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Abstract

This paper deals with the dynamic behavior of the chaotic nonlinear time delay
systems of general form x(t) = g(x(t), x(t — T)). We carry out stability analysis to identify
the parameter zone for which the system shows a stable equilibrium response.
Through the bifurcation analysis, we establish that the system shows a stable limit
cycle through supercritical Hopf bifurcation beyond certain values of delay and
parameters. Next, a numerical simulation of the prototype system is used to show
that the system has different behaviors: stability, periodicity and chaos with the
variation of delay and other parameters, which demonstrates the validity of our
method. We give the single- and two-parameter bifurcation diagrams which are
employed to explore the dynamics of the system over the whole parameter space.
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1 Introduction

For the last decades, time-delayed dynamical systems have been attracting the attention
of researchers of various fields, including mathematics, biology, economics, physics, engi-
neering, etc. [1-4]. Many natural systems are mathematically modeled by nonlinear delay
differential equations which contain one or more time delays. Successful examples include
blood production in patients with leukemia [5], dynamics of optical systems [6, 7], popula-
tion dynamics [8], physiological model [9], El Nifio/southern oscillation [10], the Lorentz
force with Liénard—Weichert potentials [11], neural network with three neurons [12], de-
lay feedback control and synchronization [13, 14], etc. The presence of a delay in a system
makes the system infinite-dimensional, and may lead to an unstable and oscillatory re-
sponse. In particular, the time delay of a nonlinear system may give rise to various complex
phenomena such as bifurcation, chaos, hyperchaos, multistability, etc.

There are many reasons why the nonlinear delay dynamical systems have been stud-
ied in the mathematical modeling of the naturally occurring phenomena [15, 16]. Firstly,
the delay differential equations show higher-dimensional chaotic behavior which cannot
be anticipated by a low-dimensional system [17]. It is important to understand and ex-
plore the behavior of these systems both from the academic and engineering perspective.
Secondly, infinite dimensionality of delayed systems offers a great opportunity to the re-
searchers to harness the richness of hyperchaos, having multiple positive Lyapunov expo-
nents. It has been proved that communication with a low-dimensional chaos is not fully
secure because an eavesdropper can reconstruct chaotic attractors and retrieve a hidden
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message [18, 19]. Therefore, the synchronization of hyperchaotic systems has been pro-
posed as an alternative method for improving the security in the communication schemes
[20-22]. It has been proved that a simple time delay system with suitable nonlinearity can
produce a hyperchaotic signal with multiple positive Lyapunov exponents, thus making it
a good candidate for a secure communication system [23, 24]. Beside a secure communica-
tion system, chaotic and hyperchaotic systems have important applications in chaos-based
noise generators [25], improvement of motion capabilities and of sensors in robotics [26,
27], etc.

Hence, the bifurcation analysis of time-delay chaotic systems has been the subject of
worldwide attention in the last decades [28]. In [29], Campbella and Ncubeb gave an ex-
plicit description of the region of stability for a linear scalar delay differential equation
consisting of two arbitrarily distributed time delays. El-Dessoky et al. investigated the lo-
cal Hopf bifurcation in Shimizu—Morioka chaotic system with delayed feedback control
[30]. Song et al. studied the stability and Hopf bifurcation in a model of gene expression
with distributed time delays [31]. In [32], Feng and Wei investigated the effect of delayed
feedbacks on the generalized Sprott B system with hidden attractors and its local Hopf
bifurcation. Atay and Ruan studied systems of coupled units in a general network con-
figuration with a coupling delay [33]. Yeniceri and Yalcin introduced the first generaliza-
tion for time-delay sampled-data chaotic system in order to generate multiscroll attractors
[34]. Wei et al. made a lot of contributions to the Hopf bifurcation analysis of many equa-
tions, such as Mackey—Glass system [35], delayed Nicholson blowflies equation [36], and
a neural network model with delay [37]. We would like to mention that there are several
papers on the bifurcation formed by a branch of periodic orbits of a family functional dif-
ferential equations, see Dormaer [38, 39], and the global existence of periodic solutions
in delayed differential equations based on the global Hopf bifurcation theory given by Wu
[40]; for example, see the works given by Ruan and Wei [41], Song and Wei [42], Wen and
Wang [43]. Tang et al. casted light on network synchronous state stability via studying the
bifurcation (or transition) problem of network synchronized regions with varying nodal
dynamics [44]. Xiao et al. proposed a delayed fractional-order congestion control model
which is more accurate than the original integer-order model when depicting the dual
congestion control algorithms [45].

In this paper, we first study a general chaotic nonlinear time delay system with a constant
time delay. We carry out stability analysis to identify the parameter zone for which the
system shows a stable equilibrium response. Through the bifurcation analysis, the system
shows a stable limit cycle through supercritical Hopf bifurcation beyond certain values of
delay and parameters of the system. Next, a numerical simulation of the prototype system
shows that the system shows stability, periodicity and chaos with the variation of delay
and other system parameters. We give the single- and two-parameter bifurcation diagrams
which are employed to explore the dynamics of the system over the whole parameter space.
The numerical results demonstrate the validity of our method.

This paper is organized in the following manner: In Sect. 2, the main results about the
stability and bifurcation analysis are discussed. In Sect. 3, the stability analysis of the pro-
totype model is presented. In Sect. 4, a numerical simulation of the system shows that with
the variation of delay and other system parameters, the system shows stability, periodicity

and chaos. Finally, conclusions are given in Sect. 5.
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2 Stability and bifurcation analysis

2.1 The system description

For a discussion of the stability analysis, we consider the following delay differential equa-
tion:

x(2) = g(x(0), x(t - 1)) (t = to) 1)

where t > 0 is the time delay, and g is a function of x(t) and x(¢ — 7). Equation (1) is of
very general nature because of the function g, which can be linear, piecewise linear, or
nonlinear. A few particular cases of this system are Mackey—Glass equation x(¢) = —bx +
ax./(1 + x¢) arising in the model of leukemia [46], Ikeda equation X(¢) = bx(£) + asin(cx;)
in optics [47], and the piecewise linear Lu—He model x(¢) = —ax(t) + bf (x,) [48], where
f(x) is a piecewise linear function. Here £ is the initial interval and t > 0 corresponds to
the delay time, which represents the time interval between the start of an event at one
point and its resulting action at another point in the system. The solution of the system
equation defined in (1) is determined uniquely when an initial function ¢(t) defined on an
initial interval is prescribed as

x(t) = p(t), forte [ty— 1,1t (2)

The time delay is approximated or its effects are generally ignored by modelers. Several
researches have commented on the dangers modelers risk if they ignore delays which they
think are small [49]. In the case of approximation used for the delay elements, their effects
on the system behavior can only be partly observed. The delay elements arise naturally in
various diverse fields: chemical kinetics, infectious diseases, and the navigational control
of ships and aircraft [49]. Therefore, the subject of differential equations with time delay
is now a rapidly growing field, and numerical solution of systems modeled by delay differ-
ential equations is both of theoretical and practical interest. The bibliography prepared by
Baker et al. shows recent developments and interests in this field [50].

In this paper, we first discuss the stability and bifurcation analysis of the above nonlinear
continuous delay system (1). Through the bifurcation analysis, we establish that the system
shows a stable limit cycle through supercritical Hopf bifurcation beyond certain values of
delay and system parameters. Next, a numerical simulation of the considered nonlinear
system [51, 52] is used to show that the system exhibits stability, periodicity and chaos with
the variation of delay and other system parameters, which demonstrates the validity of the
proposed theory. The nonlinear continuous system in dimensionless form with one-state
variable is as follows:

() = ya(t -7) - Bf(x(t - 1)), (t=t0), ®3)

where y and 7 are positive parameters of the system. In [51], the author uses numerical
simulation to study the dynamical behavior of the system with the variation of the system
parameters. In this paper, we will carry out bifurcation analysis to study the rich dynamical
behavior of the system in theory, and we will use a numerical simulation of the system
to show that with the variation of delay and other system parameters, the system shows
stability, periodicity and chaos.
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2.2 Stability analysis of delay differential equation
Consider the delay differential equation (1), namely x(¢) = g(x(¢), x(¢ — )). The equilibrium

points x* are obtained by solving
g(x",x%) =0. (4)

Then, we consider the linearization of the system near the equilibrium x*. Defining a small
perturbation & = x — x* to equilibrium solution and using Taylor’s approximation, we get

a linearized equation of (1) as

£ = a& + b, (5)

where a = Jo|»+ = t) cid) Ik, b= J¢lax = ml «. Using the Laplace transform, the char-

acteristic equation can be obtained as
r=a+be™. (6)

As we known, an equilibrium point x* is asymptotically stable if all roots A; of the char-

acteristic equation (6) satisfy
Re(A;) <0, Vi. @)

If the delay time 7 = 0, the eigenvalue is A = a + b. Condition (7) then takes the form a + b <
0, which implies that the equilibrium point x* is stable. In the following we consider the
delay time 7 # 0. Hopf bifurcation will appear if at least one of the eigenvalues crosses the
imaginary axis from the left and enters the right half-plane. Putting A = p + iw, if u varies
from the left to right, we can say that u < 0 is a stable state, i > 0 is a bifurcated state, and
w = 0 is the limiting case. At the emergence of Hopf bifurcation, we put p = 0. Thus using

A = iw, we have
iw=a+be ™", (8)
Now equating the real and imaginary parts on both sides of the above equation, we obtain

a = —-bcos(wt),

. )
w = -bsin(wr).
This implies w = £+4/b? — a2, and the sets of solutions of t are as follows:
arccos(—%) + 2k, forw>0
Ty = (10)

27 —arccos(—3) + 2k, for w <O0.

where k=0,1,2,.... And if we set

wo = Vb2 — a2, (11)
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then A4(7) = ui(t) + iw(7) is a root of (6) satisfying 1., = 0 and wi(tx) = wo. We have the
following results.

Lemma 1 pu;(z)>0.

Proof Differentiating both sides of (6) with respect to 7, it follows that

di di
— =be*"[-==-1). 12
ac ¢ ( dt ) (12)
Therefore, noting that A = a + be 7, we obtain
dxr AMA -
ar___M-a) (13)
dt l+t(h—a)
and
dx _dwliw-a)  of —i(wa - wyta® - ’1) (19)
dt |,y 1+ t(iw-a) (1-ta)?+wit?
This implies that
2
, ,
1 (%) = ———5— >0. (15)

C(1-ta)?+ wit?

Hence, % > 0 on each of the critical surfaces tx, which implies that there does not exist
any eigenvalue with a negative real part across the critical surface. Thus, there is only one
possible stability region (under the condition a + b < 0) enclosed by = = 0 and the critical
surface 7g.

Then, we have the following main conclusion:

Case L. If a + b < 0 then t = 0 gives stable solutions. Further, the stability surfaces exist if
b > a’. (16)

The stability region is bounded by the plane t = 0 and the closest critical surface 7.

If condition (16) is not satisfied, then the stability properties will not change in this re-
gion a + b <0, i.e., the solutions are stable for any v > 0.

Case II. If a + b > 0 then the system will be unstable for any T > 0 and for any parameter
values. 0

We summarize these conclusions in the following theorem.

Theorem 1 Suppose x* is an equilibrium solution of the delay differential equation (1),
namely x(t) = g(x(t),x(t — 1)), and a = Jo|+, b = J1|+. Then we have:

1. Ifb € (—00,—|al) then the stability region of x* in (t,a, b) parameter space is [0, 15).
And if T € (tk, Tks1), equation has 2(k + 1) roots with positive real parts. The equation
undergoes Hopf bifurcation at v,k =0,1,2,....

2. If b € (—a, +00) then x* is unstable for any T > 0.

3. Ifbe(a,-a) and a <0 then x* is stable for any T > 0.
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0
b

Figure 1 Stability regions of Eq. (1): (I) stable region for the delay in the interval [0, 77 (0)), (Il) unstable region,
(1) stable region

Proof Claim 1. It is followed from b € (=00, —|a|) that a + b < 0 and 5 > a2. The equation
has a pair imaginary roots iwy when 7 = 7 (k=0,1,2,...). If t € [0, 79), all the roots of
equation (1) have negative real parts, i.e., the equilibrium x* is stable. The statement on
the number of eigenvalues with positive real parts follows from Lemma 1 and Rouché’s
theorem [53].

Claim 2. It follows from b € (—a, +00) that a + b > 0, and then the equation has at least
one root with a positive real part for all T > 0, i.e., for equation (1), the equilibrium point
x* is unstable for all T > 0.

Claim 3. It follows from b € (4, —a) that a + b < 0 and b? < . For all T > 0, all the roots
of the equation have negative real parts, i.e., the equilibrium x* is stable. O

These results are also summarized in Fig. 1.

3 Stability analysis of the prototype model

The system given in (3) has been used as a prototype model to observe self-oscillations
in the shipbuilding industry [54]. In [51], the author studies the basic chaotic behavior by
numerical simulation. For theoretically analyzing the complexity of the system given by
(1), we rewrite (3) in the following form [52]:

(£) = g(x(t), %) = ya(t — 1) - B>t - 1), (17)

where y and B are positive parameters of the system and t is the time delay. The equi-
librium condition implies & = 0 and x(¢) = x(t — 7) = x*, i.e., glx*,x*) = ya* — Bx*® = 0.
This implies that the system has three equilibrium points, namely the origin E; = 0 and
E»3 = +4/y/B. Based on the analysis of [40, 55, 56], we will find the value of T where the
fixed point losses its stability through Hopf bifurcation. From (17), one has

0g(x(t),x;) _

Jo= o

0 (18)
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and

J. = w =y -3Bx*(t - 7). (19)
Xt

In the following, our aim is to examine the stability of every equilibrium point.

3.1 Stability of the equilibrium point E,
In this section, we consider the stability of the equilibrium point E; = 0. Since we have

Jolg, =0 and J; |, = v, the characteristic equation is given by

Jo+Je* —A=ye T —1=0, (20)
which implies

A=ye . (21)

If the delay time 7 = 0, the eigenvalue X = y > 0, which implies that the equilibrium point

E, = 0is unstable. If 7 #0, the conclusion can be obtained by Theorem 1 as follows:

Theorem 2 Equation (21) has at least one root with a positive real part for all T > 0, i.e.,

for equation (17), the equilibrium point E; = 0 is unstable for all t > 0.

Proof Since a = Jylg, =0 and b = J1|g, = y >0, we have a + b = y > 0, which implies that
equation (21) has at least one root with a positive real part for all 7 > 0. Hence, the equi-

librium point E; = 0 is unstable for t > 0. O

3.2 Stability of the equilibrium points E; 3
In this section, we study the stability of the equilibrium points Ey 3 = +4/y/8 by the same
method. Since we have Jo|g,; =0 and J;|g,; = ¥ - 38 % = -2y, the characteristic equation

is given by

Jo+Je* —A==2ye*—A=0, (22)
which implies

A=—2ye™". (23)
If the delay time 7 = 0, the eigenvalue A = -2y < 0, which implies that the equilibrium
points Ey3 = £./y /B are stable. In the following, we consider the delay time t # 0. Hopf
bifurcation will appear if at least one of the eigenvalues crosses the imaginary axis from
the left and enters the right half-plane. Putting A = p + iw, if u varies from the left to right,

we can say that i < 0 is a stable state, & > 0 is a bifurcated state, and p = 0 is the limiting
case. At the emergence of Hopf bifurcation, we put u = 0, thus using A = iw, we have

iw = -2ye " = —2y (cos(wr) - isin(wr)). (24)
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Now equating the real and imaginary parts on both sides of above equation, we obtain

2y cos(wt) =0,

(25)
2y sin(wt) = w.
This implies w = £2y, and the sets of solutions of 7 are as follows:
Zk’Twi/z, for w >0,
e Zk’”%, for w <0, 26
where k=0,1,2,.... If we set
wo =2, (27)

then Ax(7) = ui(7) + iwi () is a root of (23) satisfying ., = 0 and wi(tx) = wo. We have the
following results.

Lemma 2 p(7¢) > 0.

Proof Differentiating both sides of (23) with respect to 7, it follows that

ar _ 2ye T dx A (28)
Y dr )

Therefore, noting that A = —2ye™7, we obtain

dn 3 (29)
dt 1+Ait
and
daxr W} w? —iwdt
_|r=rk = ,O =2 2 02 . (30)
dr 1+iwpt 1+t
This implies that
2
’ @y
%) = ———= >0. 3
Bl = (3B
Lemma 3 For the equilibrium points E, 3, there exists a sequence of values of T
0<To<T < " <Tp< -, (32)

such that (i) equation (23) has a pair imaginary roots tiwy when t = 7 (k=0,1,2,...),
(ii) if T € [0, 70), all the roots of equation (23) have negative real parts, if T = 1o, all roots of
equation (23) except Liw,y have negative real parts, and if T € (tx, Txs1) for k=0,1,2,...,
equation (23) has 2(k + 1) roots with positive real parts.
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Proof From (25) and (26), we obtain that equation (23) has purely imaginary roots tiwy if
and only if 7 = 7. The statement about the number of eigenvalues with positive real parts
in (ii) follows from Lemma 2 and Rouché’s theorem [53]. O

Theorem 3 The equilibrium points Ey3 = 0 are asymptotically stable for T € [0, 1) and
unstable for T > vy, and equation (17) undergoes a Hopf bifurcation at E; 3 when t = 1y _for
=0,1,2,....

Proof This theorem can be proof by Lemma 3. It also can be obtained by Theorem 1 with
b € (—00,—|al), wherea=0and b = -2y <0. a

In this section, we have the conclusion: (i) equation (17) is unstable for T > 0 at the
equilibrium point Ej; (ii) equation (17) is asymptotically stable for 7 € [0, 7o) and unstable
for T > 7 at the equilibrium points E, 3, and equation (17) undergoes a Hopf bifurcation

at the equilibrium points E; 3 when 7 = 7 for =0, 1,2,...

4 Numerical simulation

In the previous section, we obtained that the considered equation at E 3 is asymptotically
stable for t € [0, 7p) and unstable for T > 7, and equation (17) undergoes a Hopf bifur-
cation at Ey3 when 7t = 1 for k =0,1,2,.... In the following, we will give the dynamic
behaviors of the system with different parameter y and different time delay r. And the
bifurcation diagrams will be obtained by plotting the local maxima of x, excluding a large
number of transients. System (17) is solved numerically using the fifth-order Runge—Kutta
algorithm with integration step size / = 0.005 and the constant initial function ¢(z) = 0.1
for t € [-7,0].

4.1 The dynamic behavior with y = 0.5

First, we vary the time delay 7, taking y = 0.5 and B = 1. When t > 1.57, the fixed point
loses its stability through Hopf bifurcation, which is in accordance with the analysis of the
previous section. The bifurcation diagram is shown in Fig. 2. According to the numerical
simulations and Fig. 2, we find that the system is asymptotically stable for v € [0,1.57). The
limit cycle of period-1 becomes unstable and a period-2 cycle appears at v = 2.54. Further
period doubling occurs at T = 2.65 (period-2 to period-4). Through a period doubling
sequence, the system enters into the chaotic region at 7 = 3.1. At last, the system becomes
divergentat T = 3.45. A phase plane representation in the representative x —dx/dt plane for
different 7 is shown in Fig. 3, which shows the following characteristics: stability (r = 1),
period-1 (z = 1.8), period-2 (t = 2.6), period-4 (t = 2.7), and chaos (r = 3.1 and 7 = 3.3).

4.2 The dynamic behavior with y =1

Now we study the dynamic behavior of system (2) by varying the time delay t and taking
y =1land B = 1. When t > 0.79, the fixed point loses its stability through Hopf bifurcation,
and the bifurcation diagram is shown in Fig. 4. According to the numerical simulations
and Fig. 4, the following conclusions are found. The system is asymptotically stable for
7 € [0,0.79). The limit cycle of period-1 becomes unstable and a period-2 cycle appears
at 7 = 1.27. Further period doubling occurs at 7 = 1.32 (period-2 to period-4). Through a
period doubling sequence, the system enters into the chaotic region at T = 1.52. At last, the
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Figure 3 The phase plane plot in x — dx/dt space for different t: (@) T = 1 (stability), (b) T = 1.8 (period-1),
(¢) T = 2.6 (period-2), (d) T = 2.7 (period-4), (€) T = 3.1 (chaos), (f) T = 3.3 (chaos) with parameter y = 0.5

system becomes divergent at T = 1.72. A phase plane representation in the representative
x—dx/dt plane for different 7 is shown in Fig. 5, which shows the following characteristics:
stability (t = 0.5), period-1 (z = 0.9), period-2 (r = 1.3), period-4 (r = 1.35), and chaos
(tr =1.55and 7 = 1.65).

4.3 The dynamic behavior with y = 1.5

In the following, we vary the time delay 7 taking y = 1.5 and § = 1. When t > 0.52, the
fixed point loses its stability through Hopf bifurcation, and the bifurcation diagram is
shown in Fig. 6. According to the numerical simulations and Fig. 6, the following con-
clusions are found. The system is asymptotically stable for v € [0,0.52). The limit cycle
of period-1 becomes unstable and a period-2 cycle appears at T = 0.82. Further period
doubling occurs at v = 0.88 (period-2 to period-4). Through a period doubling sequence,

Page 10 of 18
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Figure 5 The phase plane plot in x — dx/dt space for different t: (a) T = 0.5 (stability), (b) T = 0.9 (period-1),
(€) T =13 (period-2), (d) T = 1.35 (period-4), (e) T = 1.55 (chaos), (f) T = 1.65 (chaos) with parameter y =1

the system enters into the chaotic regime at t = 1.01. Then, the system enters into the
divergent region at v = 1.15. A phase plane representation in the representative x — dx/dt
plane for different 7 is shown in Fig. 7, which shows the following characteristics: stability
(t =0.3), period-1 (t = 0.6), period-2 (t = 0.87), period-4 (t = 0.9), and chaos (r = 1.03
and 7 = 1.1).

4.4 The dynamic behavior with y =2

Then we study the dynamic behaviors of system (2) by varying the time delay t and taking
y =2 and B = 1. We find that the fixed point loses its stability through Hopf bifurcation
when t > 0.39, and the bifurcation diagram is shown in Fig. 8. According to the numerical
simulations and Fig. 8, the following conclusions are found. The system is asymptotically
stable for 7 € [0,0.39). And the limit cycle of period-1 becomes unstable and a period-2

Page 11 of 18
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Figure 6 The bifurcation diagram of system (17) with the parameter y = 1.5
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Figure 7 The phase plane plot in x — dx/dt space for different t: (a) T = 0.3 (stability), (b) T = 0.6 (period-1),
(€) T =087 (period-2), (d) T = 0.9 (period-4), (e) T = 1.03 (chaos), (f) T = 1.1 (chaos) with parameter y = 1.5

cycle appears at t = 0.64. Further period doubling occurs at T = 0.66 (period-2 to period-
4). Through a period doubling sequence, the system enters into the chaotic region at 7 =
0.76. At last, the system becomes divergent at T = 0.86. A phase plane representation in the
representative x — dx/dt plane for different 7 is shown in Fig. 9, which shows the following
characteristics: stability (t = 0.25), period-1 (t = 0.45), period-2 (z = 0.65), period-4 (tr =
0.68), and chaos (t = 0.77 and t = 0.83).

4.5 The dynamic behavior with y =2.5

In the following, we study the dynamic behaviors of system (2) when we vary the time delay
7 taking y = 2.5and B = 1. It is found that when v > 0.31, the fixed point loses its stability
through Hopf bifurcation, and the bifurcation diagram is shown in Fig. 10. According to
the numerical simulations and Fig. 10, the following conclusions are found. The system

Page 12 0f 18
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Figure 8 The bifurcation diagram of system (17) with the parameter y =2
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Figure 9 The phase plane plot in x — dx/dt space for different : (a) T = 0.25 (stability), (b) T = 0.45 (period-1),
(c) T = 0.65 (period-2), (d) T = 0.68 (period-4), (e) T = 0.77 (chaos), (f) T = 0.83 (chaos) with parameter y =2

is asymptotically stable for 7 € [0,0.31). And the limit cycle of period-1 becomes unsta-
ble and a period-2 cycle appears at v = 0.51. Further period doubling occurs at 7 = 0.53
(period-2 to period-4). Through a period doubling sequence, the system enters into the
chaotic region at T = 0.61. Then, the system becomes divergent at T = 0.69. A phase plane
representation in the representative x — dx/dt plane for different 7 is shown in Fig. 11,
which shows the following characteristics: stability (t = 0.2), period-1 (z = 0.36), period-2
(tr =0.52), period-4 (t = 0.54), and chaos (7 = 0.62 and 7 = 0.66).

4.6 The dynamic behavior with y =3
In the end, we study the dynamic behavior of system (2) when we vary the time delay t
taking y = 3 and B = 1. When t > 0.26, the fixed point loses its stability through Hopf

Page 13 0of 18



Li et al. Advances in Difference Equations

(2019) 2019:78

25

1.5

i i i i i

0 0.1 0.2 0.3 0.4 0.5 0.6

T

Figure 10 The bifurcation diagram of system (17) with the parameter y = 2.5
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Figure 11 The phase plane plot in x — dx/dt space for different 7: (@) T = 0.2 (stability), (b) T = 0.36 (period-1),
(c) T =0.52 (period-2), (d) T = 0.54 (period-4), (€) T = 0.62 (chaos), (f) T = 0.66 (chaos) with parameter y = 2.5

bifurcation, and the bifurcation diagram is shown in Fig. 12. According to the numerical
simulations and Fig. 12, the following conclusions are found. The system is asymptotically
stable for T € [0,0.26). And the limit cycle of period-1 becomes unstable and a period-2 cy-
cle appears at t = 0.42. Further period doubling occurs at t = 0.43 (period-2 to period-4).
Through a period doubling sequence, the system enters into the chaotic region at t = 0.51.
Then, the system enters into the divergent region at T = 0.57. A phase plane representa-
tion in the representative x — dx/dt plane for different t is shown in Fig. 13, which shows
the following characteristics: stability (t = 0.17), period-1 (r = 0.3), period-2 (r = 0.43),
period-4 (r = 0.46),

and chaos (r = 0.52 and 7 = 0.55).
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Figure 12 The bifurcation diagram of system (17) with the parameter y =3

it
it

R

3 ~

" r
17817 17318 17319 1782 1781 17822 17323 1782 12 14 16 8 2 05 o 05 1 15 2 25
x

dxidt

it
b L b o v s o
it

25 2 5 1 05 0 05 1 15 2 25 =3 2 El o 1 2 3
x

Figure 13 The phase plane plot in x — dx/dt space for different 7: (@) T = 0.17 (stability), (b) T = 0.3 (period-1),
(c) T =043 (period-2), (d) T = 0.46 (period-4), (€) T = 0.52 (chaos), (f) T = 0.55 (chaos) with parameter y =3

4.7 The dynamical behavior of the system over the whole T - y parameter space
Using the bifurcation analysis theory and the results of numerical simulation, the following
conclusions are found: (i) the system is asymptotically stable for T € [0,7/(4y)); (ii) the
system has periodic solutions when 7 € (7/(4y),6.08/(4y)); (iii) the system has chaotic
behaviors when 7 € (6.08/(4y),6.88/(4y)); (iv) the system is divergent when 7 > 6.88/(4y).
The results are given in Fig. 14. The regions (I)—(IV) indicate the stable, periodic, chaotic,
and divergent zones of the system, respectively.

5 Conclusions

In this paper, the stability and bifurcation of a first-order time-delayed chaotic system are
studied. The stability study and bifurcation analysis established that the system shows a
supercritical Hopf bifurcation giving birth to a stable limit cycle oscillation. Next, we use
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Figure 14 The different regions in the T — y parameter space with parameter 8 =1

numerical simulations of the prototype system to demonstrate the validity of our method.
The numerical simulations with the variation of time delay prove that the system shows a
period-doubling route to chaos. And we study the dynamical behaviors of the system over
the whole t — y parameter space. Then, we give four different regions (I)—(IV) where the
system shows stable, periodic, chaotic, and divergent behavior, respectively. In the future
work, we will study the limit cycles and homoclinic/heteroclinic orbits in our system.
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