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Abstract
Any randommodel represents an action where uncertainty is present. In this article,
we investigate a random process solution of the random convection–diffusion model
using the finite difference technique. Additionally, the consistency and stability of the
random difference scheme is studied under mean square and mean fourth calculus
using the direct expectation way. The effect of the randomness input is discussed in
order to obtain a stochastic process solution by applying mean square and mean
fourth calculus. Some case studies for different statistical distributions are stable
under our conditions.
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1 Introduction
The purpose of this work is to provide the finite difference scheme from an applied point of
view. Much more emphasis is put into solution methods rather than to analysis of the the-
oretical properties of the equations; therefore, in this paper we will try to apply the mean
square and mean fourth calculus in order to find the stability condition for the random
process solution of the following random problem:

⎧
⎨

⎩

ut + βux = αuxx, t ∈ [0,∞), –∞ < x < ∞,

u(x, 0) = u0(x),
(1)

where β is a random variable, α is a constant, t is a time variable, x is the space coordinate
and ut , ux are the partial derivatives with respect to t and x, respectively. Also, u0(x) is an
initial data function which is taken to be deterministic.

Many papers have studied stochastic partial differential equations by using the Brownian
motion process [1–3] also, with a random potential [3]. In this work we try to develop the
convection–diffusion problem from the deterministic case to the random case by dealing
with random coefficients. Our model is applied to a membrane containing pores or chan-
nels lined with positive fixed charges acting as a barrier between intracellular and extra-
cellular compartments filled with electrolyte solutions. In the pollutants, solute transport
from a source through a random medium of air or water is characterized by a parabolic
stochastic partial differential equation derived on the principle of conservation of mass;
it is known as stochastic advection–diffusion equation (SADE). There are many articles
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that have studied some stochastic partial differential equations by using finite difference
method [4–8]. The motivation in this paper is to prove the consistency and stability by
using the relation between the 2-norm and the 4-norm.

The rest of the paper is given as follows: In Sect. 2,we describe the random difference
scheme method. In Sect. 3, we prove that our difference scheme is consistent in mean
square and mean fourth with the advection–diffusion model, Additionally, in Sect. 4, we
will find the stability condition in mean square and mean fourth for the random difference
scheme. In Sect. 5, we present some case studies. Finally, in Sect. 6, we give a summary of
our contribution.

2 The description of the random finite difference technique
Firstly, for applying the finite difference technique for the approximation solutions of our
problem (1), we discretize the space and the time by finite increasing sequences as follows:
the grid points for the space are to be taken as a = x0 < x1 < x2 < x3 < · · · < xk = b. Also, the
time points are to be taken as 0 = t0 < t1 < t2 < t3 < · · · < tn = ∞. Suppose that the grid
cells for the space is �x = (xk – xk–1) for k ≥ 1 with time steps �t = (tn – tn–1) for t ≥ 1.
Suppose un

k = u(k�x, n�t) approximates the exact solution for the problem (1) as, u(x, t)
at the point (k�x, n�t). To formulate the difference scheme according to the problem (1),
we replace the first and second derivative in (1) by difference formulas as follows:

• The first-order approximation to ut is

ut(k�x, n�t) ≈ un+1
k – un

k
�t

.

• The first-order approximation to ux is

ux(k�x, n�t) ≈ un
k+1 – un

k
�x

.

• The second-order approximation to uxx is

uxx(k�x, n�t) ≈ un
k+1 – 2un

k + un
k–1

(�x)2 ;

by substituting in (1), we get the random difference scheme

⎧
⎪⎪⎨

⎪⎪⎩

un+1
k = (1 + rβ�x – 2rα)un

k + (rα – rβ�x)un
k+1 + rαun

k–1,

u0
k = u0(k�x) = u0(xk),

r = �t
(�x)2 , tn = n�t and xk = k�x.

(2)

3 Consistency in mean square and mean fourth
For a random finite difference scheme (RFDS) Ln

k un
k = V n

k that approximates the random
partial differential equation (RPDE) Lu = V to be consistent under the mean square sense
at time t = (n + 1)�t, for any smooth function ϕ = ϕ(x, t), we have in mean square

E
[∣
∣(Lϕ – G)n

k –
(
Ln

kϕ(k�x, n�t) – Gn
k
)∣
∣2] → 0, (3)

as �t → 0, �x → 0 and (k�x, n�t) → (x, t).
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Theorem 1 The RFDS (2) defined by (1) is a consistent scheme in mean square area: �t →
0, �x → 0 and (k�x, n�t) → (x, t).

Proof

L(ϕ)n
k =

ϕ(k�x, (n + 1)�t) – ϕ(k�x, n�t)
�t

+ β
ϕ((k + 1)�x, n�t) – ϕ(k�x, n�t)

�x

– α

∫ (n+1)�t

n�t
ϕxx(k�x, s) ds,

Ln
kϕ(k�x, n�t) =

ϕ(k�x, (n + 1)�t) – ϕ(k�x, n�t)
�t

+ β
ϕ((k + 1)�x, n�t) – ϕ(k�x, n�t)

�x

– α
ϕ((k + 1)�x, n�t) – 2ϕ(k�x, n�t) + ϕ((k – 1)�x, n�t)

(�x)2 .

Then

E
[∣
∣L(ϕ)n

k – Ln
k (ϕ)

∣
∣2] = E

[∣
∣
∣
∣α

ϕ((k + 1)�x, n�t) – 2ϕ(k�x, n�t) + ϕ((k – 1)�x, n�t)
(�x)2

– α

∫ (n+1)�t

n�t
ϕxx(k�x, s) ds

∣
∣
∣
∣

2]

.

From the Taylor expansion, the second derivative is

ϕ((k + 1)�x, n�t) – 2ϕ(k�x, n�t) + ϕ((k – 1)�x, n�t)
(�x)2 =

∂2ϕ(k�x, n�t)
∂x2 +O

(
(�x)2).

Then we have

E
[∣
∣L(ϕ)n

k – Ln
k (ϕ)

∣
∣2] = E

[∣
∣
∣
∣α

∂2ϕ(k�x, n�t)
∂x2 + O

(
(�x)2) – α

∫ (n+1)�t

n�t
ϕxx(k�x, s) ds

∣
∣
∣
∣

2]

.

As �t → 0, �x → 0 and (k�x, n�t) → (x, t),

E
[∣
∣(Lϕ – G)n

k –
(
Ln

kϕ(k�x, n�t) – Gn
k
)∣
∣2] → 0.

Thus we have, the RFDS (2) is a mean square consistent as �x,�t → 0 and (k�x, n�t) →
(x, t). �

4 Stability in mean square and mean fourth
The RFDS Ln

k un
k = V n

k that approximates RPDE Lu = V is stable in mean square, if, for the
constants ε > 0, δ > 0, and non-negative constants η, ξ and u0 an initial data, we have

E
[∣
∣un+1∣∣2] ≤ ηeξ tE

[∣
∣u0∣∣2], (4)

for all, t = (n + 1)�t, 0 < �x ≤ ε, 0 < �t ≤ δ.

Theorem 2 The RFDS (2) defined by (1) under the conditions:
1. �t → 0, �x is fixed,



Sohaly Advances in Difference Equations         (2019) 2019:54 Page 4 of 9

2. β is positive random variable,
3. E[|β|4] < ∞ (fourth-order random variable),
4. u0 is a deterministic initial data,

is to be mean square stable.

Proof Here

un+1
k = (1 + rβ�x – 2rα)un

k + (rα – rβ�x)un
k+1 + rαun

k–1,

E
[∣
∣un+1

k
∣
∣2] = E

[∣
∣(1 + rβ�x – 2rα)un

k + (rα – rβ�x)un
k+1 + rαun

k–1
∣
∣2].

Also since

E
[|X + Y |2] ≤ [√

E
(|X|2) +

√

E
(|Y |2)]2,

we have

E
[∣
∣un+1

k
∣
∣2] ≤ E

[∣
∣un

k + rβ(�x)un
k – 2rαun

k
∣
∣2]

+ 2E
[∣
∣rαun

k un
k+1 – rβ(�x)un

k un
k+1 + 3r2αβ(�x)un

k un
k+1

– r2β2(�x)2un
k un

k+1 – 2r2α2un
k un

k+1
∣
∣
]

+ 2E
[∣
∣rαun

k un
k–1 + r2αβ(�x)un

k un
k–1 – 2r2α2un

k un
k–1

∣
∣
]

+ 2E
[∣
∣r2α2un

k+1un
k–1 – r2αβ(�x)un

k+1un
k–1

∣
∣
]

+ E
[∣
∣rαun

k+1
∣
∣2] + 2

(
E
[∣
∣rαun

k+1
∣
∣2])1/2(E

[∣
∣rβ(�x)un

k+1
∣
∣2])1/2

+ E
[∣
∣rβ(�x)un

k+1
∣
∣2] + E

[∣
∣rαun

k–1
∣
∣2].

Since

E
[|X + Y + Z|] ≤ E

[|X|] + E
[|Y |] + E

[|Z|],

we have

E
[∣
∣un+1

k
∣
∣2] ≤ E

[∣
∣un

k
∣
∣2] + 2

(
E
[∣
∣un

k
∣
∣2])1/2(E

[∣
∣rβ(�x)un

k – 2rαun
k
∣
∣2])1/2 + E

[∣
∣rβ(�x)un

k
∣
∣2]

+ 2
(
E
[∣
∣rβ(�x)un

k
∣
∣2])1/2(E

[∣
∣2rαun

k
∣
∣2])1/2 + E

[∣
∣2rαun

k
∣
∣2]

+ 2E
[∣
∣rαun

k un
k+1

∣
∣
]

+ 2E
[∣
∣rβ(�x)un

k un
k+1

∣
∣
]

+ 6E
[∣
∣r2αβ(�x)un

k un
k+1

∣
∣
]

+ 2E
[∣
∣r2β2(�x)2un

k un
k+1

∣
∣
]

+ 4E
[∣
∣r2α2un

k un
k+1

∣
∣
]

+ 2E
[∣
∣rαun

k un
k–1

∣
∣
]

+ 2E
[∣
∣r2αβ(�x)un

k un
k–1

∣
∣
]

+ 4E
[∣
∣r2α2un

k un
k–1

∣
∣
]

+ 2E
[∣
∣r2α2un

k+1un
k–1

∣
∣
]

+ 2E
[∣
∣r2αβ(�x)un

k+1un
k–1

∣
∣
]

+ E
[∣
∣rαun

k+1
∣
∣2]

+ 2
(
E
[∣
∣rαun

k+1
∣
∣2])1/2(E

[∣
∣rβ(�x)un

k+1
∣
∣2])1/2

+ E
[∣
∣rβ(�x)un

k+1
∣
∣2] + E

[∣
∣rαun

k–1
∣
∣2].

Since

‖X‖2 =
[
E
(
X2)]1/2 ∀X ∈ L2(Ω),
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we have

∥
∥un+1

k
∥
∥2

2 ≤ ∥
∥un

k
∥
∥2

2 + 2
∥
∥un

k
∥
∥

2

∥
∥
(
rβ(�x) – 2rα

)
un

k
∥
∥

2 +
∥
∥rβ(�x)un

k
∥
∥2

2

+ 2
∥
∥rβ(�x)un

k
∥
∥

2

∥
∥(2rα)un

k
∥
∥

2 +
∥
∥(2rα)un

k
∥
∥2

2 + 2rα
∥
∥un

k
∥
∥

2

∥
∥un

k+1
∥
∥

2

+ 2r(�x)‖β‖2
∥
∥un

k
∥
∥

2

∥
∥un

k+1
∥
∥

2 + 6r2α(�x)‖β‖2
∥
∥un

k
∥
∥

2

∥
∥un

k+1
∥
∥

2

+ 2r2(�x)2∥∥β2∥∥
2

∥
∥un

k
∥
∥

2

∥
∥un

k+1
∥
∥

2 + 4r2α2∥∥un
k
∥
∥

2

∥
∥un

k+1
∥
∥

2 + 2rα
∥
∥un

k
∥
∥

2

∥
∥un

k–1
∥
∥

2

+ 2r2α(�x)‖β‖2
∥
∥un

k
∥
∥

2

∥
∥un

k–1
∥
∥

2 + 4r2α2∥∥un
k
∥
∥

2

∥
∥un

k–1
∥
∥

2

+ 2r2α2∥∥un
k+1

∥
∥

2

∥
∥un

k–1
∥
∥

2 + 2r2α(�x)‖β‖2
∥
∥un

k+1
∥
∥

2

∥
∥un

k–1
∥
∥

2

+ r2α2∥∥un
k+1

∥
∥2

2 + 2r2α(�x)
∥
∥un

k+1
∥
∥

2

∥
∥βun

k+1
∥
∥

2

+ r2(�x)2∥∥βun
k+1

∥
∥2

2 + r2α2∥∥un
k–1

∥
∥2

2.

Since

‖XY‖2 ≤ ‖X‖4‖Y‖4 ∀X, Y ∈ L4(Ω),

we have

∥
∥un+1

k
∥
∥2

2 ≤ ∥
∥un

k
∥
∥2

4 + 2r(�x)
∥
∥un

k
∥
∥2

4‖β‖4 + 4rα
∥
∥un

k
∥
∥2

4 + r2(�x)2‖β‖2
4
∥
∥un

k
∥
∥2

4

+ 4r2α(�x)‖β‖4
∥
∥un

k
∥
∥2

4 + r2α2∥∥un
k
∥
∥2

4 + 2rα
∥
∥un

k
∥
∥

4

∥
∥un+1

k
∥
∥

4

+ 2r(�x)‖β‖4
∥
∥un

k
∥
∥

4

∥
∥un+1

k
∥
∥

4 + 6r2α(�x)‖β‖4
∥
∥un

k
∥
∥

4

∥
∥un

k+1
∥
∥

4

+ 2r2(�x)2∥∥β2∥∥
4

∥
∥un

k
∥
∥

4

∥
∥un

k+1
∥
∥

4 + 4r2α2∥∥un
k
∥
∥

4

∥
∥un

k+1
∥
∥

4

+ 2rα
∥
∥un

k
∥
∥

4

∥
∥un

k–1
∥
∥

4 + 2r2α(�x)‖β‖4
∥
∥un

k
∥
∥

4

∥
∥un

k–1
∥
∥

4 + 4r2α2∥∥un
k
∥
∥

4

∥
∥un

k–1
∥
∥

4

+ 2r2α2∥∥un
k+1

∥
∥

4

∥
∥un

k–1
∥
∥

4 + 2r2α(�x)‖β‖4
∥
∥un

k+1
∥
∥

4

∥
∥un

k–1
∥
∥

4 + r2α2∥∥un
k+1

∥
∥2

4

+ 2r2α(�x)‖β‖4
∥
∥un

k+1
∥
∥2

4 + r2(�x)2‖β‖2
4
∥
∥un

k+1
∥
∥2

4 + r2α2∥∥un
k–1

∥
∥2

4.

Then

sup
k

∥
∥un+1

k
∥
∥2

2 ≤ sup
k

∥
∥un

k
∥
∥2

4 + 2r(�x)‖β‖4 sup
k

∥
∥un

k
∥
∥2

4 + 4rα sup
k

∥
∥un

k
∥
∥2

4

+ r2(�x)2‖β‖2
4 sup

k

∥
∥un

k
∥
∥2

4 + 4r2α(�x)‖β‖4 sup
k

∥
∥un

k
∥
∥2

4 + 4r2α2 sup
k

∥
∥un

k
∥
∥2

4

+ 2rα sup
k

∥
∥un

k
∥
∥2

4 + 2r(�x)‖β‖4 sup
k

∥
∥un

k
∥
∥2

4 + 6r2α(�x)‖β‖4 sup
k

∥
∥un

k
∥
∥2

4

+ 2r2(�x)2∥∥β2∥∥
4 sup

k

∥
∥un

k
∥
∥2

4 + 4r2α2 sup
k

∥
∥un

k
∥
∥2

4

+ 2rα sup
k

∥
∥un

k
∥
∥2

4 + 2r2α(�x)‖β‖4 sup
k

∥
∥un

k
∥
∥2

4 + 4r2α2 sup
k

∥
∥un

k
∥
∥2

4

+ 2r2α2 sup
k

∥
∥un

k
∥
∥2

4 + 2r2α(�x)‖β‖4 sup
k

∥
∥un

k
∥
∥2

4 + r2α2 sup
k

∥
∥un

k
∥
∥2

4

+ 2r2α(�x)‖β‖4 sup
k

∥
∥un

k
∥
∥2

4 + r2(�x)2‖β‖2
4 sup

k

∥
∥un

k
∥
∥2

4 + r2α2 sup
k

∥
∥un

k
∥
∥2

4.
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Then

sup
k

∥
∥un+1

k
∥
∥2

2 ≤ [
1 + 8rα + 16r2α2 + 4r(�x)‖β‖4 + 4r2(�x)2‖β‖2

4 + 16r2α(�x)‖β‖4
]

× sup
k

∥
∥un

k
∥
∥2

4

...

≤ [
1 + 8rα + 16r2α2 + 4r(�x)‖β‖4 + 4r2(�x)2‖β‖2

4 + 16r2α(�x)‖β‖4
]n+1

× sup
k

∥
∥u0

k
∥
∥2

4.

Take

8rα + 16r2α2 + 4r(�x)‖β‖4 + 4r2(�x)2‖β‖2
4 + 16r2α(�x)‖β‖4 ≤ λ2(�t).

Then

sup
k

∥
∥un+1

k
∥
∥2

2 ≤ (
1 + λ2�t

)n+1
sup

k

∥
∥u0

k
∥
∥2

4.

Since u0 is a deterministic function,

sup
k

∥
∥un+1

k
∥
∥2

2 ≤ (
1 + λ2�t

)n+1
sup

k

∥
∥u0∥∥2

and �t = t
n+1 , we have

E
[∣
∣un+1

k
∣
∣2] ≤

(

1 +
λ2t

n + 1

)n+1

E
[∣
∣u0∣∣2] ≤ eλ2tE

[∣
∣u0∣∣2].

Thus, the RFDS (2) satisfies the stability property in a mean square η = 1, ξ = λ2. �

5 Application
The random Cauchy problem for the convection–diffusion equation can be find in a mem-
brane model if the concentration u(x, t) inside a pore in the membrane is described as the
problem in the form

⎧
⎨

⎩

ut + βux = αuxx, t ≥ 0, x ∈ R,

u(x, 0) = e–x2 , x ∈ R,
(5)

where x is the unbounded space coordinate perpendicular to the membrane surfaces, t is
the time, α is the diffusion coefficient is a constant and β is the random variable advection
velocity.

Now, we can find the exact and approximation solution for this problem and construct
a comparison between the expected values of them as in Tables 1–7 and Fig. 1.

The exact solution

u(x, t) =
1√

1 + 4αt
e– (x–βt)2

1+4αt . (6)
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Table 1 β ∼ Binomial(1.0, 0.5), α = 1

k n xk tn E(u(x, t)xk ,tn ) E|unk |
|E(u(x,t)xk ,tn )–E|unk ||

E(u(x,t)xk ,tn )

1 1 0.5 0.01 0.7747527612 0.7753211115 0.0007335892538
1 2 0.5 0.005 0.7747527612 0.7752913846 0.0006952197230

Table 2 β ∼ Beta distribution(1.0, 2.0), α = 1

k n xk tn E(u(x, t)xk ,tn ) E|unk |
|E(u(x,t)xk ,tn )–E|unk ||

E(u(x,t)xk ,tn )

1 1 0.5 0.01 0.7735224945 0.7739513739 0.0005544498099
1 2 0.5 0.005 0.7735224945 0.7739421289 0.0005424979920

Table 3 β ∼ Binomial(1.0, 0.5), α = 1

k n xk tn E(u(x, t)xk ,tn ) E|unk |
|E(u(x,t)xk ,tn )–E|unk ||

E(u(x,t)xk ,tn )

1 1 0.5 0.005 0.7768138752 0.7770609473 0.0003180582993
1 2 0.5 0.0025 0.7768138752 0.7770535156 0.0003084914001

Table 4 β ∼ Beta distribution(1.0, 2.0), α = 1

k n xk tn E(u(x, t)xk ,tn ) E|unk |
|E(u(x,t)xk ,tn )–E|unk ||

E(u(x,t)xk ,tn )

1 1 0.5 0.005 0.7761821248 0.7763760781 0.0002498811732
1 2 0.5 0.0025 0.7761821248 0.7763737678 0.0002469046811

Table 5 β ∼ Binomial distribution(1.0, 0.5), α = 1 and �x = 0.25

�t 0.1 0.05 0.025 0.005 0.0001 0.000001
λ2 64.168761 19.578549 6.6628165 0.83233003 0.01419545 0.00014145

Table 6 β ∼ Beta distribution(1.0, 2.0), α = 1 and �x = 0.25

�t 0.1 0.05 0.025 0.005 0.0001 0.000001
λ2 59.941539 18.388637 6.2987860 0.79647193 0.01365934 0.00013613

Table 7 β ∼ Exponential(0.5), α = 1 and �x = 0.25

�t 0.1 0.05 0.025 0.005 0.0001 0.000001
λ2 67.646950 20.554410 6.9599389 0.86122520 0.01462376 0.00014571

The numerical solution The random finite difference scheme for this problem takes the
form

un+1
k = (1 + rβ�x – 2rα)un

k + (rα – rβ�x)un
k+1 + rαun

k–1, (7)

u0
k = u0(k�x) = u0(xk) = e–(k�x)2

, (8)

since r = �t
(�x)2 , tn = n�t and xk = k�x.

Using the RFDS (7) and (8)

u1
1 = (1 + rβ�x – 2rα)u0

1 + (rα – rβ�x)u0
2 + rαu0

0

= (1 + rβ�x – 2rα)e–(�x)2
+ (rα – rβ�x)e–(2�x)2

+ rα,
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Figure 1 Expectation of the exact solution and the
approximations of expectations using RFDS (7)–(8)
at fixed time station t = 0.2, 0.05, 0.005, 0.000005
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u2
1 = (1 + rβ�x – 2rα)u1

1 + (rα – rβ�x)u1
2 + rαu1

0.

=
[
(1 + rβ�x – 2rα)2 + 2rα(rα – rβ�x) + (rα)2]e–(�x)2

+ 2
[
(rα – rβ�x)(1 + rβ�x – 2rα)

]
e–(2�x)2

+ (rα – rβ�x)2e–(3�x)2

+ 2rα(1 + rβ�x – 2rα).

In Fig. 1 we present a comparison at the time instant t = 0.2, 0.05, 0.005 and 0.000005
(time fixed station) of the expectation of the exact solution s.p. and the approximations of
the expectations using the random numerical scheme (7)–(8) with different spatial steps
and we note that Fig. 1 agrees with our calculations.

Figure 1 indicates that, for fixed expected values of the random variable and �x and
decreasing the step size �t, we get a more accurate and stable solution to (5).

Also, we can summarize our results from Tables 1–4 that show the convergence between
the first moment of the exact stochastic process solution and the numerical stochastic
process approximations.

Additionally, we can confirm the convergence according to λ2 as in Tables 5–7.

6 Conclusion
We have presented a consistent and stable RFDS that approximates the stochastic solution
of the Cauchy advection–diffusion problem with random variable coefficient under mean
square and mean fourth calculus.
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