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the present work as regards fractional differential equations were focused on Riemann–
Liouville and Caputo fractional derivatives, which are one-sided fractional operators only
reflected the past or future memory effect. Fortunately, the Riesz derivative is a two-sided
fractional operator including both left and right derivatives, which can reflect both the
past and the future memory effects. This feature is particularly for fractional modeling on
a finite domain. Some recent applications of this derivative to anomalous diffusion were
given in [24, 25].

There is no literature to research the fractional ordinary differential equations with the
Riesz–Caputo derivative. Here, we discuss the following fractional boundary value prob-
lems (BVP for short):

⎧
⎨

⎩

RC
0 Dγ

T y(τ ) = g(τ , y(τ )), τ ∈ J , J = [0, T], 1 < γ ≤ 2,

y(0) + y(T) = 0, y′(0) + y′(T) = 0,
(1)

where RC
0 Dγ

T is a Riesz–Caputo derivative and g : J × R → R is a continuous function with
respect to τ and y.

2 Preliminaries
Some definitions and preliminary facts will be introduced in this section. Let β > 0, and
n – 1 < β ≤ n, n ∈ N and n = �ν�, and �·� the ceiling of a number.

Definition 2.1 According to the classical Riesz–Caputo definition in [2, 3], for 0 ≤ τ ≤ T ,

RC
0 Dβ

T z(τ ) =
1

Γ (n – β)

∫ T

0

z(n)(u)
|τ – u|β+1–n du

=
1
2
(C

0 Dβ
τ + (–1)nC

τ Dβ

T
)
z(τ ),

where C
0 Dβ

τ is the left Caputo derivative and C
τ Dβ

T is the right Caputo derivative,

C
0 Dβ

τ z(τ ) =
1

Γ (n – β)

∫ τ

0

z(n)(u)
(τ – u)β+1–n du,

and

C
τ Dβ

T z(τ ) =
(–1)n

Γ (n – β)

∫ T

τ

z(n)(u)
(u – τ )β+1–n du.

In particular, if 1 < β ≤ 2 and z(τ ) ∈ C2(0, T), then

RC
0 Dβ

T z(τ ) =
1
2
(C

0 Dβ
τ + C

τ Dβ

T
)
z(τ ).

Definition 2.2 ([4]) The fractional left, right and Riemann–Liouville integrals of order β

are defined as

0Iβ
τ z(τ ) =

1
Γ (β)

∫ τ

0
(τ – u)β–1z(u) du,
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τ Iβ

T z(τ ) =
1

Γ (β)

∫ T

τ

(u – τ )β–1z(u) du,

0Iβ

T z(τ ) =
1

Γ (β)

∫ T

0
|u – τ |β–1z(u) du.

Lemma 2.1 ([4]) If z(τ ) ∈ Cn[0, T], then

0Iβ
τ

C
0 Dβ

τ z(τ ) = z(τ ) –
n–1∑

l=0

z(l)(0)
l!

(τ – 0)l

and

τ Iβ

T
C
τ Dβ

T z(τ ) = (–1)n

[

z(τ ) –
n–1∑

l=0

(–1)lz(l)(T)
l!

(T – τ )l

]

.

From the above definitions and lemmas, we have

0Iβ

T
RC
0 Dβ

T z(τ )

=
1
2
(

0Iβ
τ

C
0 Dβ

τ +τ Iβ

T
C
0 Dβ

τ

)
z(τ ) + (–1)n 1

2
(

0Iβ
τ

C
τ Dβ

T +τ Iβ

T
C
τ Dβ

T
)
z(τ )

=
1
2
(

0Iβ
τ

C
0 Dβ

τ + (–1)n
τ Iβ

T
C
τ Dβ

T
)
z(τ ).

In particular, if 1 < β ≤ 2 and z(τ ) ∈ C2(0, T), then

0Iβ

T
RC
0 Dβ

T z(τ ) = z(τ ) –
1
2
(
z(0) + z(T)

)
–

1
2

z′(0)τ +
1
2

z′(T)(T – τ ). (2)

Lemma 2.2 Assume that f ∈ C(J , R). A function y ∈ C2(J) given by

y(τ ) = –
T

2Γ (γ – 1)

∫ T

0
(T – u)γ –2f (u) du

+
1

Γ (γ )

∫ τ

0
(τ – u)(γ –1)f (u) du +

1
Γ (γ )

∫ T

τ

(u – τ )(γ –1)f (u) du, (3)

is a unique solution of the following anti-periodic boundary value problem:

⎧
⎨

⎩

RC
0 Dγ

T y(τ ) = f (τ ), τ ∈ J , 1 < γ ≤ 2,

y(0) + y(T) = 0, y′(0) + y′(T) = 0.
(4)

Proof From (2) and the first equality of (4), we have

y(τ ) =
1
2
(
y(0) + y(T)

)
+

1
2

y′(0)τ –
1
2

y′(T)(T – τ )

+
1

Γ (γ )

∫ T

0
|τ – u|γ –1f (u) du
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=
1
2
(
y(0) + y(T)

)
+

1
2

y′(0)τ –
1
2

y′(T)(T – τ )

+
1

Γ (γ )

∫ τ

0
(τ – u)γ –1f (u) du +

1
Γ (γ )

∫ T

τ

(u – τ )γ –1f (u) du. (5)

Then

y′(τ ) =
1
2
(
y′(0) + y′(T)

)

+
1

Γ (γ – 1)

∫ τ

0
(τ – u)γ –2f (u) du –

1
Γ (γ – 1)

∫ T

τ

(u – τ )γ –2f (u) du.

By the boundary conditions y(0) + y(T) = 0, y′(0) + y′(T) = 0, we find that

y(0) =
T

2Γ (γ – 1)

∫ T

0
(T – u)γ –2f (u) du –

1
Γ (γ )

∫ T

0
(T – u)γ –1f (u) du,

y(T) = –
T

2Γ (γ – 1)

∫ T

0
(T – u)γ –2f (u) du +

1
Γ (γ )

∫ T

0
(T – u)γ –1f (u) du,

y′(0) = –
1

Γ (γ – 1)

∫ T

0
(T – u)γ –2f (u) du,

y′(T) =
1

Γ (γ – 1)

∫ T

0
(T – u)γ –2f (u) du.

Substituting the values of y(0), y(T), y′(0) and y′(T) into (5), we obtain (3). �

We now extend our results to the generalized Gronwall inequalities which appeared in
[26].

Lemma 2.3 ([26]) Let z ∈ C(J , R) satisfy the following inequality:

∣
∣z(t)

∣
∣ ≤ a + b

∫ t

0

∣
∣z(u)

∣
∣λ1 du + c

∫ T

0

∣
∣z(u)

∣
∣λ2 du, t ∈ J ,

where λ1 ∈ [0, 1], λ2 ∈ [0, 1), a, b, c ≥ 0 are constants. Then there exists a constant M∗ > 0
such that

∣
∣z(t)

∣
∣ ≤ M∗.

Corollary 2.1 Let z ∈ C(J , R) satisfy the following inequality:

∣
∣z(t)

∣
∣ ≤ a + b

∫ t

0

∣
∣z(u)

∣
∣λ1 du + c

∫ T

t

∣
∣z(u)

∣
∣λ2 du + d

∫ T

0

∣
∣z(u)

∣
∣λ3 du, t ∈ J , (6)

where λ1 ∈ [0, 1], λ2,λ3 ∈ [0, 1), a, b, c, d ≥ 0 are constants. Then there exists a constant
M∗ > 0 such that

∣
∣z(t)

∣
∣ ≤ M∗.
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Proof Let λ4 = max{λ2,λ3}. From (6), we have

∣
∣z(t)

∣
∣ ≤ a + b

∫ t

0

∣
∣z(u)

∣
∣λ1 du + c

∫ T

t

∣
∣z(u)

∣
∣λ4 du + d

∫ T

0

∣
∣z(u)

∣
∣λ4 du

≤ a + b
∫ t

0

∣
∣z(u)

∣
∣λ1 du + (c + d)

∫ T

0

∣
∣z(u)

∣
∣λ4 du.

By Lemma 2.3, we can directly obtain the result. �

Lemma 2.4 Let z ∈ C(J , R) satisfy the following inequality:

∣
∣z(t)

∣
∣ ≤ a + b

∫ t

0
(t – u)γ –1∣∣z(u)

∣
∣λ du + c

∫ T

t
(u – t)γ –1∣∣z(u)

∣
∣λ du

+ d
∫ T

0
(T – u)γ –2∣∣z(u)

∣
∣λ du, (7)

where γ ∈ (1, 2), λ ∈ [0, 1 – 1
ζ

) for some 1 < ζ < 1
2–γ

, a, b, c, d ≥ 0 are constants. Then there
exists a constant M∗ > 0 such that

∣
∣z(t)

∣
∣ ≤ M∗.

Proof Let

y(t) =

⎧
⎨

⎩

1, |z(t)| ≤ 1,

z(t), |z(t)| > 1.

Combining condition (7) and the Hölder inequality, it follows

∣
∣z(t)

∣
∣ ≤ ∣

∣y(t)
∣
∣

≤ (a + 1) + b
∫ t

0
(t – u)γ –1∣∣y(u)

∣
∣λ du

+ c
∫ T

t
(u – t)γ –1∣∣y(u)

∣
∣λ du + d

∫ T

0
(T – u)γ –2∣∣y(u)

∣
∣λ du

≤ (a + 1) + b
(∫ t

0
(t – u)ζ (γ –1) du

) 1
ζ
(∫ t

0

∣
∣y(u)

∣
∣

λζ
ζ–1 du

) ζ–1
ζ

+ c
(∫ T

t
(u – t)ζ (γ –1) du

) 1
ζ
(∫ T

t

∣
∣y(u)

∣
∣

λζ
ζ–1 du

) ζ–1
ζ

+ d
(∫ T

0
(T – u)ζ (γ –2) du

) 1
ζ
(∫ t

0

∣
∣y(u)

∣
∣

λζ
ζ–1 du

) ζ–1
ζ

≤ (a + 1) + b
(

Tζ (γ –1)+1

ζ (γ – 1) + 1

) 1
ζ
∫ t

0

∣
∣y(u)

∣
∣

λζ
ζ–1 du
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+ c
(

Tζ (γ –1)+1

ζ (γ – 1) + 1

) 1
ζ
∫ T

t

∣
∣y(u)

∣
∣

λζ
ζ–1 du

+ d
(

Tζ (γ –2)+1

ζ (γ – 2) + 1

) 1
ζ
∫ T

0

∣
∣y(u)

∣
∣

λζ
ζ–1 du.

Since λζ

ζ–1 ∈ [0, 1), we can complete the rest proof immediately by Corollary 2.1. �

Finally, we introduce three fixed point theorems.

Lemma 2.5 (Schaefer fixed point theorem [27]) Let X be a convex subset of a normed
linear space Ω and 0 ∈ X. Let F : X → X be a completely continuous operator, and let

ω(F) =
{

y ∈ X : y = λFy for some λ ∈ (0, 1)
}

.

Then either ω(F) is unbounded or F has a fixed point.

Lemma 2.6 (The Leray–Schauder fixed point theorem [28]) Assume that U is a closed
convex subset of a Banach space V , and W is a relatively open subset of U with 0 ∈ W , and
T : W → U is a continuous compact map. Then either

I. T exists a fixed point in W ;
or

II. there exist x ∈ ∂W and λ ∈ (0, 1) with x = λx.

Lemma 2.7 (The Schauder fixed point theorem [29]) Let V be a Banach space with W ⊆
V closed, bounded and convex, and T : W → W is completely continuous. Then T has a
fixed point in W .

3 Main results
Let C(0, T) be the space of all real functions y defined on J = [0, T] with the norm ‖y‖ =
supτ∈J |y(τ )|, then C(0, T) is a Banach space. For measurable functions z : J → R, define
the norm ‖z‖Lρ (J ,R) = (

∫

J |z(τ )|ρ dτ )
1
ρ , 1 ≤ ρ < ∞. We denote by Lρ(J , R) the Banach space

of all Lebesgue measurable functions z with ‖z‖Lρ < ∞.
We transform BVP (1) into a fixed point problem, define an integral operator A : J → J

by

Ay(τ ) = –
T

2Γ (γ – 1)

∫ T

0
(T – u)γ –2g

(
u, y(u)

)
du

+
1

Γ (γ )

∫ τ

0
(τ – u)(γ –1)g

(
u, y(u)

)
du +

1
Γ (γ )

∫ T

τ

(u – τ )(γ –1)g
(
u, y(u)

)
du. (8)

Theorem 3.1 Assume that
(H1) there exists a constant L1 ≥ 0 such that |g(τ , y) – g(τ , z)| ≤ L1|y – z|, for each τ ∈ J

and y, z ∈ R.
Then BVP (1) has a unique solution on J provided that

(
Tγ

2Γ (γ )
+

2Tγ

Γ (γ + 1)

)

L1 < 1. (9)
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Proof

∣
∣(Ay)(τ ) – (Az)(τ )

∣
∣ ≤ T

2Γ (γ – 1)

∫ T

0
(T – u)γ –2∣∣g

(
u, y(u)

)
– g

(
u, z(u)

)∣
∣du

+
1

Γ (γ )

∫ τ

0
(τ – u)(γ –1)∣∣g

(
u, y(u)

)
– g

(
u, z(u)

)∣
∣du

+
1

Γ (γ )

∫ T

τ

(u – τ )(γ –1)∣∣g
(
u, y(u)

)
– g

(
u, z(u)

)∣
∣du

≤ TL1‖y – z‖
2Γ (γ – 1)

∫ T

0
(T – u)γ –2 du +

L1‖y – z‖
Γ (γ )

∫ τ

0
(τ – u)(γ –1) du

+
L1‖y – z‖

Γ (γ )

∫ T

τ

(u – τ )(γ –1) du

≤
(

Tγ

2Γ (γ )
+

τ γ

Γ (γ + 1)
+

(T – τ )γ

Γ (γ + 1)

)

L1‖y – z‖

≤
(

Tγ

2Γ (γ )
+

2Tγ

Γ (γ + 1)

)

L1‖y – z‖.

Therefore, according to (9),

‖Ay – Az‖ ≤
(

Tγ

2Γ (γ )
+

2Tγ

Γ (γ + 1)

)

L1‖y – z‖

< ‖y – z‖.

Then A is a contraction, as a consequence of the Banach fixed point theorem, we deduce
that A has a fixed point which is an unique solution of BVP (1). �

Theorem 3.2 Assume that
(H2) there exist a constant L2 > 0 and σ ∈ (0, 1 – 1

ζ
) for some ζ (γ – 2) + 1 > 0 with γ > 1

such that g(τ , y) ≤ L2(1 + |y|σ ) for each τ ∈ J and all y ∈ R.
Then BVP (1) has at least one solution on J .

Proof We will use the Schaefer fixed-point theorem to prove A has a fixed point. For the
sake of convenience, we subdivide the proof into several steps.

Step 1. A is continuous.
Let {yn} be a sequence such that yn → y in C(J). Then, for each t ∈ J , we have

∣
∣(Ayn)(τ ) – (Ay)(τ )

∣
∣ ≤ T

2Γ (γ – 1)

∫ T

0
(T – u)γ –2∣∣g

(
u, yn(u)

)
– g

(
u, y(u)

)∣
∣du

+
1

Γ (γ )

∫ τ

0
(τ – u)(γ –1)∣∣g

(
u, yn(u)

)
– g

(
u, y(u)

)∣
∣du

+
1

Γ (γ )

∫ T

τ

(u – τ )(γ –1)∣∣g
(
u, yn(u)

)
– g

(
u, y(u)

)∣
∣du

≤
(

Tγ

2Γ (γ )
+

τ γ

Γ (γ + 1)
+

(T – τ )γ

Γ (γ + 1)

)
∥
∥g

(·, yn(·)) – g
(·, y(·))∥∥

≤
(

Tγ

2Γ (γ )
+

2Tγ

Γ (γ + 1)

)
∥
∥g

(·, yn(·)) – g
(·, y(·))∥∥.
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Since g is continuous function, we have

‖Ayn – Ay‖ → 0 as n → ∞.

Step 2. A maps bounded sets into bounded sets in C(J).
For each y ∈ Ωη = {y ∈ C(J) : ‖y‖ ≤ η} and τ ∈ J , we get

∣
∣(Ay)(τ )

∣
∣ ≤ T

2Γ (γ – 1)

∫ T

0
(T – u)γ –2∣∣g

(
u, y(u)

)∣
∣du

+
1

Γ (γ )

∫ τ

0
(τ – u)(γ –1)∣∣g

(
u, y(u)

)∣
∣du

+
1

Γ (γ )

∫ T

τ

(u – τ )(γ –1)∣∣g
(
u, y(u)

)∣
∣du

≤
(

Tγ

2Γ (γ )
+

τ γ

Γ (γ + 1)
+

(T – τ )γ

Γ (γ + 1)

)

L2
(
1 + ησ

)

≤
(

Tγ

2Γ (γ )
+

2Tγ

Γ (γ + 1)

)

L2
(
1 + ησ

)
:= ι.

Then ι is a constant and

‖Ay‖ ≤ ι,

which implies that A maps bounded sets into bounded sets.
Step 3. A maps bounded sets into equicontinuous sets in C(J).
Let Ωη be a bounded set of C(J) as in Step 2, and let y ∈ Ωη . For each τ ∈ J , we can

estimate the derivative (Ay)′(τ ):

∣
∣(Ay)′(τ )

∣
∣ ≤ 1

Γ (γ – 1)

∫ τ

0
(τ – u)(γ –2)∣∣g

(
u, y(u)

)∣
∣du

+
1

Γ (γ – 1)

∫ T

τ

(u – τ )(γ –2)∣∣g
(
u, y(u)

)∣
∣du

≤
(

τ γ –1

Γ (γ )
+

(T – τ )γ –1

Γ (γ )

)

L2
(
1 + ησ

)

≤ 2Tγ –1L2(1 + ησ )
Γ (γ )

:= κ .

Hence, let τ ′, τ ′′ ∈ J , τ ′ < τ ′′, we have

∣
∣(Ay)

(
τ ′′) – (Ay)

(
τ ′)∣∣ =

∫ τ ′′

τ ′

∣
∣(Ay)′(u)

∣
∣du ≤ κ

(
τ ′′ – τ ′).

So A(Ωη) is equicontinuous in C(J). As a consequence of Steps 1 to 3 together with the
Arzela–Ascoli theorem, we can conclude that A : Ωη → Ωη is continuous and completely
continuous.

Step 4. A priori bounds. Lastly, we prove that the set

ω(F) =
{

y ∈ X : y = λFy for some λ ∈ (0, 1)
}
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is bounded. Let y = λFy for some λ ∈ (0, 1). For each τ ∈ J , we have

∣
∣y(τ )

∣
∣ ≤ T

2Γ (γ – 1)

∫ T

0
(T – u)γ –2∣∣g

(
u, y(u)

)∣
∣du

+
1

Γ (γ )

∫ τ

0
(τ – u)(γ –1)∣∣g

(
u, y(u)

)∣
∣du

+
1

Γ (γ )

∫ T

τ

(u – τ )(γ –1)∣∣g
(
u, y(u)

)∣
∣du

≤
(

Tγ

2Γ (γ )
+

2Tγ

Γ (γ + 1)

)

L2 +
TL2

2Γ (γ – 1)

∫ T

0
(T – u)γ –2∣∣y(u)

∣
∣σ du

+
L2

Γ (γ )

∫ τ

0
(τ – u)(γ –1)∣∣y(u)

∣
∣σ du +

L2

Γ (γ )

∫ T

τ

(u – τ )(γ –1)∣∣y(u)
∣
∣σ du.

According to Lemma 2.4, there exists a M∗
1 > 0 such that

‖y‖ ≤ M∗
1.

As a consequence of the Schaefer fixed-point theorem, we deduce that A has a fixed point
which is a solution of BVP (1) by Lemma 2.5. �

Theorem 3.3 Assume that
(H3) there exist ϕ ∈ C(J) and ψ : [0,∞) → (0,∞) continuous and nondecreasing such

that |g(τ , y)| ≤ ϕ(τ )ψ(|y|) for τ ∈ J and y ∈ R.
Then BVP (1) has at least one solution on J provide that there exists a constant M∗

2 > 0
such that

(
Tγ

2Γ (γ )
+

2Tγ

Γ (γ + 1)

)
ϕ∗ψ(M∗

2)
M∗

2
< 1, (10)

where ϕ∗ = sup{ϕ(τ ) : τ ∈ J}.

Proof Let VM∗
2

= {y ∈ C(J) : ‖y‖ ≤ M∗
2}, then VM∗

2
is a closed, bounded and convex set.

For any y ∈ VM∗
2
, applying the conditions (H3) and (10), we have

∣
∣(Ay)(τ )

∣
∣ ≤ T

2Γ (γ – 1)

∫ T

0
(T – u)γ –2∣∣g

(
u, y(u)

)∣
∣du

+
1

Γ (γ )

∫ τ

0
(τ – u)(γ –1)∣∣g

(
u, y(u)

)∣
∣du

+
1

Γ (γ )

∫ T

τ

(u – τ )(γ –1)∣∣g
(
u, y(u)

)∣
∣du

≤ T
2Γ (γ – 1)

∫ T

0
(T – u)γ –2ϕ(u)ψ

(∣
∣y(u)

∣
∣
)

du

+
1

Γ (γ )

∫ τ

0
(τ – u)(γ –1)ϕ(u)ψ

(∣
∣y(u)

∣
∣
)

du

+
1

Γ (γ )

∫ T

τ

(u – τ )(γ –1)ϕ(u)ψ
(∣
∣y(u)

∣
∣
)

du
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≤
(

Tγ

2Γ (γ )
+

τ γ

Γ (γ + 1)
+

(T – τ )γ

Γ (γ + 1)

)

ϕ∗ψ
(‖y‖)

≤
(

Tγ

2Γ (γ )
+

2Tγ

Γ (γ + 1)

)

ϕ∗ψ
(
M∗

2
)

< M∗
2.

Then the operator A : VM∗
2
→ C(J) is a continuous and completely continuous. From the

choice of VM∗
2
, there is no y ∈ ∂VM∗

2
such that y = λAy for some 0 < λ < 1. As a consequence

of Lemma 2.6 (the Leray–Schauder fixed point theorem), we deduce that A has a fixed
point y in VM∗

2
which is a solution of BVP (1). �

Theorem 3.4 Assume that
(H4) there exist a ν ∈ (0,γ –1) and a real function μ ∈ L 1

ν (J , R+) such that |g(τ , y)| ≤ μ(τ ),
for τ ∈ J and y ∈ R.

Then BVP (1) has at least one solution on J .

Proof Let us fix

r ≥ ‖μ‖
L

1
ν

[
T

2Γ (γ – 1)

(
1 – ν

γ – ν – 1
T

γ –ν–1
1–ν

)1–ν

+
2

Γ (γ )

(
1 – ν

γ – ν
T

γ –ν
1–ν

)1–ν]

, (11)

and consider Vr = {y ∈ C(J) : ‖y‖ ≤ r}. For any y ∈ Vr , applying condition (H4), the Hölder
inequality and (11), we have

∣
∣(Ay)(τ )

∣
∣ ≤ T

2Γ (γ – 1)

∫ T

0
(T – u)γ –2μ(u) du +

1
Γ (γ )

∫ τ

0
(τ – u)(γ –1)μ(u) du

+
1

Γ (γ )

∫ T

τ

(u – τ )(γ –1)μ(u) du

≤ T
2Γ (γ – 1)

(∫ T

0
(T – u)

γ –2
1–ν du

)1–ν(∫ T

0

(
μ(u)

) 1
ν du

)ν

+
1

Γ (γ )

(∫ τ

0
(τ – u)

γ –1
1–ν du

)1–ν(∫ τ

0

(
μ(u)

) 1
ν du

)ν

+
1

Γ (γ )

(∫ T

τ

(u – τ )
γ –1
1–ν du

)1–ν(∫ T

τ

(
μ(u)

) 1
ν du

)ν

≤ ‖μ‖
L

1
ν

[
T

2Γ (γ – 1)

(
1 – ν

γ – ν – 1
T

γ –ν–1
1–ν

)1–ν

+
1

Γ (γ )

(
1 – ν

γ – ν
τ

γ –ν
1–ν

)1–ν

+
1

Γ (γ )

(
1 – ν

γ – ν
(T – τ )

γ –ν
1–ν

)1–ν]

≤ ‖μ‖
L

1
ν

[
T

2Γ (γ – 1)

(
1 – ν

γ – ν – 1
T

γ –ν–1
1–ν

)1–ν

+
2

Γ (γ )

(
1 – ν

γ – ν
T

γ –ν
1–ν

)1–ν]

≤ r.

Then A : Vr → Vr .
The proof of that A is completely continuous is similar to that of Theorem 3.1, and we

do not give the details.
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Figure 1 The numerical solution of (12)

As a consequence of Lemma 2.7 (the Schauder fixed point theorem), it can be deduced
that A has a fixed point in Vr , which implies that (1) has at least one solution on J . �

4 Example
The applications of our main results will be illustrated by the following examples.

Example 4.1 Consider the following BVP:

⎧
⎨

⎩

RC
0 D

11
6

T y(τ ) = τ , 0 ≤ τ ≤ 1,

y(0) + y(1) = 0, y′(0) + y′(1) = 0.
(12)

Where g(τ , y) = τ , let L1 = 0, then the conditions (H1) and (9) are satisfied. According to
Theorem 3.1, the unique solution y(τ ) of BVP (12) exists. Numerical experiment has been
implemented in a MATLAB code. The numerical solution of (12) is displayed in Fig. 1.

Example 4.2 Consider the following BVP:

⎧
⎨

⎩

RC
0 D 3

2 y(τ ) = |y(τ )| 1
3

(1+eτ )(1+|y(τ )|) , 0 ≤ τ ≤ 1,

y(0) + y(1) = 0, y′(0) + y′(1) = 0.
(13)

Here g(τ , y) = |y(τ )| 1
3

(1+eτ )(1+|y(τ )|) , γ = 3
2 and T = 1.

Let σ = 1
3 , ζ = 3

2 , then σ ∈ (0, 1 – 1
ζ

), ζ (γ – 2) + 1 = 1
4 > 0 and

g(τ , y) =
|y(τ )| 1

3

(1 + eτ )(1 + |y(τ )|) ≤ 1 + |y(τ )| 1
3

2(1 + |y(τ )|) ≤ 1
2
(
1 +

∣
∣y(τ )

∣
∣

1
3
)
,

which implies that the condition (H2) is satisfied. According to Theorem 3.2, BVP (13) has
at least one solution on [0, 1].

Let ϕ(τ ) = 1
(1+eτ ) , ψ(|y|) = |y| 1

3 . Obviously, g(τ , y) ≤ 1
(1+eτ ) |y|

1
3 = ϕ(τ )ψ(|y|) and ϕ∗ = 1

2
which implies that the condition (H3) is satisfied. Let M∗

2 = 27, then

(
Tγ

2Γ (γ )
+

2Tγ

Γ (γ + 1)

)
ϕ∗ψ(M∗

2)
M∗

2
=

(
1

2Γ ( 3
2 )

+
2

Γ ( 5
2 )

) 1
2 × 3

27
=

11
54

√
π

< 1,
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which implies that the inequity (10) is satisfied. According to Theorem 3.3, BVP (13) has
at least one solution on [0, 1].

Example 4.3 Consider the following BVP:

⎧
⎨

⎩

RC
0 D 3

2 y(τ ) = |y(τ )|
(1+τ )2(1+|y(τ )|) , 0 ≤ τ ≤ 1,

y(0) + y(1) = 0, y′(0) + y′(1) = 0.
(14)

Here g(τ , y) = |y(τ )|
(1+τ )2(1+|y(τ )|) , γ = 3

2 and T = 1.

g(τ , y) =
|y(τ )|

(1 + τ )2(1 + |y(τ )|) ≤ 1
(1 + τ )2 := μ(τ ).

Let ν = 1
3 , then ν ∈ (0,γ – 1) and μ(τ ) = 1

(1+τ )2 ∈ L3([0, 1], R+), which implies that the con-
dition (H4) is satisfied. According to Theorem 3.4, BVP (14) has at least one solution on
[0, 1].
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