)

=
(

μ2

Γ (α1)(1 – μ1μ2k1k2)

∫ 1

0
b(t) dA2(t)

)

(1 – s)α1–1

= ρ(1 – s)α1–1. (18)

Similarly as in (17)–(18), we have K2(t, s), H1(t, s) ≤ ρ(1 – s)α2–1, so the second inequality
of (15) holds.

By Lemma 2.3, for any t, s ∈ [0, 1], we also have

K1(t, s) =
μ1μ2k1

1 – μ1μ2k1k2

∫ 1

0
G1(t, s)b(t) dA2(t) + G1(t, s)

≥ μ1μ2k1

1 – μ1μ2k1k2

∫ 1

0

b(t)(1 – s)α1–1(1 – tα1–1)
Γ (α1)

dA2(t)

=
(

μ1μ2k1

Γ (α1)(1 – μ1μ2k1k2)

∫ 1

0
b(t)

(
1 – tα1–1)dA2(t)

)

(1 – s)α1–1

≥ 	(1 – s)α1–1, (19)

H2(t, s) =
μ2

1 – μ1μ2k1k2

∫ 1

0
G1(t, s)b(t) dA2(t)

≥ μ2

1 – μ1μ2k1k2

∫ 1

0

b(t)(1 – s)α1–1(1 – tα1–1)
Γ (α1)

dA2(t)

=
(

μ2

Γ (α1)(1 – μ1μ2k1k2)

∫ 1

0
b(t)

(
1 – tα1–1)dA2(t)

)

(1 – s)α1–1

= 	(1 – s)α1–1. (20)

Similarly as in (19)–(20), we have K2(t, s), H1(t, s) ≥ 	(1 – s)α2–1, so the second inequality
of (16) holds. The proof is completed. �

Let X = C[0, 1] × C[0, 1], then X is a Banach space with the norm

∥
∥(u, v)

∥
∥ = ‖u‖ + ‖v‖, ‖u‖ = max

t∈[0,1]

∣
∣u(t)

∣
∣, ‖v‖ = max

t∈[0,1]

∣
∣v(t)

∣
∣.

For any (u, v) ∈ X, we can define an integral operator T : X → X by

T(u, v)(t) =
(
T1(u, v)(t), T2(u, v)(t)

)
, 0 ≤ t ≤ 1, (21)

T1(u, v)(t) = λ1

∫ 1

0
K1(t, s)f1

(
s, u(s), v(s)

)
ds

+ λ2

∫ 1

0
H1(t, s)f2

(
s, u(s), v(s)

)
ds, 0 ≤ t ≤ 1,
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T2(u, v)(t) = λ2

∫ 1

0
K2(t, s)f2

(
s, u(s), v(s)

)
ds

+ λ1

∫ 1

0
H2(t, s)f1

(
s, u(s), v(s)

)
ds, 0 ≤ t ≤ 1.

Then (u, v) is a positive solutions of system (1) if and only if (u, v) is a fixed point of T . It
can be proved that the following Lemma 2.5 is correct.

Lemma 2.5 T : X → X is a completely continuous operator.

Lemma 2.6 ([33]) Let E be a Banach space. Assume that T : E → E is a completely con-
tinuous operator. Let V = {x ∈ E|x = μTx, 0 < μ < 1}. Then either the set V is unbounded,
or T has at least one fixed point.

3 Main results
Theorem 3.1 Assume that there exist real constants mi > 0, and ni, li ≥ 0, such that ∀t ∈
[0, 1], x, y ∈ [0, +∞),

fi(t, x, y) ≤ mi + ni|x| + li|y|, i = 1, 2. (22)

In addition, assume that

2M1n1 + 2M2n2 < 1, 2M1l1 + 2M2l2 < 1,

where

M1 = λ1

∫ 1

0
ρ(1 – s)α1–1 ds, M2 = λ2

∫ 1

0
ρ(1 – s)α2–1 ds. (23)

Then system (1) has at least one solution.

Proof Let us confirm that the set V = {(u, v) ∈ X : (u, v) = ςT(u, v), 0 ≤ ς ≤ 1} is bounded.
Let (u, v) ∈ V , then (u, v) = ςT(u, v). For any t ∈ [0, 1], we have u = ςT1(u, v), v = ςT2(u, v).
Then, by Lemma 2.4, we obtain

∣
∣u(t)

∣
∣ ≤

∣
∣
∣
∣λ1

∫ 1

0
K1(t, s)f1

(
s, u(s), v(s)

)
ds + λ2

∫ 1

0
H1(t, s)f2

(
s, u(s), v(s)

)
ds

∣
∣
∣
∣

≤ λ1

∫ 1

0
ρ(1 – s)α1–1f1

(
s, u(s), v(s)

)
ds + λ2

∫ 1

0
ρ(1 – s)α2–1f2

(
s, u(s), v(s)

)
ds

≤ M1
(
m1 + n1‖u‖ + l1‖v‖) + M2

(
m2 + n2‖u‖ + l2‖v‖), (24)

∣
∣v(t)

∣
∣ ≤

∣
∣
∣
∣λ2

∫ 1

0
K2(t, s)f2

(
s, u(s), v(s)

)
ds + λ1

∫ 1

0
H2(t, s)f1

(
s, u(s), v(s)

)
ds

∣
∣
∣
∣

≤ λ2

∫ 1

0
ρ(1 – s)α2–1f1

(
s, u(s), v(s)

)
ds + λ1

∫ 1

0
ρ(1 – s)α1–1f1

(
s, u(s), v(s)

)
ds

≤ M2
(
m2 + n2‖u‖ + l2‖v‖) + M1

(
m1 + n1‖u‖ + l1‖v‖). (25)
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Combined with (24) and (25), we know

‖u‖ + ‖v‖ ≤ 2M1
(
m1 + n1‖u‖ + l1‖v‖) + 2M2

(
m2 + n2‖u‖ + l2‖v‖)

≤ 2M1m1 + 2M2m2 + (2M1n1 + 2M2n2)‖u‖ + (2M1l1 + 2M2l2)‖v‖.

Therefore
∥
∥(u, v)

∥
∥ = ‖u‖ + ‖v‖

≤ 2M1m1 + 2M2m2

min{1 – (2M1n1 + 2M2n2), 1 – (2M1l1 + 2M2l2)} .

So we have proved that the set V is bounded. Thus, by Lemma 2.6, operator T has at least
one fixed point. Hence system (1) has at least one solution. The proof is complete. �

Theorem 3.2 Assume that fi : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞) is continuous and
there exist real constants γi, δi ≥ 0 such that ∀t ∈ [0, 1], xi, yi ∈ [0, +∞),

∣
∣fi(t, x1, y1) – fi(t, x2, y2)

∣
∣ ≤ γi|x1 – x2| + δi|y1 – y2|, i = 1, 2. (26)

In addition, assume that 2M1(γ1 + δ1) + 2M2(γ2 + δ2) < 1, where M1, M2 are defined as (23).
Then system (1) has a unique solution.

Proof Denoting sup |fi(t, 0, 0)| = Θi < +∞, by (26), we have

∣
∣fi(t, x, y)

∣
∣ ≤ Θi + γi|x| + δi|y|, i = 1, 2.

Let r = 2M1Θ1+2M2Θ2
1–2M1(γ1+δ1)–2M2(γ2+δ2) , Kr = {(u, v) ∈ X : ‖(u, v)‖ < r}, we show that TKr ⊂ Kr . For

any (u, v) ∈ Kr , we have

∣
∣T1(u, v)(t)

∣
∣ ≤ max

t∈[0,1]

∣
∣
∣
∣λ1

∫ 1

0
K1(t, s)f1

(
s, u(s), v(s)

)
ds + λ2

∫ 1

0
H1(t, s)f2

(
s, u(s), v(s)

)
ds

∣
∣
∣
∣

≤ λ1

∫ 1

0
ρ(1 – s)α1–1f1

(
s, u(s), v(s)

)
ds

+ λ2

∫ 1

0
ρ(1 – s)α2–1f2

(
s, u(s), v(s)

)
ds

≤ λ1

∫ 1

0
ρ(1 – s)α1–1(Θ1 + γ1‖u‖ + δ1‖v‖)ds

+ λ2

∫ 1

0
ρ(1 – s)α2–1(Θ2 + γ2‖u‖ + δ2‖v‖)ds

≤ M1
(
Θ1 + γ1‖u‖ + δ1‖v‖) + M2

(
Θ2 + γ2‖u‖ + δ2‖v‖).

Hence
∥
∥T1(u, v)

∥
∥ ≤ M1

(
Θ1 + (γ1 + δ1)r

)
+ M2

(
Θ2 + (γ2 + δ2)r

)
. (27)

Similarly as in (27), for any (u, v) ∈ Kr , we can get

∥
∥T2(u, v)

∥
∥ ≤ M1

(
Θ1 + (γ1 + δ1)r

)
+ M2

(
Θ2 + (γ2 + δ2)r

)
. (28)



Zi and Wang Advances in Difference Equations         (2019) 2019:80 Page 10 of 12

By (27) and (28),

∥
∥T(u, v)

∥
∥ =

∥
∥T1(u, v)

∥
∥ +

∥
∥T2(u, v)

∥
∥

≤ 2
(
M1

(
Θ1 + (γ1 + δ1)r

)
+ M2

(
Θ2 + (γ2 + δ2)r

))

≤ r.

Now for (u1, v1), (u2, v2) ∈ X, and for any t ∈ [0, 1], we have

∣
∣T1(u2, v2)(t) – T1(u1, v1)(t)

∣
∣

≤ λ1

∫ 1

0
K1(t, s)

∣
∣f1

(
s, u2(s), v2(s)

)
– f1

(
s, u1(s), v1(s)

)∣
∣ds

+ λ2

∫ 1

0
H1(t, s)

∣
∣f2

(
s, u2(s), v2(s)

)
– f2

(
s, u1(s), v1(s)

)∣
∣ds

≤ λ1

∫ 1

0
ρ(1 – s)α1–1∣∣f1

(
s, u2(s), v2(s)

)
– f1

(
s, u1(s), v1(s)

)∣
∣ds

+ λ2

∫ 1

0
ρ(1 – s)α2–1∣∣f2

(
s, u2(s), v2(s)

)
– f2

(
s, u1(s), v1(s)

)∣
∣ds

≤ M1
(
γ1‖u2 – u1‖ + δ1‖v2 – v1‖

)
+ M2

(
γ2‖u2 – u1‖ + δ2‖v2 – v1‖

)

≤ (
M1(γ1 + δ1) + M2(γ2 + δ2)

)(‖u2 – u1‖ + ‖v2 – v1‖
)
.

Consequently, for (u1, v1), (u2, v2) ∈ X, we obtain

∥
∥T1(u2, v2) – T1(u1, v1)

∥
∥ ≤ (

M1(γ1 + δ1) + M2(γ2 + δ2)
)(‖u2 – u1‖ + ‖v2 – v1‖

)
. (29)

By a similar proof as for (29), for (u1, v1), (u2, v2) ∈ X, we get

∥
∥T2(u2, v2) – T2(u1, v1)

∥
∥ ≤ (

M1(γ1 + δ1) + M2(γ2 + δ2)
)(‖u2 – u1‖ + ‖v2 – v1‖

)
. (30)

It follows from (29) and (30) that

∥
∥T(u2, v2) – T(u1, v1)

∥
∥ ≤ (

2M1(γ1 + δ1) + 2M2(γ2 + δ2)
)(‖u2 – u1‖ + ‖v2 – v1‖

)
.

Since (2M1(γ1 + δ1) + 2M2(γ2 + δ2)) < 1, T is a contraction operator. By the contraction
mapping principle, operator T has a unique fixed point, so system (1) has a unique solu-
tion. The proof is complete. �

4 Examples
An example is given to illustrate our main results in this paper. Consider the following
problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cD 5
2 u(t) + f1(t, u(t), v(t)) = 0,

cD 7
3 v(t) + 2f2(t, u(t), v(t)) = 0, 0 < t < 1,

u′(0) = u′′(0) = 0, u(1) = v( 1
3 ) + v( 1

2 ),

v′(0) = v′′(0) = 0, v(1) = 1
2
∫ 1

0 u(s) ds2.

(31)
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Let α1 = 5
2 , α2 = 7

3 , λ1 = 1, λ2 = 2, μ1 = 1, μ2 = 1
2 , a(t) = b(t) = 1,

A(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 ≤ t < 1
3 ,

1, 1
3 ≤ t < 1

2 ,

2, 1
2 ≤ t ≤ 1,

B(t) = t2.

For t ∈ [0, 1], x, y ∈ [0, +∞), take

f1(t, x, y) =
t

1 + et

(

1 +
1
5

sin2 x +
1

10
cos y

)

,

f2(t, x, y) =
t

(1 + t)3

(

1 + 3 cos x +
1
4

y
)

.

Notice that

∣
∣f1(t, x, y)

∣
∣ =

∣
∣
∣
∣

t
1 + et

(

1 +
1
5

sin2 x +
1

10
cos y

)∣
∣
∣
∣ ≤ 1 +

1
5
|x| +

1
10

|y|,
∣
∣f2(t, x, y)

∣
∣ =

∣
∣
∣
∣

t
(2 + t)3

(
2
3

+ 3 cos x + 2y
)∣

∣
∣
∣ ≤ 1

12
+

3
8
|x| +

1
2
|y|,

2M1n1 + 2M2n2
.= 0.63467 < 1, 2M1l1 + 2M2l2

.= 0.83802 < 1.

Therefore, all conditions of Theorem 3.1 are satisfied, and hence system (31) has at least
one solution.
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