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Abstract
So far, there are no any publications for solving and obtaining a numerical solution of
Volterra integro-differential equations in the complex plane by using the finite
element method. In this work, we use the linear B-spline finite element method
(LBS-FEM) and cubic B-spline finite element method (CBS-FEM) for solving this
equation in the complex plane. We also discuss the error and convergence of the
method. Furthermore, we give some numerical examples to substantiate efficiency of
the proposed method.
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1 Introduction
One of the first works in imaginary numbers was by the Persian mathematician Al-
Khwarizmi. However, the first person who used them is Girolamo Cardano (1501–1576).
Also, Paul Nahin gave a detailed description of imaginary numbers [1]. The symbol i in-
stead of

√
–1 was proposed by Euler (1707–1783). The interpretation of complex numbers

as points in the plane was suggested by Carl Friedrich Gauss (1777–1855). Gauss also
demonstrated that every polynomial equation of degree n with nonzero complex coeffi-
cients has n roots in complex numbers. The complex functions and their integrals were
studied by Gauss and Simon Denis Poisson (1781–1840). August Louis Cauchy (1789–
1857) published a large number of researches on the integral theorem and related con-
cepts. George Bernhard Riemann (1826–1860) introduced the derivatives of functions of
complex variables [2].

The complex numbers and functions have unbelievable properties, which are used to
solve science and engineering problems such as contour integration, electrical engineer-
ing, digital filters, generating functions, physical problems, Fourier analysis, conformal
mappings, mechanical problems, eigenvalues, and mechanical systems. Also, they are used
in phasor transforms to analyze networks composed of resistors, capacitors, and induc-
tors. For instance, in digital signal processing, complex Fourier, Laplace, and z-transforms
are used; see [3].
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We can solve integro-differential equations with some basis functions by the Haar
and rationalized function methods [4–8], Adomian decomposition method [9], Legen-
dre wavelets method [10], RBFs collocation method [11], and Genocchi polynomials and
collocation method based on the Bernoulli operational matrix [12, 13]. Also, in [14],
Volterra–Fredholm integro-differential equations of fractional order are solved by the
sinc-collocation method.

So far, there are no any publications in the field of integro-differential equations in the
complex plane by the finite element method. Recently, some work has been done by the
rationalized Haar function method [15–17] and by the collocation method based on the
Bernoulli operational [18].

Spline functions are a class of piecewise polynomials that satisfy continuity proper-
ties depending on the degree of the polynomials. They have highly desirable characteris-
tics, which have made them a powerful mathematical tool for numerical approximations.
Spline functions are a set of continuous combinations of B-splines used as trial functions
in the Galerkin method [19–23].

This work is organized as follows. In Sect. 2, we use the of the finite element method,
especially, the linear B-spline finite element method (LBS-FEM) and cubic B-spline finite
element method (CBS-FEM) [19] to obtain an approximate solution of a linear Volterra
integro-differential equation in the complex plane. The convergence analysis is given in
Sect. 3, and numerical experiments are carried out in Sect. 4 to verify the theoretical re-
sults.

2 The proposed method
We consider the linear second-order Volterra integro-differential equations of the second
kind in complex plane with boundary conditions u(0) = 0 and u(1) = 0:

–u′′(x) + b(x)u′(x) + c(x)u(x) = f (x) + i
∫ x

0
K(x, t)u(t) dt, x ∈ [0, 1], (1)

where u(x) is an unknown complex-valued function to be determined, and f (x) is a
complex-valued function; in other words,

u : [0, 1] ⊆R →C f : [0, 1] ⊆R →C

u(x) = u1(x) + iu2(x), f (x) = f1(x) + if2(x),
u1, u2 ∈ C2([0, 1]

)
, f1, f2 ∈ C

(
[0, 1]

)
.

(2)

Moreover, b(x) and c(x) are nonnegative functions belonging to C1([0, 1]), and K(x, t) is a
known continuous function on [0, 1] × [0, 1]. Using (2) in (1), we have

–u′′
1(x) + b(x)u′

1(x) + c(x)u1(x) = f1(x) –
∫ x

0
K(x, t)u2(t) dt,

–u′′
2(x) + b(x)u′

2(x) + c(x)u2(x) = f2(x) +
∫ x

0
K(x, t)u1(t) dt.

(3)

In this work, we use the linear B-spline (LBS) and cubic B-spline (CBS) functions as the
basis functions of the subspace Vh.
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If π : 0 = x0 < x1 < · · · < xM = 1 is a grid with M + 1 points in the interval [0, 1], where
xi = ih for i = 0, 1, . . . , M, and x0 = 0, xM = 1, and �x = h = 1

M , then, for i = 0, . . . , M, the LBS
is defined as

φi(x) =
1
h

⎧⎪⎪⎨
⎪⎪⎩

(x – xi–1), x ∈ [xi–1, xi],

(xi+1 – x), x ∈ [xi, xi+1],

0 otherwise.

Thus φi(xi) = 1, and the value of φ in the other nodes is equal to zero. The CBS is defined
upon an increasing set of M + 1 knots over the problem domain plus six additional knots
outside the problem as

x–3 < x–2 < x–1 < x0 and xM < xM+1 < xM+2 < xM+3.

In other words, the cubic B-splines for i = –1, 0, . . . , M + 1 are defined as

Qi(x) =
1
h3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x – xi–2)3, x ∈ [xi–2, xi–1],

(x – xi–2)3 – 4(x – xi–1)3, x ∈ [xi–1, xi],

(xi+2 – x)3 – 4(xi+1 – x)3, x ∈ [xi, xi+1],

(xi+2 – x)3, x ∈ [xi+1, xi+2],

0 otherwise.

Thus

Qi(xj) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
4 , j = i – 1,

1, j = i,
1
4 , j = i + 1,

0 in the other nodes,

and thus Q2, Q3, . . . , QM–2 satisfy the zero boundary conditions, but Q–1, Q0, Q1, QM–1,
QM , and QM+1 do not. Therefore we modify cubic B-spline basis functions for handling
the Dirichlet boundary conditions. The modified cubic B-spline (MCBS) basis functions
are defined as follows:

φi(x) = Qi(x), i = 2, 3, . . . , M – 2,

and

φ0(x) = Q0(x) – 4Q–1(x), φ1(x) = Q1(x) – Q–1(x),

φM–1(x) = QM–1(x) – QM+1(x), φM(x) = QM(x) – 4QM+1(x).

By this definition of MCBS, φi(x) satisfy the boundary condition, that is, φ0(0) = φ1(0) =
φM–1(1) = φM(1) = 0 [19]. The main purpose of this paper is to use the finite element
method to find an approximate solution of (1); to this end, we must obtain a weak and
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variational form of equation (1). Set Ω = [0, 1] ⊂ R. First, we define V = H1
0(Ω) as an

infinite-dimensional space and B : V × V →R as a bilinear form. So we have

B(u, v) =
∫

Ω

u′(x)v′(x) dx +
∫

Ω

b(x)u′(x)v(x) dx +
∫

Ω

c(x)u(x)v(x) dx

– i
∫

Ω

v(x)
(∫ x

0
K(x, t)u(t) dt

)
dx. (4)

Also, for all arbitrary functions v(x) ∈ V , we have B(u, v) = L(v), where L : V → R is the
linear functional given by

L(v) =
∫

Ω

f (x)v(x) dx.

The space V is infinite-dimensional, and thus we introduce a finite-dimensional subspace
Vh of V . So the problem is converted to find uh = (u1,h, u2,h) ∈ Vh such that

B(uh, vh) = L(vh) for all vh ∈ Vh.

Using the LBS and MCBS functions for uh(x) and vh(x), we have

uh(x) =

(
u1,h(x)
u2,h(x)

)
=

(∑M–1
i=1 αiφi(x)∑M–1
i=1 βiφi(x)

)
, vh(x) =

(
φj(x)
φj(x)

)
. (5)

Hence by substituting (5) into the variational formulation we have

M–1∑
i=1

αi

(∫
Ω

φ′
i(x)φ′

j (x) dx +
∫

Ω

b(x)φ′
i(x)φj(x) dx +

∫
Ω

c(x)φi(x)φj(x) dx
)

+
M–1∑
i=1

βi

(∫
Ω

φj(x)
(∫ x

0
K(x, t)φi(t) dt

)
dx

)
=

∫
Ω

f1(x)φj(x) dx,

M–1∑
i=1

βi

(∫
Ω

φ′
i(x)φ′

j (x) dx +
∫

Ω

b(x)φ′
i(x)φj(x) dx +

∫
Ω

c(x)φi(x)φj(x) dx
)

–
M–1∑
i=1

αi

(∫
Ω

φj(x)
(∫ x

0
K(x, t)φi(t) dt

)
dx

)
=

∫
Ω

f2(x)φj(x) dx,

(6)

or, more concisely,

CX = F , (7)

where

X = [α1,α2, . . . ,αM–1,β1,β2, . . . ,βM–1]T ,

F =
[∫

Ω

f1(x)φ1(x) dx,
∫

Ω

f1(x)φ2(x) dx, . . . ,
∫

Ω

f1(x)φM–1(x) dx,

∫
Ω

f2(x)φ1(x) dx,
∫

Ω

f2(x)φ2(x) dx, . . . ,
∫

Ω

f2(x)φM–1(x) dx
]T

,

(8)
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and C in the 2(M – 1) × 2(M – 1)-dimensional matrix given by

C =

⎛
⎜⎝

C1 | C2

– – –
C3 | C4

⎞
⎟⎠ , (9)

where four tridiagonal submatrices C1, C2, C3, C4 are

(C1)i,j =
∫ 1

0
φ′

i(x)φ′
j (x) dx +

∫ 1

0
b(x)φ′

i(x)φj(x) dx +
∫ 1

0
c(x)φi(x)φj(x) dx,

(C2)i,j =
∫ 1

0

(∫ x

0
K(x, t)φi(t) dt

)
φj(x) dx,

(C3)i,j = –
∫ 1

0

(∫ x

0
K(x, t)φi(t) dt

)
φj(x) dx,

(C4)i,j =
∫ 1

0
φ′

i(x)φ′
j (x) dx +

∫ 1

0
b2(x)φ′

i(x)φj(x) dx +
∫ 1

0
c2(x)φi(x)φj(x) dx.

By solving system (7) we obtain the coefficients αi, βi, and the approximate solution uh

can be found from (5).

3 Convergence analysis
In this section, we present the error analysis theorems for the proposed method. For this
purpose, let V be a Hilbert space, and let B be a symmetric V-elliptic bilinear form. Then
the inner product energy is (·, ·) : V ×V →R defined by (u, v)B = B(u, v). Additionally, the
energy norm is

‖u‖2
E = (u, u)B .

Definition 3.1 For an operator Π : V → Vh, the projection operators are defined as

Πu = ũh =
n∑

i=1

ãiφi(x).

Theorem 3.2 Let B be the bilinear form defined by (4), and let M1 ≤ c(x) ≤ M2, P1 ≤
b(x) ≤ P2, and 0 ≤ b′(x) ≤ T2. Then B is a V-ellipticity, (1) has a unique solution, and the
order of convergence is O(hζ ).

Proof From (4) we have

∣∣B(u, v)
∣∣ =

∣∣∣∣
∫

Ω

u′(x)v′(x) dx +
∫

Ω

b(x)u′(x)v(x) dx

+
∫

Ω

c(x)u(x)v(x) dx – i
∫

Ω

v(x)
(∫ x

0
K(x, t)u(t) dt

)
dx

∣∣∣∣.

Using the Cauchy–Schwarz inequality and Sobolev norm, we have

∣∣B(u, v)
∣∣ ≤ ‖u‖H1‖v‖H1 + P2‖u‖H1‖v‖H1 + M2‖u‖H1‖v‖H1 + KR‖u‖H1‖v‖H1

= (1 + P2 + M2 + KR)‖u‖H1(Ω)‖v‖H1(Ω) = C‖u‖H1(Ω)‖v‖H1(Ω),



Erfanian and Zeidabadi Advances in Difference Equations         (2019) 2019:62 Page 6 of 12

where C = (1 + P2 + M2 + KR), K = max |K(x, t)|, x ∈ [0, 1], t ∈ [0, x], and R = ‖1‖2
L2(Ω). Thus

B is continuous. Furthermore, we prove the V-ellipticity of B. For this purpose, we have

∫
Ω

v′(x)v′(x) dx +
∫

Ω

c(x)v(x)v(x) dx ≥
∫

Ω

(
v′(x)

)2 dx ≥ 1
1 + c

‖v‖2
H1 , (10)

∫
Ω

b(x)v′(x)v(x) dx =
–1
2

∫ 1

0
b′(x)

(
v(x)

)2 dx ≥ –T2

2

∫ 1

0

(
v(x)

)2 dx ≥ –T2

2
‖v‖2

H1 , (11)

and

–i
∫

Ω

v(x)
(∫ x

0
K(x, t)v(t) dt

)
dx ≥ –

∣∣∣∣
∫

Ω

v(x)
(∫ x

0
K(x, t)v(t) dt

)
dx

∣∣∣∣
≥ –KR‖v‖2

L2 ≥ –KR‖v‖2
H1 . (12)

Thus

B(v, v) ≥
(

1
1 + c

–
T2

2
– KR

)
‖v‖2

H1 , (13)

or

B(v, v) ≥ η‖v‖2
H1 , (14)

where η = ( 1
1+c – T2

2 – KR), and c is the Poincaré constant. Thus B is a V-elliptic if η > 0.
Therefore, by the Lax–Milgram theorem and the V-ellipticity of B, equation (1) has a
unique solution. Suppose that uh is an approximate solution. Then we have

B(u, vh) = L(vh) ∀vh ∈ Vh (15)

and

B(uh, vh) = L(vh) ∀vh ∈ Vh. (16)

If e = u – uh, where u is an exact solution of (1), then

B(e, vh) = 0 ∀vh ∈ Vh. (17)

By the relation between the inner product and energy norm, using the Schwarz inequality,
we have

∣∣B(v, w)
∣∣ ≤ ‖v‖E‖w‖E ∀v, w ∈ V . (18)

Since (e, vh)B = B(e, vh) = 0, (17) yields that e is orthogonal to any vh. Also, for each partic-
ular ṽh in Vh, ‖u – uh‖E = min{‖u – vh‖E ; vh ∈ Vh}, and using Cea’s lemma [24], we have

inf‖u – vh‖V ≤ ‖u – ṽh‖V
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if ṽh is equal to ũh, and we get an upper bound for the interpolation error. Also,

‖u – uh‖V ≤ c‖u – ũh‖V ≤ cMhζ , ζ > 0,

where the constant c is independent of h. Therefore

‖u – uh‖V ≤ CM
η

hζ .

Hence the norm of error tends to zero as h → 0, and the order of the method is O(hζ ). �

4 Results and discussion
In this section, we solve two numerical examples with the proposed methods. In addition,
we compare exact and numerical solutions of examples obtained by CBS-FEM and LBS-
FEM for M = 10 and h = 1

M . Also, we present an algorithm on the basis of our discussions
to solve Volterra integro-differential equations in the complex plane.

• Algorithm:
Step 1. Choose M collocation points in the finite domain Ω = [0, 1];
Step 2. Corresponding to each node, construct a basis function {φi}M

i=1.
Step 3. Compute the vector F and the matrix C by (8) and (9), respectively.
Step 4. Compute the coefficients αi and βi by solving system (7).
Step 5. Compute the approximate solution uh from equation (5).

Also, we show the ability and effectiveness of our method by obtaining the absolute error
for the modules of u(x) as

|error| =
√

(Re u – Re uh)2 + (Im u – Im uh)2.

All the solutions are obtained by using symbolic computation software Maple 16 on a
machine with Intel Core i5 Duo processor 2.6 GHz and 4 GB RAM.

Example 4.1 Consider the following linear complex Volterra integro-differential equation:

–u′′(x) + u′(x) + 2u(x) = f (x) + i
∫ x

0
xtu(t) dt, 0 < x ≤ 1,

where f (x) = f1(x) + if2(x), and

f1(x) = –11 cos(3x) + 1 + cos(3) + 3 sin(3x) – 2
(
1 – cos(3)

)
x

+
1

12
x
(
4 sin(2)x3 + 6 cos(2x)x – 3 sin(2x)

)
,

f2(x) = –6 sin(2x) + sin(2) – 2 cos(2x) – 2
(
1 – sin(2)

)
x +

17x
9

–
1
3

cos(3)x4 +
1
3

x4 +
1
3

sin(3x)x2 –
1
2

x3 +
1
9

cos(3x)x.

The exact solution is u(x) = 1 – cos(3x) + i(x – sin(2x)).
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At first, transformation formulas should be used to convert the inhomogeneous bound-
ary conditions to homogeneous boundary conditions. Diagrams of exact and numerical
solutions and the graph of error for Example 4.1 with the cubic B-spline finite element
method is showed in Fig. 1. Also, the comparison between exact and numerical solutions
for M = 10 and M = 20 in Example 4.1 are presented in Tables 1 and 2, respectively.

Figure 1 Diagrams of exact and numerical solutions and graph of error for modules of Example 4.1 with
cubic B-spline finite element method for M = 10

Table 1 Comparison of exact and numerical solutions for Example 4.1

x exact solution CBS-FEM LBS-FEM error(CBS-FEM) error(LBS-FEM)

0.1 0.044664 – i0.098669 0.042820 – i0.098403 0.044050 – i0.098687 0.001863 0.000061
0.2 0.174664 – i0.189418 0.173427 – i0.188851 0.173440 – i0.189375 0.001361 0.001225
0.3 0.378390 – i0.264642 0.375337 – i0.263756 0.376476 – i0.264457 0.003179 0.001923
0.4 0.637642 – i0.317356 0.633653 – i0.316139 0.634900 – i0.316972 0.004171 0.002768
0.5 0.929263 – i0.341471 0.923961 – i0.340041 0.925567 – i0.340893 0.005491 0.003741
0.6 1.227202 – i0.332039 1.220711 – i0.330465 1.222553 – i0.331356 0.006679 0.004699
0.7 1.504846 – i0.285450 1.498093 – i0.284178 1.499533 – i0.284814 0.006872 0.005351
0.8 1.737394 – i0.199574 1.730275 – i0.198350 1.732179 – i0.199139 0.007223 0.005232
0.9 1.904072 – i0.073848 1.900770 – i0.073877 1.900372 – i0.073677 0.003302 0.003704

Table 2 Comparison of exact and numerical solutions for Example 4.1, M = 20

x exact solution CBS-FEM LBS-FEM error(CBS-FEM) error(LBS-FEM)

0.1 0.044664 – i0.098669 0.043939 – i0.098400 0.043859 – i0.098471 0.000772 0.000827
0.2 0.174664 – i0.189418 0.172858 – i0.188849 0.172976 – i0.188978 0.001893 0.001743
0.3 0.378390 – i0.264642 0.375463 – i0.263747 0.375704 – i0.263920 0.003060 0.002781
0.4 0.637642 – i0.317356 0.633496 – i0.316141 0.633837 – i0.316343 0.004320 0.003937
0.5 0.929263 – i0.341471 0.923869 – i0.340010 0.924282 – i0.340225 0.005587 0.005134
0.6 1.227202 – i0.332039 1.220715 – i0.330492 1.221163 – i0.330704 0.006667 0.006184
0.7 1.504846 – i0.285450 1.497759 – i0.284048 1.498194 – i0.284237 0.007224 0.006760
0.8 1.737394 – i0.199574 1.730701 – i0.198543 1.731079 – i0.198696 0.006770 0.006374
0.9 1.904072 – i0.073848 1.899378 – i0.073293 1.899715 – i0.073427 0.004726 0.004376
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Example 4.2 In this example, we consider the following linear Volterra integro-differential
equation:

–u′′(x) + sin(x)u′(x) + xu(x) = f (x) + i
∫ x

0
(x – t)u(t) dt, 0 < x ≤ 1,

where f (x) = f1(x) + if2(x) and

f1(x) =
1

12
(
(–6x + 4) sinh(1) + 3

(
e–1 + e

)
(x – 1)

)
sin(1)

+
1

12
((

–12x2 – 12 sin(x)
)

sinh(1) + (3x – 6)e–1 – 3xe
)

cos(1)

+
1

12
(
12x cos(x) + 12

(
cos(x)

)2 – 12
)

sinh(x)

+ sin(x) cosh(x) cos(x) + 2 sin(x) cosh(x) +
1
2

,

f2(x) =
1

12
(
(6x – 4) sinh(1) – 3

(
e–1 + e

)
(x – 1)

)
cos(1)

+
1

12
((

–12x2 – 12 sin(x)
)

sinh(1) + (3x – 6)e–1 – 3xe
)

sin(1)

+
1

12
(
–12

(
cos(x)

)2 – 24 cos(x) + 12
)

cosh(x)

+ sin(x) sinh(x)x + sin(x) sinh(x) cos(x) +
x
2

.

The exact solution is u(x) = cos(x) sinh(x) + i(sin(x) sinh(x)).

For M = 10 and M = 20, the results obtained by using CBS-FEM and LBS-FEM are pre-
sented in Tables 3 and 4 and Fig. 3.

5 Conclusions
In this work, we used the linear B-spline finite element method (LBS-FEM) and cubic B-
spline finite element method (CBS-FEM) for solving and obtaining numerical solutions
of Volterra integro-differential equations in the complex plane. So far, there are no any
publications in this field in the complex plane by using the finite element method. The
main purpose of this paper is to use the finite element method to find an approximate
solution of (1). To this end, we must obtain a weak and variational form of equation (1).
Also, the error and convergence of the method are discussed. The order of convergence

Table 3 Comparison of exact and numerical solutions for Example 4.2

x exact solution CBS-FEM LBS-FEM error(CBS-FEM) error(LBS-FEM)

0.1 0.099666 + i0.010000 0.100728 + i0.009325 0.100231 + i0.010482 0.001258 0.000742
0.2 0.197323 + i0.039999 0.198715 + i0.038981 0.197806 + i0.040558 0.001725 0.000738
0.3 0.290919 + i0.089992 0.292103 + i0.087968 0.290839 + i0.090319 0.002344 0.000336
0.4 0.378328 + i0.159954 0.378694 + i0.157534 0.377371 + i0.159839 0.002447 0.000964
0.5 0.457304 + i0.249826 0.457035 + i0.246208 0.455344 + i0.249164 0.003628 0.002068
0.6 0.525453 + i0.359482 0.524295 + i0.355326 0.522577 + i0.358287 0.004314 0.003113
0.7 0.580197 + i0.488693 0.578022 + i0.484910 0.576739 + i0.487120 0.004363 0.003798
0.8 0.618749 + i0.637088 0.616135 + i0.633858 0.615336 + i0.635453 0.004155 0.003784
0.9 0.638093 + i0.804098 0.636243 + i0.802149 0.635696 + i0.802911 0.002687 0.002674
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Table 4 Comparison of exact and numerical solutions for Example 4.2, M = 20

x exact solution CBS-FEM LBS-FEM error(CBS-FEM) error(LBS-FEM)

0.1 0.099666 + i0.010000 0.100291 + i0.009703 0.100194 + i0.010499 0.000691 0.000726
0.2 0.197323 + i0.039999 0.197895 + i0.039802 0.197735 + i0.040591 0.000605 0.000721
0.3 0.290919 + i0.089992 0.290960 + i0.089624 0.390736 + i0.090365 0.000369 0.000416
0.4 0.378328 + i0.159954 0.377536 + i0.159159 0.377240 + i0.159896 0.001121 0.001089
0.5 0.457304 + i0.249826 0.455567 + i0.248503 0.455192 + i0.249227 0.002182 0.002195
0.6 0.525453 + i0.359482 0.522883 + i0.357628 0.522414 + i0.358351 0.003167 0.003242
0.7 0.580197 + i0.488693 0.577145 + i0.486461 0.576579 + i0.487178 0.003780 0.003921
0.8 0.618749 + i0.637088 0.615928 + i0.634747 0.615200 + i0.635499 0.003665 0.003888
0.9 0.638093 + i0.804098 0.636498 + i0.802167 0.635610 + i0.802937 0.002503 0.002740

Figure 2 Diagrams of exact and numerical solutions
and graph of error for modules of Example 4.1 with
cubic B-spline finite element method for M = 20

Figure 3 Diagrams of exact and numerical solutions and graph of error for modules of Example 4.2 with
cubic B-spline finite element method for M = 10

is computed, and we showed that it is O(hζ ). Furthermore, the efficiency of the proposed
method is shown by two numerical examples. The paper concludes by tables and figures,
which indicate the results in diagrams of exact and numerical solutions, and the graphs of
errors for these examples with cubic B-spline finite element method.
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Figure 4 Diagrams of exact and numerical solutions
and graph of error for modules of Example 4.2 with
cubic B-spline finite element method for M = 20
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